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Abstract

We define a correlated random walk (CRW) induced from the time evolution
matrix (the Grover matrix) of the Grover walk on a graph G, and present a formula
for the characteristic polynomial of the transition probability matrix of this CRW
by using a determinant expression for the generalized weighted zeta function of
G. As an application, we give the spectrum of the transition probability matrices
for the CRWs induced from the Grover matrices of regular graphs and semiregular
bipartite graphs. Furthermore, we consider another type of the CRW on a graph.

Mathematics Subject Classifications: 05C50, 15A15

1 Introduction

Zeta functions of graphs started from the Ihara zeta functions of regular graphs by Ihara
[7]. In [7], he showed that their reciprocals are explicit polynomials. A zeta function of a
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regular graph G associated with a unitary representation of the fundamental group of G
was developed by Sunada [16, 17]. Hashimoto [5] generalized Ihara’s result on the Ihara
zeta function of a regular graph to an irregular graph, and showed that its reciprocal
is again a polynomial by a determinant containing the edge matrix. Bass [1] presented
another determinant expression for the Ihara zeta function of an irregular graph by using
its adjacency matrix.

Cooper [2] treated various properties of a graph G determined by the Ihara zeta
function of G. Morita [13] defined a generalized weighted zeta function of a digraph
which contains various zeta functions of a graph or a digraph. Ide et al. [6] presented a
determinant expression for the generalized weighted zeta function of a graph.

The time evolution matrix of a discrete-time quantum walk in a graph is closely related
to the Ihara zeta function of a graph. A discrete-time quantum walk is a quantum analog
of the classical random walk on a graph whose state vector is governed by a matrix called
the time evolution matrix(see [9]). Ren et al. [14] gave a relationship between the discrete-
time quantum walk and the Ihara zeta function of a graph. Konno and Sato [11] obtained
a formula of the characteristic polynomial of the Grover matrix by using the determinant
expression for the second weighted zeta function of a graph. Thus, the relation between
the Grover walk and a simple random walk on a graph was established. Konno [10] treated
the one-dimensional correlated random walk derived from one-dimensional quantum walk.

In this paper, we present an analogue of the above relation for the correlated random
walk derived from the Grover walk on a graph. We introduce a new correlated random
walk induced from the time evolution matrix (the Grover matrix) of the Grover walk on a
graph, and present a formula for the characteristic polynomial of its transition probability
matrix.

In Section 2, we review the Ihara zeta function and the generalized weighted zeta
functions of a graph. In Section 3, we review the Grover walk on a graph. In Section
4, we define a correlated random walk (CRW) induced from the time evolution matrix
(the Grover matrix) of the Grover walk on a graph G, and present a formula for the
characteristic polynomial of the transition probability matrix of this CRW. In Section 5,
we give the spectrum of the transition probability matrix for this CRW of a regular graph.
In Section 6, we present the spectrum for the transition probability matrix of this CRW
of a semiregular bipartite graph. In Section 7, we present formulas for the characteristic
polynomials of the transition probability matrices of another type of the CRW on a graph,
and give the spectrum of its transition probability matrix.

2 Preliminaries

2.1 Zeta functions of graphs

Graphs and digraphs treated here are finite. Let G be a connected graph and DG the
symmetric digraph corresponding to G. Set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For
e = (u, v) ∈ D(G), set u = o(e) and v = t(e). Furthermore, let e−1 = (v, u) be the inverse
of e = (u, v). For v ∈ V (G), the degree deg Gv = deg v = dv is the number of vertices
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adjacent to v in G. A graph G is called k-regular if deg v = k for each v ∈ V (G).
A walk P of length n in G is a sequence P = (e1, · · · , en) of n arcs such that ei ∈ D(G),

t(ei) = o(ei+1)(1 6 i 6 n − 1)(see [2]). If ei = (vi−1, vi) for i = 1, · · · , n, then we write
P = (v0, v1, · · · , vn−1, vn). Set | P |= n, o(P ) = o(e1) and t(P ) = t(en). Also, P is called
an (o(P ), t(P ))-walk. We say that a walk P = (e1, · · · , en) has a backtracking if e−1i+1 = ei
for some i (1 6 i 6 n − 1). A (v, w)-walk is called a closed walk if v = w. The inverse
closed walk of a closed walk C = (e1, · · · , en) is the closed walk C−1 = (e−1n , · · · , e−11 ).

We introduce an equivalence relation between closed walks. Two closed walks C1 =
(e1, · · · , em) and C2 = (f1, · · · , fm) are called equivalent if there exists a positive number
k such that fj = ej+k for all j, where the subscripts are considered by modulo m. The
inverse closed walk of C is in general not equivalent to C. Let [C] be the equivalence class
which contains a closed walk C. Let Br be the closed walk obtained by going r times
around a closed walk B. Such a closed walk is called a multiple of B. A closed walk C is
reduced if both C and C2 have no backtracking. Furthermore, a cclosed walk C is prime
if it is not a multiple of a strictly smaller closed walk. Note that each equivalence class
of prime, reduced closed walks of a graph G corresponds to a unique conjugacy class of
the fundamental group π1(G, v) of G at a vertex v of G.

The Ihara(-Selberg) zeta function of G is defined by

Z(G, u) =
∏
[C]

(1− u|C|)−1,

where [C] runs over all equivalence classes of prime, reduced closed walks of G.
Let G be a connected graph with n vertices and m edges. Then two 2m×2m matrices

B = B(G) = (Be,f )e,f∈D(G) and J0 = J0(G) = (Je,f )e,f∈D(G) are defined as follows:

Be,f =

{
1 if t(e) = o(f),
0 otherwise,

Je,f =

{
1 if f = e−1,
0 otherwise.

The matrix B− J0 is called the edge matrix of G.

Theorem 1 (Ihara; Hashimoto; Bass). Let G be a connected graph with n vertices and
m edges. Then the reciprocal of the Ihara zeta function of G is given by

Z(G, u)−1 = det(I2m − u(B− J0)) = (1− u2)m−n det(In − uA(G) + u2(DG − In)),

where DG = (dij) is the diagonal matrix with dii = deg G vi (V (G) = {v1, · · · , vn}).

The first identity in Theorem 1 was obtained by Hashimoto [5]. Also, Bass [1] proved
the second identity by using a linear algebraic method.

Stark and Terras [15] gave an elementary proof of this formula, and discussed three
different zeta functions of any graph. Various proofs of Bass’ Theorem were given by
Kotani and Sunada [12], and Foata and Zeilberger [4].
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2.2 The generalized weighted zeta functions of a graph

LetG be a connected graph with n vertices andm edges, andD(G) = {e1, . . . , em, em+1, . . .
, e2m}(em+i = e−1i (1 6 i 6 m)). Furthermore, we consider two functions τ : D(G) −→ C
and µ : D(G) −→ C. Let θ : D(G)×D(G) −→ C be a function such that

θ(e, f) = τ(f)δt(e)o(f) − µ(f)δe−1f .

We introduce a 2m× 2m matrix M(θ) = (Mef )e,f∈D(G) as follows:

Mef = θ(e, f).

Then the generalized weighted zeta function ZG(u, θ) of G is defined as follows(see [13]):

ZG(u, θ) = det(I2m − uM(θ))−1.

We consider two n × n matrices AG(θ) = (auv)u,v∈V (G) and DG(θ) = (duv)u,v∈V (G) as
follows:

auv =

{
τ(e)/(1− u2µ(e)µ(e−1)) if e = (u, v) ∈ D(G),
0 otherwise,

duv =

{ ∑
o(e)=u τ(e)µ(e−1)/(1− u2µ(e)µ(e−1)) if u = v,

0 otherwise.

A determinant expression for the generalized weighted zeta function of a graph is given
as follows(see [6]):

Theorem 2 (Ide, Ishikawa, Morita, Sato and Segawa). Let G be a connected graph with
n vertices and m edges, and let τ : D(G) −→ C and µ : D(G) −→ C be two functions.
Then

ZG(u, θ)−1 =
m∏
j=1

(1− u2µ(ej)µ(e−1j )) det(In − uAG(θ) + u2DG(θ)),

where D(G) = {e1, . . . , em, em+1, . . . , e2m} (em+j = e−1j (1 6 j 6 m)).

Proof. We give a sketch of proof along Ide et al [6].
Let V (G) = {v1, . . . , vn} and D(G) = {e1, . . . , em, e−11 , . . . , e−1m }. Arrange arcs of G as

follows: e1, e
−1
1 , . . . , em, e

−1
m . Furthermore, arrange vertices of G as follows: v1, . . . , vn.

Now, we define two 2m×n matrices K = (Kev)e∈D(G);v∈V (G) and L = (Lev)e∈D(G);v∈V (G)

as follows:

Kev :=

{
1 if t(e) = v,
0 otherwise,

Lev :=

{
τ(e) if o(e) = v,
0 otherwise.

Here we consider two matrices K and L under the above order. Furthermore, we define
a 2m× 2m matrix J = (Jef )e,f∈D(G) as follows:

Jef :=

{
µ(e) if f = e−1,
0 otherwise,
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Then we have
M(θ) = K tL− J.

Thus,
ZG(u, θ)−1 = det(I2m − uM(θ))

= det(I2m − u(K tL− J))

= det(I2m + uJ− uK tL)

= det(I2m − uK tL(I2m + uJ)−1) det(I2m + uJ).

Let A and B be an m× n and n×m matrix, respectively. Then we have

det(Im −AB) = det(In −BA).

Thus, we have

ZG(u, θ)−1 = det(In − u tL(I2m + uJ)−1K) det(I2m + uJ).

But, we have

det(I2m + uJ) =
m∏
j=1

(1− u2µ(ej)µ(e−1j )).

Let
xej = xj = 1− u2µ(ej)µ(e−1j ) (1 6 j 6 n).

Then we have

(I2m + uJ)−1 =

 1/x1 −uµ(e−11 )/x1 0
−uµ(e1)/x1 1/x1 0

0
. . .

 .
Thus, for (u, v) ∈ D(G),

(tL(I2m + uJ)−1K)uv = τ(u, v)/(1− u2µ(u, v)µ(v, u)).

Furthermore, for each v ∈ V (G),

(tL(I2m + uJ)−1K)vv = −u
∑
o(e)=v

τ(e)µ(e−1)/(1− u2µ(e)µ(e−1)).

Hence,

ZG(u, θ)−1 =
m∏
j=1

(1− u2µ(ej)µ(e−1j )) det(In − uAG(θ) + u2DG(θ)).
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3 The Grover walk on a graph

Let G be a connected graph with n vertices and m edges, V (G) = {v1, . . . , vn} and
D(G) = {e1, . . . , em, e−11 , . . . , e−1m }. Set dj = dvj = deg vj for i = 1, . . . , n. The Grover
matrix U = U(G) = (Uef )e,f∈D(G) of G is defined by

Uef =


2/dt(f)(= 2/do(e)) if t(f) = o(e) and f 6= e−1,
2/dt(f) − 1 if f = e−1,
0 otherwise.

The discrete-time quantum walk with the matrix U as a time evolution matrix is called
the Grover walk on G.

Let G be a connected graph with n vertices and m edges. Then the n × n matrix
T(G) = (Tuv)u,v∈V (G) is given as follows:

Tuv =

{
1/(deg Gu) if (u, v) ∈ D(G),
0 otherwise.

Note that the matrix T(G) is the transition matrix of the simple random walk on G(see
[11]).

Theorem 3 (Konno and Sato). Let G be a connected graph with n vertices v1, . . . , vn and
m edges. Then the characteristic polynomial for the Grover matrix U of G is given by

det(λI2m −U) = (λ2 − 1)m−n det((λ2 + 1)In − 2λT(G))

= (λ2−1)m−n det((λ2+1)D−2λA(G))
dv1 ···dvn

.

From this Theorem, the spectra of the Grover matrix on a graph is obtained by means
of those of T(G) (see [3]). Let Spec(F) be the spectra of a square matrix F.

Corollary 4 (Emms, Hancock, Severini and Wilson). Let G be a connected graph with n
vertices and m edges. The Grover matrix U has 2n eigenvalues of the form

λ = λT ± i
√

1− λ2T ,

where λT is an eigenvalue of the matrix T(G). The remaining 2(m−n) eigenvalues of U
are ±1 with equal multiplicities.

4 A correlated random walk on a graph

Let G be a connected graph with n vertices and m edges, and U be the Grover matrix of
G. Then we define a 2m× 2m matrix P = (Pef )e,f∈D(G) as follows:

Pef = |Uef |2.
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Note that

Pef =


4/d2t(f)(= 4/d2o(e)) if t(f) = o(e) and f 6= e−1,

(2/dt(f) − 1)2 if f = e−1,
0 otherwise.

The random walk with the matrix P as a transition probability matrix is called the
correlated random walk (CRW) (with respect to the Grover matrix) on G(see [8, 10]).

Let R = (Ref )e,f∈D(G) be a 2m× 2m matrix such that

Ref =


4/d2o(f)(= 4/d2o(e)) if o(e) = o(f) and f 6= e,

(2/do(f) − 1)2 if f = e,
0 otherwise.

Then we have
P = J0R.

Let G be a d-regular graph. In the case of d = 4, we consider P = (Pef )e,f∈D(G) be
the transition probability matrix of the CRW with respect to the Grover matrix on a
d-regular graph G. If t(f) = o(e) and f 6= e−1, then Pef = 4/d2 = 4/42 = 1/4. If f = e−1,
then Pef = 4/d2 − (4/d − 1) = 4/42 − (4/4 − 1) = 1/4. Thus, this CRW is considered
to be a simple random walk on G which the particle moves over each arc in terms of the
same probability.

By Theorem 2, we obtain the following formula for P.

Theorem 5. Let G be a connected graph with n vertices and m edges, and let P be the
transition probability matrix of the CRW with respect to the Grover matrix. Then

det(I2m − uP) =
m∏
j=1

(1− u2( 4

do(ej)
− 1)(

4

dt(ej)
− 1)) det(In − uACRW + u2DCRW ),

where

(ACRW )xy =

{
4/d2x

1−u2(4/dx−1)(4/dy−1) if (x, y) ∈ D(G),

0 otherwise,

(DCRW )xy =

{ ∑
o(e)=x

4/d2x(4/dt(e)−1)
1−u2(4/dx−1)(4/dt(e)−1)

if x = y,

0 otherwise.

Proof. For the matrix P, we have

Pef =
4

d2o(e)
δt(f)o(e) − (

4

do(e)
− 1)δf−1e.

The we let two functions τ : D(G) −→ C and µ : D(G) −→ C. as follows:

τ(e) =
4

d2o(e)
and µ(e) =

4

do(e)
− 1.
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Furthermore, let

θ(e, f) =
4

d2o(f)
δt(e)o(f) − (

4

do(f)
− 1)δe−1f .

Then we have
P = tM(θ).

Thus, we obtain

det(I2m − uP) = det(I2m − u tM(θ)) = det(I2m − uM(θ)) = ZG(u, θ)−1.

By Theorem 2, we have

det(I2m − uP) =
m∏
j=1

(1− u2( 4

do(ej)
− 1)(

4

dt(ej)
− 1)) det(In − uACRW + u2DCRW ),

where

(ACRW )xy =

{
4/d2x

1−u2(4/dx−1)(4/dy−1) if (x, y) ∈ D(G),

0 otherwise,

(DCRW )xy =

{ ∑
o(e)=x

4/d2x(4/dt(e)−1)
1−u2(4/dx−1)(4/dt(e)−1)

if x = y,

0 otherwise.

By Theorem 4, we obtain the spectrum of the transition probability matrices for the
CRWs induced from the Grover matrices of regular graphs and semiregular bipartite
graphs.

5 An application to the correlated random walk on a regular
graph

We present spectra for the transition probability matrix of the correlated random walk
on a regular graph with respect to the Grover matrix.

Theorem 6. Let G be a connected d-regular graph with n vertices and m edges, where
d > 2. Furthermore, let P be the transition probability matrix of the CRW with respect to
the Grover matrix. Then

det(I2m − uP) =
(d2 − u2(4− d)2)m−n

d2m
det(d(d+ (4− d)u2)In − 4uA(G)).

Proof. Let G be a connected d-regular graph with n vertices and m edges, where d > 2.
Then we have

do(e) = dt(e) = d for each e ∈ D(G).

Thus, we have

1− u2( 4

do(e)
− 1)(

4

dt(e)
− 1) =

d2 − u2(4− d)2

d2
,
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(ACRW )xy =
4/d2x

1− u2(4/dx − 1)(4/dy − 1)
=

4

d2 − u2(4− d)2
if (x, y) ∈ D(G)

and

(DCRW )xy =
∑
o(e)=x

4/d2x(4/dt(e) − 1)

1− u2(4/dx − 1)(4/dt(e) − 1)
=

4(4− d)

d2 − u2(4− d)2
.

Therefore, it follows that

ACRW =
4

d2 − u2(4− d)2
A(G) and DCRW =

4(4− d)

d2 − u2(4− d)2
In.

By Theorem 4, we have

det(I2m − uP)

=
(d2 − u2(4− d)2)m

d2m
det(In − u

4

d2 − u2(4− d)2
A(G) + u2

4(4− d)

d2 − u2(4− d)2
In)

=
(d2 − u2(4− d)2)m−n

d2m
det((d2 − u2(4− d)2)In − 4uA(G) + 4(4− d)u2In)

=
(d2 − u2(4− d)2)m−n

d2m
det(d(d+ (4− d)u2)In − 4uA(G)).

By substituting u = 1/λ, we obtain the following result.

Corollary 7. Let G be a connected d-regular graph with n vertices and m edges, where
d > 2. Furthermore, let P be the transition probability matrix of the CRW with respect to
the Grover matrix. Then

det(λI2m −P) = (d2λ2−(4−d)2)m−n

d2m
det(d(dλ2 + (4− d))In − 4λA(G))

= (λ2 − (4
d
− 1)2)m−nλn det((λ+ (4

d
− 1)) 1

λ
)In − 4

d2
A(G)).

The second identity of Corollary 2 is considered as the spectral mapping theorem
for P.

By Corollary 2, we obtain the spectra for the transition matrix P of the CRW with
respect to the Grover matrix on a regular graph.

Corollary 8. Let G be a connected d(> 2)-regular graph with n vertices and m edges.
Then the transition probability matrix P has 2n eigenvalues of the form

λ =
2λA ±

√
4λA2 − d3(4− d)

d2
,

where λA is an eigenvalue of the matrix A(G). The remaining 2(m−n) eigenvalues of P
are ±(4− d)/d with equal multiplicities m− n.
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Proof. By Corollary 2, we have

det(λI2m −P) = (d2λ2 − (4− d)2)m−n/d2m
∏

λA∈Spec(A(G))(d(dλ2 + 4− d)− 4λAλ)

= (λ2 − (4−d
d

)2)m−n/d2n
∏

λA∈Spec(A(G))(d
2λ2 − 4λAλ+ d(4− d)).

Thus, solving
d2λ2 − 4λAλ+ d(4− d) = 0,

we obtain

λ =
2λA ±

√
4λA2 − d3(4− d)

d2
.

6 An application to the correlated random walk on a semireg-
ular bipartite graph

We present spectra for the transition probability matrix of the correlated random walk on
a semiregular bipartite graph. Hashimoto [5] presented a determinant expression for the
Ihara zeta function of a semiregular bipartite graph. We use an analogue of the method
in the proof of Hashimoto’s result.

A bipartite graph G = (V1, V2) is called (q1, q2)-semiregular if deg Gv = qi for each
v ∈ Vi(i = 1, 2). For a (q1 + 1, q2 + 1)-semiregular bipartite graph G = (V1, V2), let G[i] be
the graph with vertex set Vi and edge set {P : reduced walk | | P |= 2; o(P ), t(P ) ∈ Vi}
for i = 1, 2. Then G[1] is (q1 + 1)q2-regular, and G[2] is (q2 + 1)q1-regular.

Theorem 9. Let G = (V,W ) be a connected (r, s)-semiregular bipartite graph with ν
vertices and ε edges. Set | V |= m and | W |= n(m 6 n). Furthermore, let P be the
transition probability matrix of the CRW with respect to the Grover matrix of G, and

Spec(A(G) = {±λ1, · · · ,±λm, 0, . . . , 0}.

Then
det(I2ε − uP) = (1− u2(4/r − 1)(4/s− 1))ε−ν(1− u2(4/r − 1))n−m

×
m∏
j=1

((1− u2(4/s− 1))(1− u2(4/r − 1))− 16
λ2j
r2s2

u2).

Proof. Let e ∈ D(G). If o(e) ∈ V , then

do(e) = r, dt(e) = s.

Thus, we have

1− u2( 4

do(e)
− 1)(

4

dt(e)
− 1) =

rs− u2(4− r)(4− s)
rs

,
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(ACRW )xy = 4/d2x
1−u2(4/dx−1)(4/dy−1)

=

{
4s

rs−u2(4−r)(4−s)
1
r

if (x, y) ∈ D(G) and x ∈ V ,
4r

rs−u2(4−r)(4−s)
1
s

if (x, y) ∈ D(G) and x ∈ W ,

and
(DCRW )xx =

∑
o(e)=x

4/d2x(4/dt(e)−1)
1−u2(4/dx−1)(4/dt(e)−1)

=

{
r · 4(4−s)

r(rs−u2(4−r)(4−s)) = 4(4−s)
rs−u2(4−r)(4−s)) if x ∈ V ,

s · 4(4−r)
s(rs−u2(4−r)(4−s)) = 4(4−r)

rs−u2(4−r)(4−s)) if x ∈ W .

Next, let V = {v1, · · · , vm} and W = {w1, · · · , wn}. Arrange vertices of G as follows:
v1, · · · , vm;w1, · · · , wn. We consider the matrix A = A(G) under this order. Then, let

A =

[
0 E
tE 0

]
.

By the Gram-Schmidt orthogonalization, there exists an orthogonal matrix F ∈ O(n)
such that

EF =
[
R 0

]
=

 µ1 0 0 · · · 0
. . .

...
...

? µm 0 · · · 0

 .
Now, let

H =

[
Im 0
0 F

]
.

Then we have

tHAH =

 0 R 0
tR 0 0
0 0 0

 .
Furthermore, let

α = 4/(rs− u2(4− r)(4− s)).

Then we have

ACRW =

[
0 αs/rE

αr/s tE 0

]
,

and

DCRW =

[
α(4− s)Im 0

0 α(4− r)In

]
.

Thus, we have

tHACRWH =

 0 αs/rR 0
αr/s tR 0 0

0 0 0


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and
tHDCRWH =

[
α(4− s)Im 0

0 α(4− r)In

]
.

By Theorem 2,

det(I2ε − uP) = (rs−u2(4−r)(4−s))ε
rεsε

det(Iν − uACRW + u2DCRW )

= (rs−u2(4−r)(4−s))ε
rεsε

× det

 Im + α(4− s)u2Im −αsu/rR 0
−αru/s tR Im + α(4− r)u2Im 0

0 0 In−m + α(4− r)u2In−m


= (rs−u2(4−r)(4−s))ε

rεsε
(1 + α(4− r)u2)n−m

× det

([
(1 + α(4− s)u2)Im −αsu/rR
−αru/s tR (1 + α(4− r)u2)Im

])

× det

([
Im

1
1+α(4−s)u2

αsu
r
R

0 Im

])

= (rs−u2(4−r)(4−s))ε+m−n

rεsε
(rs+ u2(4− r)s)n−m

× det

([
(1 + α(4− s)u2)Im 0

−αru/s tR (1 + α(4− r)u2)Im − α2u2

1+α(4−s)u2
tRR

])

= (rs−u2(4−r)(4−s))ε+m−n

rεsε
(rs+ u2(4− r)s)n−m

× (1 + α(4− s)u2)m det((1 + α(4− r)u2)Im − α2u2

1+α(4−s)u2
tRR)

= (rs−u2(4−r)(4−s))ε+m−n

rεsε
(rs+ u2(4− r)s)n−m

× det((1 + α(4− s)u2)(1 + α(4− r)u2)Im − α2u2 tRR).

Since A is symmetric, tRR is symmetric and positive semi-definite, i.e., the eigenvalues
of tRR are of form:

λ21, · · · , λ2m(λ1, · · · , λm > 0).

Furthermore, we have

det(λIν −A(G)) = λn−m det(λ2 − tRR),

and so,
Spec(A(G)) = {±λ1, · · · ,±λm, 0, . . . , 0}.

the electronic journal of combinatorics 28(4) (2021), #P4.21 12



Therefore it follows that

det(I2ε − uP)

=
(rs− u2(4− r)(4− s))ε+m−n

rεsε
(rs+ u2(4− r)s)n−m

×
m∏
j=1

((1 + α(4− s)u2)(1 + α(4− r)u2)− α2λ2ju
2)

=
(rs− u2(4− r)(4− s))ε+m−n

rεsε
(rs+ u2(4− r)s)n−m

×
m∏
j=1

(
rs+ u2(4− s)r

rs− u2(4− r)(4− s)
rs+ u2(4− r)s

rs− u2(4− r)(4− s)

− λ2j
16u2

(rs− u2(4− r)(4− s))2
)

=
(rs− u2(4− r)(4− s))ε−m−n

rεsε
(rs+ u2(4− r)s)n−m

×
m∏
j=1

(rs(s+ u2(4− s))(r + u2(4− r))− 16λ2ju
2)

= (1− u2(4/r − 1)(4/s− 1))ε−ν(1 + u2(4/r − 1))n−m

×
m∏
j=1

((1 + u2(4/s− 1))(1 + u2(4/r − 1))− 16
λ2j
r2s2

u2).

Now, let u = 1/λ. Then we obtain the following result.

Corollary 10. Let G = (V,W ) be a connected (r, s)-semiregular bipartite graph with ν
vertices and ε edges. Set | V |= m and | W |= n(m 6 n). Furthermore, let P be the
transition probability matrix of the CRW with respect to the Grover matrix and

Spec(A(G)) = {±λ1, · · · ,±λm, 0, . . . , 0}.

Then
det(λI2ε −P) = (λ2 − (4/r − 1)(4/s− 1))ε−ν(λ2 + (4/r − 1))n−m
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×
m∏
j=1

((λ2 + (4/s− 1))(λ2 + (4/r − 1))− 16
λ2j
r2s2

λ2).

By Corollary 4, we obtain the spectra for the transition probability matrix P of the
CRW with respect to the Grover matrix of a semiregular bipartite graph.

Corollary 11. Let G = (V,W ) be a connected (r, s)-semiregular bipartite graph with ν
vertices and ε edges. Set | V |= m and | W |= n(m 6 n). Furthermore, let P be the
transition probability matrix of the CRW with respect to the Grover matrix and

Spec(A(G)) = {±λ1, · · · ,±λm, 0, . . . , 0}.

Then the transition matrix P has 2ε eigenvalues of the form

1. 4m eigenvalues: λ =

±

√√√√2r2s2 − 4rs2 − 4r2s+ 16λ2j ±
√

(2r2s2 − 4rs2 − 4r2s+ 16λ2j )
2 − 4r3s3(4− r)(4− s)

2r2s2
;

2. 2n− 2m eigenvalues:

λ = ±i
√

4

r
− 1;

3. 2(ε− ν) eigenvalues:

λ = ±
√

(
4

r
− 1)(

4

s
− 1).

Proof. Solving

(λ2 + (4/s− 1))(λ2 + (4/r − 1))− 16
λ2j
r2s2

λ2 = 0,

i.e.,

λ4 + (
4

r
+

4

s
− 2−

16λ2j
r2s2

)λ2 + (
4

r
− 1)(

4

s
− 1) = 0,

we obtain

λ = ±

√√√√1

2
((2− 4

r
− 4

s
+

16λ2j
r2s2

)±

√
(2− 4

r
− 4

s
+

16λ2j
r2s2

)2 − 4(
4

r
− 1)(

4

s
− 1)),

and so the result follows.
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7 Another type of the correlated random walk on a cycle graph

The CRW is defined by the following transition probability matrix P on the one dimen-
sional lattice:

P =

[
a b
c d

]
,

where
a+ c = b+ d = 1, a, b, c, d ∈ [0, 1].

As for the CRW, see [8, 10], for example.
We formulate a CRW on the arc set of a graph with respect to the above matrix P.

The cycle graph is a connected 2-regular graph. Let Cn be the cycle graph with n vertices
and n edges. Furthermore, let V (Cn) = {v1, . . . , vn} and ej = (vj, vj+1)(1 6 j 6 n),
where the subscripts are considered by modulo n. Then we introduce a 2n × 2n matrix
U = (Uef )e,f∈D(Cn) as follows:

Uef =


d if t(f) = o(e), f 6= e−1 and f = ej,
b if f = e−1 and f = ej,
a if t(f) = o(e), f 6= e−1 and f = e−1j ,
c if f = e−1 and f = e−1j ,
0 otherwise.

Note that U can be written as follows:

U =

[
dQ−1 cIn
bIn aQ

]
,

where Q = Pσ is the permutation matrix of σ = (12 . . . n). The CRW with U as a
transition probability matrix is called the second type of CRW on Cn with respect to the
above matrix P.

Now, we define a function w : D(Cn) −→ R as follows:

w(e) =

{
d if e = ej (1 6 j 6 n),
a if e = e−1j (1 6 j 6 n).

Furthermore, let an n× n matrix W(Cn) = (wuv)u,v∈V (Cn) as follows:

wuv =

{
w(u, v) if (u, v) ∈ D(Cn),
0 otherwise.

The characteristic polynomial of U is given as follows.

Theorem 12. Let Cn be the cycle graph with n vertices, and U the transition probability
matrix of the second type of CRW on Cn. Then

det(λI2n −U) = det((λ2 + (ad− bc))In − λW(Cn)).
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Proof. At first, we consider two 2n×2n matrices B = (Bef )e,f∈D(Cn) and J = (Jef )e,f∈D(Cn)

as follows:

Bef =

{
w(f) if t(e) = o(f),
0 otherwise,

Jef =


b− a if f = e−1 and e = ej,
c− d if f = e−1 and e = e−1j ,
0 otherwise.

Then we have
U = tB + tJ.

Now, we define two 2n× n matrices K = (Kev) and L = (Lev) as follows:

Kev =

{
1 if t(e) = v,
0 otherwise,

Lev =

{
w(e) if o(e) = v,
0 otherwise,

where e ∈ D(Cn), v ∈ V (Cn). Then we have

K tL = B, tLK = W(Cn).

Thus,
det(I2n − uU) = det(I2n − u(tB + tJ))

= det(I2n − u(B + J))

= det(I2n − uJ− uB)

= det(I2n − uJ− uK tL)

= det(I2n − uK tL(I2n − uJ)−1) det(I2n − uJ)

= det(In − u tL(I2n − uJ)−1K) det(I2n − uJ).

But, we have

det(I2n − uJ)

= det

[
In −(b− a)uIn

−(c− d)uIn In

]
· det

[
In (b− a)uIn
0 In

]

= det

[
In 0

−(c− d)uIn In − u2(b− a)(c− d)In

]
= (1− (a− b)(d− c)u2)n.

Furthermore, we have

(I2n − uJ)−1 =
1

1− (a− b)(d− c)u2
(I2n + uJ).
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Therefore, it follows that

det(I2n − uU)

= (1− (a− b)(d− c)u2)n det(In − u/(1− (a− b)(d− c)u2) tL(I2n + uJ)K)

= det((1− (a− b)(d− c)u2)In − u tLK− u tLJK)

= det((1− (a− b)(d− c)u2)In − uW(Cn)− u2 tLJK).

The matrix tLJK is diagonal, and its (vi, vi) entry is equal to

(c− d)w(e−1i−1) + (b− a)w(ei) = (c− d)a+ (b− a)d = ac+ bd− 2ad.

That is,
tLJK = (ab+ cd− 2ad)In.

Thus,

det(I2n − uU)

= det((1− (a− b)(d− c)u2)In − uW(Cn)− u2(ac+ bd− 2ad)In)

= det(((1 + (ad− bc)u2)In − uW(Cn)).

Substituting u = 1/λ, the result follows.
By Theorem 7, we obtain the spectra for the transition probability matrix U of the

second type of the CRW on Cn. The matrix W(Cn) is given as follows:

W(Cn) =


0 d 0 . . . a
a 0 d . . . 0
...

...
. . .

0 0 0 . . . 0 d
d 0 0 . . . a 0

 ,

Corollary 13. Let Cn be the cycle graph with n vertices, and U the transition probability
matrix of the second type of CRW on Cn. Then the transition probability matrix U has
2n eigenvalues of the form

λ =
µ±

√
µ2 − 4(ad− bc)

2
, µ ∈ Spec(W(Cn)).

Proof. At first, we have

det(I2n − uU) =
∏

µ∈Spec(W(Cn))

(λ2 − µλ+ (ad− bc)).
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Solving
λ2 − µλ+ (ad− bc) = 0,

we obtain

λ =
µ±

√
µ2 − 4(ad− bc)

2
.

Now, we consider the case of a = b = c = d = 1/2. Then the matrix W(Cn) is equal
to

W(Cn) =
1

2
A(Cn).

By Corollary 6, we obtain the spectra for the transition probability matrix U of the
second type of CRW on Cn.

Corollary 14. Let Cn be the cycle graph with n vertices, and U the transition probability
matrix of the second type of the CRW on Cn. Assume that a = b = c = d = 1/2. Then
the transition probability matrix U has n eigenvalues of the form

λ = cos θj, θj =
2πj

n
(j = 0, 1, . . . , n− 1) (∗).

The remaining n eigenvalues of U are 0 with multiplicities n.

Proof. It is known that the spectrum of A(Cn) are

2 cos θj, θj =
2πj

n
(j = 0, 1, . . . , n− 1).

Note that the spectrum of (*) are those of the transition probability matrix of the
simple random walk on a cycle graph Cn.

We can generalize the result for a = b = c = d = 1/2 on Cn to a d-regular graph(d > 2).
Let G be a connected d-regular graph with n vertices and m edges. Furthermore, let P
be the d× d matrix as follows:

P =
1

d
Jd,

where Jd is the matrix whose elements are all one. Let U = (Uef )e,f∈D(G) be the the
transition probability matrix of a CRW on G with respect to P. Then we have

Uef =

{
1/d if t(e) = o(f),
0 otherwise,

and so,

U =
1

d
B.

Similarly to The proof of Theorem 7, we obtain the following result.

Theorem 15. Let G be a connected d-regular graph with n vertices and m edges. Further-
more, let U the transition probability matrix of the CRW on G with respect to P = 1/dJd.
Then

det(λI2m −U) = λ2m−n det(λIn −
1

d
A(G)).
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Thus,

Corollary 16. Let G be a connected d-regular graph with n vertices and m edges. Further-
more, let U the transition probability matrix of the CRW on G with respect to P = 1/dJd.
Then the transition probability matrix U has n eigenvalues of the form

λ =
1

d
λA, λA ∈ Spec(A(G)).

The remaining 2(m− n) eigenvalues of U are 0 with multiplicities 2m− n.

8 Future work

In this paper, we presented the spectrum of the transition probability matrix P of the
CRW induced from the time evolution matrix U of the Grover walk on a regular graph
and a semiregular bipartite graph by using a determinant expression for the general-
ized weighted zeta function of a graph. Here, the transition probability matrix P is the
Hadamard product U ◦U of U and itself.

Thus, we can propose the following problem.

Problem 17. Let a matrix U be the time evolution matrix of any discrete-time quantum
walk on a graph. Then, what is the spectrum of the doubly stochastic matrix P = U◦U?

From now on, we shall study the above problem.
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