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Abstract

A [k, n, 1]-graph is a k-partite graph with parts of order n such that the bipartite
graph induced by any pair of parts is a matching. An independent transversal in such
a graph is an independent set that intersects each part in a single vertex. A factor
of independent transversals is a set of n pairwise-disjoint independent transversals.
Let f(k) be the smallest integer n0 such that every [k, n, 1]-graph has a factor of
independent transversals assuming n > n0. Several known conjectures imply that
for k > 2, f(k) = k if k is even and f(k) = k + 1 if k is odd. While a simple greedy
algorithm based on iterating Hall’s Theorem shows that f(k) 6 2k − 2, no better
bound is known and in fact, there are instances showing that the bound 2k − 2
is tight for the greedy algorithm. Here we significantly improve upon the greedy
algorithm bound and prove that f(k) 6 1.78k for all k sufficiently large, answering
a question of MacKeigan.

Mathematics Subject Classifications: 05C35, 05C69

1 Introduction

Given a k-partite graph, a transversal is a set of vertices containing a single vertex from
each part. An independent transversal is an independent set which is also a transversal.
A factor of transversals is a set of pairwise-disjoint transversals covering all vertices. The
problem of finding sufficient conditions for the existence of independent transversals and
factors of independent transversals in k-partite graphs was studied by several researchers
[1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17] not least because it is strongly related to
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the Hajnal-Szemerédi Theorem and to concepts such as the strong chromatic number and
list coloring.

In this paper we consider sufficient conditions for a factor of independent transversals
in very sparse k-partite graphs. To this end, define a [k, n, 1]-graph to be a k-partite
graph with parts of order n such that the bipartite graph induced by any pair of parts is
a matching (more generally, in a [k, n,∆]-graph the bipartite graph induced by any pair
of parts has maximum degree at most ∆). Erdős, Gyárfás and  Luczak [5] first considered
[k, n, 1]-graphs where the matching between each pair is a single edge, and asked for the
smallest n = n(k) such that there is always an independent transversal. They proved
that n >

√
k(1 − o(1)), proved an upper bound which is larger by a constant factor,

and conjectured that the lower bound is asymptotically tight. The author [16] improved
the upper bound of [5] and generalized the problem to arbitrary [k, n, 1]-graphs. Very
recently, the conjecture of [5] was solved independently by Glock and Sudkaov [7] and by
Kang and Kelly [9].

As for a sufficient condition guaranteeing a factor of independent transversals in
[k, n, 1]-graphs, the requirement of n is obviously more demanding. Formalizing it, let
f(k) be the smallest integer n0 such that every [k, n, 1]-graph has a factor of independent
transversals assuming n > n0. To see that f(k) > k, let the parts of a [k, n, 1]-graph be
denoted by V1, . . . , Vk with Vi = {vi,1, . . . , vi,n}. Let G be the [k, k− 1, 1]-graph consisting
of the edges vi,1vj,1 for all 1 6 i < j 6 k. Then every independent transversal has a single
vertex of the form v?,1, so G does not have a factor of independent transversals, proving
that f(k) > k. When k > 3 is odd, the following construction of Catlin [4] shows, in
fact, that f(k) > k + 1. Let G be the [k, k, 1]-graph consisting of the edges vi,tvj,t for all
1 6 i < j 6 k and for all 1 6 t 6 k − 2 and of the edges vi,k−1vj,k and vi,kvj,k−1 for all
1 6 i < j 6 k. Then each independent transversal contains exactly one vertex of the form
v?,t for all 1 6 t 6 k−2 and exactly two vertices of the form v?,k−1 or exactly two vertices
of the form v?,k. But since k is odd, this means that we can have at most k − 1 disjoint
independent transversals, showing that f(k) > k+ 1. As we shall see below, the following
conjecture, which is implied by special cases of several known conjectures, asserts that
the above constructions are the worst cases.

Conjecture 1. Let k > 2. Then f(k) = k if k is even and f(k) = k + 1 if k is odd.

It is trivial that f(2) = 2 and (see below) easy to show that f(3) = 4. A computer-
assisted proof (see Section 4) shows that f(4) = 4 but in general, Conjecture 1 is wide-
open. To motivate this conjecture, let us consider the more general case of [k, n,∆]-
graphs. Recall that the Hajnal-Szemerédi Theorem states that if a graph with nk vertices
has maximum degree less than n, then it has n pairwise-disjoint independent sets of
size k each. Fischer [6] considered the analogue of the Hajnal-Szemerédi Theorem in
[k, n,∆]-graphs and raised the following intriguing conjecture: Every [k, n,∆]-graph has
a factor of independent transversals as long as ∆ 6 n/k. Notice that if k = n then
Fischer’s Conjecture becomes equivalent to the conjecture f(k) = k. Fischer’s conjecture
is false when k is odd due to Catlin’s construction but, as we shall see evident, it stands
a wide chance of being true in the sense that Catlin’s construction (and its generalization
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for larger ∆, see [11]) is the only counter-example. In fact, this version (call it the
“modified Fischer’s Conjecture”) is explicitly conjectured by Kühn and Osthus in [11]. In
particular, the modified Fischer’s Conjecture implies Conjecture 1. The modified Fischer’s
Conjecture has been solved for k = 3 and large n by Magyar and Martin [13], for k = 4
and large n by Martin and Szemerédi [14] and, finally, for every fixed k and sufficiently
large n = n(k) by Keevash and Mycroft [10]. However, as all of these proofs require n to
be very large compared to k, they do not imply Conjecture 1 nor an upper bound close
to the conjecture. Lastly, we mention that the author in [16] considered the refinement of
f(k) to [k, n, 1]-graphs in which every matching consists of at most s independent edges
(so the case s = n is the general case of [k, n, 1]-graphs). Denoting the refined parameter
by f(k, s) we observe by the construction above that already f(k, 1) > k and it is proved
in [16] that f(k, 1) = f(k, 2) = k. Furthermore, it is conjectured there that f(k, s) = k
for all 1 6 s 6 k, which again states that f(k) = k, ignoring Catlin’s obstacle (this was
also observed in [12]), and so if the modified Fischer Conjecture holds (namely: Catlin’s
construction is the only obstacle), so does the modified conjecture on f(k, s) = k unless
k > 3 is odd and s = k in which case f(k, s) = k + 1.

There is, however, a simple upper bound of f(k) 6 2k − 2 observed by MacKeigan
[12] which follows by greedily applying Hall’s algorithm. Assume that G is a [k, n, 1]-
graph with n > 2k − 2. Suppose we have already constructed a factor F of independent
transversals on the induced subgraph G′ of G consisting of all but the last set Vk. Then G′

is a [k−1, n, 1]-graph. Now consider the bipartite graph B with one part being F and the
other part being Vk, and there is an edge between I ∈ F and v ∈ Vk if v is not a neighbor
in G of any vertex of I. Then B has n vertices in each part and minimum degree at least
n−(k−1) > n/2, so B has a perfect matching by Hall’s Theorem, implying that F can be
extended to a factor of independent transversals of G. Notice that this already shows that
f(3) 6 4 so together with Catlin’s example, f(3) = 4. Unfortunately, there are examples
where this greedy algorithm of repeatedly applying Hall’s theorem fails to produce a factor
of independent transversals if n = 2k−3. Indeed we can construct examples of F as above
such that it has a subset of k − 1 elements F ∗ = {I1, . . . , Ik−1}, and such that each of
the vertices in V ∗ = {vk,1, . . . , vk,k−1} ⊂ Vk has exactly one neighbor in G belonging to
Ij for each 1 6 j 6 k − 1 (for example, any Latin square of order k − 1 corresponds to
such a construction). Then in the bipartite graph B, the neighborhood of V ∗ is only of
size n − (k − 1) = k − 2, violating Hall’s condition, so B has no perfect matching. A
problem therefore raised by MacKeigan asks whether it is possible to improve upon the
greedy algorithm. Our main result shows that indeed this is the case.

Theorem 2. f(k) 6 1.78k for all k sufficiently large.

Our main idea in the proof of Theorem 2 is to apply semi-randomness to the perfect
matchings at each stage of the greedy algorithm (hence it is no longer greedy) so as to
guarantee that as we come close to the end of the algorithm (close to Stage k) we can
still guarantee Hall’s condition with high probability.

The rest of this paper continues as follows. In Section 2 we state and prove some
preliminary lemmas that are useful in the proof of the main result. Theorem 2 is then
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proved in Section 3. In Section 4 we prove that f(4) = 4 thereby verifying Conjecture 1
in the first non-elementary case. Throughout the paper, we assume, whenever necessary,
that k and n are sufficiently large.

2 Preliminary setup

Let us first observe that if we can show that every [k, n, 1]-graph has a factor of indepen-
dent transversals, then f(k) 6 n. Indeed, if G is a [k, n′, 1]-graph with n′ > n we can
just take an induced subgraph consisting of n vertices of each part observing that this
subgraph is an [n, k, 1]-graph. Being such, it has a (factor of) independent transversal(s),
so we can just apply this repeatedly to find n′−n pairwise disjoint independent transver-
sals in G. Removing them from G we remain with an induced subgraph G′ of G which is
an [n, k, 1]-graph and find a factor of independent transversals in G′, hence, altogether, a
factor of independent transversals in G.

In our proof of Theorem 2 it will be more convenient to fix the number of vertices in
each part and to parameterize on the number of parts. Let, therefore g(n) denote the
largest integer k such that every [k, n, 1]-graph has a factor of independent transversals.
We therefore have:

Corollary 3. If g(n) > 0.562n for all n sufficiently large, then f(k) 6 1.78k for all k
sufficiently large, so Theorem 2 holds.

As we prove in Lemma 11 that g(n) > 0.562n for all n sufficiently large, we have by the
last corollary that Theorem 2 holds.

For a graph G and a set of its vertices X, let NG(X) denote the set of vertices of G
that have a neighbor in X. The following is an immediate corollary of Hall’s Theorem.

Lemma 4. Let B be a bipartite graph with vertex parts X, Y of order m each. Assume
that the degree of every vertex is at least m − t and, furthermore, every W ⊆ Y with
m− t 6 |W | 6 t has |NB(W )| > |W |. Then B has a perfect matching.

Lemma 5. Let δ > 0. Then there exists a constant C = C(δ) > 0 such that the following
holds. Let B be a bipartite graph with vertex parts X = {x1, . . . , xn}, Y = {y1, . . . , yn}
and suppose the degree of each vertex of X is precisely n− t. Furthermore, suppose that
X∗ ⊆ X and Y ∗ ⊆ Y are given. Let π be a random permutation of the vertices of Y and
let M = {(xi, yπ(i))}ni=1. Then with probability at least 1− C/n the following hold:

(i) The number of pairs in M that are edges of B is at least n − t − δn and at most
n− t+ δn.

(ii) There is a subset M∗ ⊆ M with |M∗| > |X∗|(|Y ∗| − t)/n− δn such that every pair
(xi, yπ(i)) ∈M∗ is an edge of B and furthermore, xi ∈ X∗ and yπ(i) ∈ Y ∗.

Proof. We start with (ii). Suppose without loss of generality, that the vertices of X∗

are {x1, . . . , xq} where q = |X∗|. Let di be the number of neighbors of xi in Y ∗ and
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observe that di > (n − t) − (n − |Y ∗|) = |Y ∗| − t. Let Ri be the indicator random
variable for the event Ai = “yπ(i) ∈ Y ∗ and (xi, yπ(i)) is an edge of B”. Let R =

∑q
i=1Ri

count the number of pairs that satisfy the condition of being in M∗. Now, Pr[Ai] =
di/n > (|Y ∗| − t)/n. It follows that E[R] > q(|Y ∗| − t)/n. It remains to upper bound the
probability that R deviates from its expectation by more than δn. Now, if q 6 δn then
(ii) is trivial since R 6 q. Otherwise, R is the sum of Θ(n) indicator random variables.
We claim that V ar[R] = O(n). Indeed, V ar[Ri] 6 1 as it is an indicator variable. We
estimate Cov(Ri, Rj) = Pr[Ai∩Aj]−didj/n2. Now, given that Ai occurred, there are two
possibilities. If yπ(i) is a neighbor of xj, then Aj occurred with probability (dj−1)/(n−1).
If yπ(i) is not a neighbor of xj, then Aj occurred with probability dj/(n− 1). In any case,

di(dj − 1)

n(n− 1)
6 Pr[Ai ∩ Aj] 6

didj
n(n− 1)

So Cov(Ri, Rj) 6 2
n−1 implying that V ar[R] = O(n). It now follows from Chebyshev’s

inequality that the probability that R deviates from its expected value by more than δn
is O(1/n).

For (i), apply the proof above for the special case that X∗ = X and Y ∗ = Y (so
now q = n and |Y ∗| = n). Then the corresponding indicator random variable Ri has
Pr[Ri] = (n− t)/n since the degree of xi is precisely n− t. Hence, E[R] = n− t and, as
we have shown, the probability that R deviates from its expectation by more than δn is
O(1/n).

We need the next definition that formalizes the following procedure. Suppose we are
given a bipartite graph B with n vertices in each part and a (not necessarily perfect)
matching M of B. If we take an induced subgraph B∗ of B consisting of all the vertices
not in M and some pairs of matched vertices of M , we can consider a maximum matching
in B∗. If this maximum matching of B∗ is a perfect matching of B∗, then (obviously) we
obtain a perfect matching of B as well.

Definition 6 ((B,M, s)-reshuffling; leftover graph). Let n > s > 0. Let B be a bipartite
graph with n vertices in each part, and suppose that M is a matching of B consisting
of m > s edges. Consider an induced bipartite subgraph B∗ of B obtained by taking all
2n− 2m vertices not in M and taking 2s vertices of M obtained by randomly selecting s
edges of M and taking their endpoints (observe that B∗ has n −m + s vertices in each
part). We call B∗ the leftover graph. Now take a maximum matching M∗ of B∗. Then
M∗ together with the m − s edges of M not belonging to B∗ is a matching of B of size
|M∗| + m − s. In particular, if M∗ is a perfect matching of B∗ then we obtain a perfect
matching of B as well. We call this procedure a (B,M, s)-reshuffling. We say that the
reshuffling is successful if M∗ is a perfect matching of B∗.

We emphasize that when constructing B∗ in Definition 6, it will be very important to
select the s edges of M at random, as stated, and not just arbitrarily.

In our proof we will need to ascertain that the constant we choose satisfies the following
constraint.
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Lemma 7. Let 0 < c 6 1 satisfy 2c2 ln(1+c
c

) > 1 (note: any 0.778 6 c 6 1 satisfies this).
Then the following holds for all 0 6 µ 6 1

1+c
.∫ µ

0

[
1− (1− cµ− x)

(
1− cx

1− x

)]
dx 6 cµ .

Furthermore, for every ε > 0 there exists γ > 0 such that if 0 6 µ 6 1−ε
1+c

, the definite
integral is at most (c− γ)µ.

Proof. The definite integral equals µ2(c2 + 3c
2

+ 1
2
) + µc2 ln(1− µ). Hence, dividing by µ,

it suffices to prove that the function

f(µ) = µ(c2 +
3c

2
+

1

2
) + c2 ln(1− µ)− c

is non-positive in the range 0 6 µ 6 1
1+c

. The derivative of f is

f
′
(µ) = c2 +

3c

2
+

1

2
− c2

1− µ
.

So, f is strictly monotone increasing if µ < 1 − c2/(c2 + 3c/2 + 1/2) and indeed this is
easily verified to hold for all 0 6 µ 6 1

1+c
. Since f(0) = −c, to prove the non-negativity of

f in the specified range it suffices to prove that f( 1
1+c

) 6 0. Now, rearranging the terms
it is easily verified that

f

(
1

1 + c

)
6 0 ⇔ 2c2 ln

(
1 + c

c

)
> 1 .

For the second part of the lemma, define γ = h(ε) = −f
(
1−ε
1+c

)
and observe that h(0) > 0

and that h is a continuous strictly monotone increasing function, since f is.

3 Proof of the main result

In this section we assume that G is a [k, n, 1]-graph with vertex parts V1, . . . , Vk of order
n each. We let Gt denote the subgraph of G induced by ∪ti=1Vi, so Gt is a [t, n, 1]-graph.

Definition 8 (t-partial factor of independent transversals). A t-partial factor of transver-
sals of G is a factor of transversals of Gt. If each element in the factor is an independent
set, it is called a t-partial factor of independent transversals of G.

In our proof we construct a sequence F1, . . . , Fk such that Ft is a t-partial factor of
(hopefully independent) transversals of G. Let Ft = {I(t, 1), . . . , I(t, n)} where I(t, j) is
a (not necessarily independent) transversal of Gt. Our sequence will have the property
that for every 1 6 t 6 k− 1, Ft+1 extends Ft, meaning that I(t+ 1, j) \ Vt+1 = I(t, j). To
facilitate the construction of Ft+1 as an extension of Ft we need the following definition.
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Definition 9 (The auxiliary bipartite graph Bt). Suppose that Ft is t-partial factor of
transversals. The auxiliary bipartite graph Bt is defined by one part being Ft (so the
vertices of this part are I(t, j) for 1 6 j 6 n) and the other part being Vt+1. There is an
edge of Bt connecting I(t, j) ∈ Ft and v ∈ Vt+1 if all t vertices of I(t, j) are not neighbors
of v in G.

Observe that a perfect matching in Bt corresponds to Ft+1 by defining I(t + 1, j) to
be the union of I(t, j) and its match. Notice that indeed Ft+1 extends Ft and notice that
if Ft is a t-partial factor of independent transversals, then Ft+1 is also a (t + 1)-partial
factor of independent transversals.

Lemma 10. The minimum degree of Bt is at least n− t.

Proof. Observe first that I(t, i) ∈ Ft has t vertices, and each such vertex has at most one
neighbor (in G) belonging to Vt+1. Hence, the number of non-neighbors of I(t, i) in Bt is
at most t, so the degree of I(t, i) in Bt is at least n− t. Observe next that each v ∈ Vt+1

has at most one neighbor (in G) in Vj for j = 1, . . . , t. So, for each 1 6 j 6 t, there is
at most one element of Ft whose unique vertex belonging to Vj is a neighbor (in G) of v.
So, each 1 6 j 6 t contributes at most one non-neighbor of v in Bt. Hence, the degree of
v in Bt is at least n− t.

The following is our main lemma.

Lemma 11. For all sufficiently large n it holds that g(n) > 0.562n.

Proof. Let 0.778 6 c 6 1 and recall that the conditions of Lemma 7 hold. (Note: our
proof works for every c in this range, but we will eventually optimize by using c = 0.778.)
Suppose ε > 0 is a given small constant. Let γ = γ(ε) be the constant from Lemma 7
and choose constants 0 < δ � η � γ (by x � y we mean that x is a small function of
y, small enough to satisfy the claimed inequalities that will follow). Let C = C(δ) be the
constant from Lemma 5. Throughout the proof we assume that n is sufficiently large as
a function of ε. Let k = bn(1− ε)/(c+ 1)c and let G be a [k, n, 1]-graph with vertex parts
V1, . . . , Vk of order n each. We will prove that G has a factor of independent transversals.

We sequentially construct partial factors of transversals F1, . . . , Fk starting with F1 =
{I(1, 1), . . . , I(1, n)} where I(1, j) is just a single vertex of V1. Trivially, F1 is a 1-partial
factor of independent transversals of G. We next define stages t = 1, . . . , k − 1 where
at Stage t we construct (partly using a probabilistic argument) Ft+1 as an extension of
Ft. Note that at this point we only assume that Ft is a t-partial factor of transversals.
However, we will prove that with positive probability, all elements of Ft, for all t = 1, . . . , k
are in fact independent sets. Hence we will obtain with positive probability that the final
Fk is a factor of independent transversals of G, as required. We now describe Stage t
in detail, assuming all previous stages have been completed (for completeness, Stage 0
constructs the trivial F1 as above).

Consider Bt in which one part is the already constructed Ft = {I(t, 1), . . . , I(t, n)}
and the other part is Vt+1 = {y1, . . . , yn}. Recall by Lemma 10 that each vertex of
Bt has degree at least n − t. So, remove edges from Bt until each vertex of the part
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Ft of Bt has degree exactly n − t and denote the resulting spanning subgraph by B′t
(observe that in B′t some vertices in the part Vt+1 may now have degree smaller than
n − t). Randomly select a permutation of Vt+1, denoting it by πt. Now consider the set
of all pairs M(πt) = {(I(t, i), yπt(i))}ni=1. Unfortunately, not each pair (I(t, i), yπt(i)) is
necessarily an edge of Bt and thus, moreover, not necessarily an edge of B′t (recall, to be
an edge of Bt we should have that all t vertices of I(t, i) are not neighbors in G of yπt(i)).
Let M ′(πt) denote the set of elements of M(πt) that are edges of B′t and set mt = |M ′(πt)|.
We say that M(πt) is good if |mt − (n− t)| 6 δn.

Claim 12. M(πt) is good with probability at least 1− C/n.

Proof. We apply Lemma 5 with B = B′t, X = Ft, Y = Vt+1 and π = πt. According to case
(i) of that lemma, with probability at least 1−C/n, M(πt) contains at least (n− t)− δn
edges of B′t and at most (n− t) + δn edges of B′t.

It is important to note that the stated probability 1−C/n of M(πt) being good does
not depend on the goodness of M(π`) for any ` < t, as the proof of Lemma 5 does
not assume anything except that the degree of each vertex of B′t is n − t and that the
permutation πt is chosen at random.

Now, if M(πt) is good (which happens with very high probability by Claim 12) we
proceed by performing a (Bt,M

′(πt), st)-reshuffling where st = bct+ηnc (recall Definition
6). To see that the parameters in Definition 6 fit, we must show that st 6 mt = |M ′(πt)|.
Indeed this holds since st 6 ct + ηn 6 n − t − δn 6 mt where we have used that
t(c + 1) 6 k(c + 1) 6 n(1 − ε) 6 n(1 − δ − η). Now, if this (Bt,M

′(πt), st)-reshuffling is
successful (recall again Definition 6), then Bt has a perfect matching, and we define Ft+1

using this perfect matching as shown in the paragraph after Definition 9. Recall that Ft+1

extends Ft and that if Ft is a t-partial factor of independent transversals, then Ft+1 is also
a (t + 1)-partial factor of independent transversals. We can now define the notion of a
successful stage.

Definition 13 (Successful stage). We say that Stage t is successful if M(πt) is good and
furthermore, the corresponding (Bt,M

′(πt), st)-reshuffling is successful.

As an immediate corollary we obtain:

Corollary 14. If all stages are successful then Fk is a factor of independent transversals
of G.

Now, Corollary 23 below asserts that indeed, the probability that all stages are suc-
cessful is positive, so given Corollary 23, we have that Fk is a factor of independent
transversals of G. Now, if we choose c = 0.778 then k > 0.5624n(1 − ε), so Lemma 11
holds.

It remains to prove Corollary 23 below, namely that with positive probability, all stages
are successful. To help with the analysis, it would be convenient (i.e. more uniform)
to also say how we construct Ft+1 as an extension of Ft in case that Stage t is not
successful, either because M(πt) is not good or because the (Bt,M

′(πt), st)-reshuffling
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failed. While this may seem artificial (since if some stage failed, why proceed to the
next stage?) the analysis becomes more uniform as it will help us lower-bound success
probability of stages regardless of successes or failures of previous stages. So, if Stage t is
unsuccessful, we simply use M(πt) (which might certainly not be a perfect matching of
Bt) to define Ft+1. In other words, we define I(t+ 1, i) = I(t, i) ∪ {yπt(i)} for i = 1, . . . , n
and Ft+1 = {I(t+1, i)}ni=1. Observe that even if Ft is a factor of independent transversals,
Ft+1 might not be, since if (I(t+ 1, i), yπt(i)) is not an edge of Bt, then I(t+ 1, i) is not an
independent set of Gt+1. Nevertheless, Ft+1 is still a factor of transversals that extends
Ft. We have now defined how to perform all stages 1 6 t 6 k− 1 (some of which may be
successful, while others might not be).

Corollary 15. With probability at least 1
2
e−C we have that M(πt) is good for all stages

1 6 t 6 k − 1.

Proof. By Claim 12, for each t it holds that M(πt) is good with probability 1−C/n and
recall that this probability bound holds for stage t regardless of the goodness of stages
other than t. Hence, the probability that M(πt) is good for all 1 6 t 6 k − 1 is at least
(1− C/n)k > (1− C/n)n > 1

2
e−C .

Given that M(πt) is good, we would like to ascertain some property whose existence
guarantees that the corresponding (Bt,M

′(πt), st)-reshuffling is successful. One way to do
that is to prove that the leftover graph Bt

∗ of the (Bt,M
′(πt), st)-reshuffling satisfies the

conditions of Lemma 4 (so B∗t has a perfect matching implying that the (Bt,M
′(πt), st)-

reshuffling is successful, hence the entire Stage t is successful). We start by showing that
if t is very small (namely, in the first few stages) then, given that M(πt) is good, surely
(i.e. with probability 1) the corresponding (Bt,M

′(πt), st)-reshuffling is successful.

Lemma 16. For 1 6 t 6 ηn/3, if M(πt) is good, then the corresponding (Bt,M
′(πt), st)-

reshuffling is successful, namely Stage t is successful.

Proof. We need to prove that the leftover graph B∗t has a perfect matching. Recall
(Definition 6) that B∗t has n−mt + st vertices in each part. On the other hand, B∗t is an
induced subgraph of Bt and by Lemma 10 the latter has minimum degree at least n− t.
Hence the minimum degree of B∗t is at least n −mt + st − t. Since by Hall’s Theorem,
every bipartite graph with x vertices in each side and minimum degree at least x/2 has a
perfect matching, it suffices to prove that n−mt + st− t > (n−mt + st)/2. Equivalently,
it suffices to prove that t 6 (n−mt + st)/2. Indeed, this holds since

n−mt + st
2

>
st
2

=
bct+ ηnc

2
>
ηn

3
> t .

In contrast with Lemma 16, proving that (with high probability) the reshuffling cor-
responding to larger t is successful is more involved. We start with the following lemma
that gives a sufficient condition for a reshuffling to be successful when t > ηn/3.

Lemma 17. Let t > ηn/3 and suppose that M(πt) is good. If each W ⊂ Vt+1 with
|W | = bctc has |NBt(W )| > n− bηn/7c then the (Bt,M

′(πt), st)-reshuffling is successful.
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Proof. As in the proof of Lemma 16 we observe that B∗t has n − mt + st vertices in
each part and its minimum degree is at least n − mt + st − t. Let W ⊆ Vt+1 with
t > |W | > n−mt+st− t. If we can show that |NB∗t

(W )| > |W | then by Lemma 4, B∗t has
a perfect matching. It thus suffices to prove the stronger statement, that each W ⊆ Vt+1

with |W | = n−mt + st− t has |NB∗t
(W )| > t. To prove the latter, it suffices to prove the

even stronger statement that |NBt(W )| > t + mt − st. Now, as M(πt) is good we have
that mt 6 n− t+ δn and recall that st = bct+ ηnc > ct. Thus, we have:

t+mt − st 6 t+ (n− t) + δn− ct
= n+ δn− ct 6 n+ δn− cηn/3
6 n+ δn− ηn/6
6 n− bηn/7c

where we have used that c > 1
2

and δ � η. We also have that

n−mt + st − t > n− (n− t+ δn) + st − t
= st − δn
= bct+ ηnc − δn
> bctc .

Hence, if W ⊂ Vt+1 with |W | = bctc has |NBt(W )| > n − bηn/7c then B∗t has a perfect
matching, implying that the (Bt,M

′(πt), st)-reshuffling is successful.

Proving that the conditions of Lemma 17 hold with high probability, namely that with
high probability each W ⊂ Vt+1 with |W | = bctc has |NBt(W )| > n − bηn/7c, is rather
technical and requires a few additional definitions, notations, and lemmas.

For Q ⊆ [n] and for a t-partial factor of transversals Ft = {I(t, i)}ni=1, let Ft(Q) =
{I(t, i) | i ∈ Q}. For W ⊆ Vt+1 and 1 6 ` 6 t, let Y`(W ) = V` \ NG(W ) (i.e. the
non-neighbors of W in G that belong to V`). Also define Yt+1(W ) = Vt+1 \W . Observe
that |Y`(W )| > n − |W | holds for all 1 6 ` 6 t + 1 since each vertex of W has at most
one neighbor in G that belongs to V`.

We need the notions of Ft(Q) and Y`(W ) from the previous paragraph in the following
definition, which is an important ingredient in the remainder of the proof.

Definition 18 ((Q, `,W, r)-intersection). Let Q ⊆ [n], let W ⊆ Vt+1 and let 1 6 ` 6 t.
We say that a (Q, `,W, r)-intersection exists if
(i) M(π`) is good (so we proceed to doing a (B`,M

′(π`), s`)-reshuffling),
(ii) there are at least r edges of M ′(π`) where in each of these r edges, one endpoint is
from F`(Q) and the other endpoint is from Y`+1(W ),
(iii) the 2r endpoints of these r edges from (ii) are not selected to the leftover graph B∗` .

Until the end of this section, let

q = dηn/7e r`,t =
q(n− ct− `)

n

(
1− c`

n− `

)
− 5ηq .

the electronic journal of combinatorics 28(4) (2021), #P4.23 10



Lemma 19. Let 1 6 t 6 k− 1, let T = {1, . . . , t}, let W ⊆ Vt+1 with |W | = bctc, and let
Q ⊂ [n] with |Q| = q. Then with probability at least 1 − 5−n the following holds. There
exists T ∗ ⊆ T with |T ∗| > t − δn such that for all ` ∈ T ∗, a (Q, `,W, r`,t)-intersection
exists.

Proof. Suppose that t,W,Q are given as in the statement of the lemma. Fixing some ` ∈ T
we estimate the probability that a (Q, `,W, r`,t)-intersection exists. We recap what we
are doing in Stage `. At the beginning of that stage, we have F`, the already constructed
`-partial factor of transversals (note: we do not assume anything about success or failure
of prior stages) as one part of B` and we have V`+1 as the other part. We remove some
edges of B` to obtain B′`. We then take a random permutation π` of V`+1 yielding M(π`)
and its subset M ′(π`) which is a matching of B′`. Observe that F`(Q) is a subset of F` of
order q, and that Y`+1(W ) is a subset of V`+1 of order at least n− |W |.

Now, apply Lemma 5 with B = B′t, X = F`, Y = V`+1, X
∗ = F`(Q), Y ∗ = Y`+1(W ),

π = π`, M = M(π`). We obtain from that lemma that with probability 1 − C/n, both
items (i) and (ii) of Lemma 5 hold. Recall that item (i) of Lemma 5 says that M(π`) is
good, since |m` − (n− `)| 6 δn where m` = |M ′(π`)|, so already item (i) of Definition 18
holds. Item (ii) of Lemma 5 says that there is a subset M∗ ⊂M(π`) of size

|M∗| > |F`(Q)|(|Y`+1(W )| − `)
n

− δn >
q(n− |W | − `)

n
− δn >

q(n− ct− `)
n

− δn (1)

such that every pair (xi, yπ(i)) ∈ M∗ is and edge of B′t (hence an edge of M ′(π`)) and
furthermore, xi ∈ F`(Q) and yπ`(i) ∈ Y`+1(W ).

Notice that if r`,t > |M∗| then Item (ii) of Definition 18 holds, but this is not enough
for us, as we also want Item (iii) to hold. In the reshuffling, we create B∗` by randomly
selecting s` out of the m` edges of M ′(π`) and add the 2s` endpoints of the selected edges
to the vertices not matched by M ′(π`). So, the probability that a single edge (and its two
endpoints) from M∗ is selected to B∗` is precisely s`/m`. Hence, if Z ⊆M∗ denotes the set
of edges of M∗ that are not selected to the leftover graph B∗` then E[|Z|] = |M∗|(1− s`

m`
).

Observe that |Z| has hypergeometric distribution (as its distribution is identical to having
|M∗| red balls, mt− |M∗| blue balls, and we select without replacement m`− s` balls and
ask for the number of red balls that are selected). As trivially, |Z| 6 n, we have by
Chebyshev’s inequality, that the probability that |Z| deviates from its expected value by
more than δn is O(1/n) (since the variance in our hypergeometric distribution is O(n)).
So overall, we obtain that with probability 1−O(1/n),

|Z| > |M∗|
(

1− s`
m`

)
− δn .

To prove that with probability 1−O(1/n), a (Q, `,W, r`,t)-intersection exists we just need
to make sure that r`,t is not larger than the right-hand side of the last inequality. Indeed,
using (1), using Lemma 20 below which upper bounds s`/m` and using δ � η we obtain

|M∗|
(

1− s`
m`

)
− δn >

(
q(n− ct− `)

n
− δn

)(
1− s`

m`

)
− δn
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>
q(n− ct− `)

n

(
1− s`

m`

)
− 2δn

>
q(n− ct− `)

n

(
1− c`

n− `
− 4η

)
− 2δn

>
q(n− ct− `)

n

(
1− c`

n− `

)
− 4ηq − 2δn

>
q(n− ct− `)

n

(
1− c`

n− `

)
− 5ηq

= r`,t .

We have proved that with probability 1 − O(1/n), a (Q, `,W, r`,t)-intersection exists
but we still need to prove that the claimed T ∗ exists with high probability. First observe
that if t 6 δn then T ∗ exists vacuously so assume that t > δn. For T ∗ not to exist, there
should be a set of dδne indices ` with 1 6 ` 6 t, such that a (Q, `,W, r`,t)-intersection
does not exist. Fix a set L ⊆ T of dδne indices. We have proved that the probability that
for ` ∈ L, a (Q, `,W, r`,t)-intersection does not exist is O(1/n) regardless of the outcome
of any other `′ ∈ L. Hence, the probability that all ` ∈ L are such that the corresponding
(Q, `,W, r`,t)-intersection does not exist is O(1/n)δn. As there are less than 2n possible
sets L to consider, we have by the union bound that the probability that T ∗ does not
exist is at most

2nO(1/n)δn � 5−n .

We next prove the upper bound for s`
m`

that we have used in Lemma 19.

Lemma 20. For all 1 6 ` 6 k − 1, if M(π`) is good then

s`
m`

6
c`

n− `
+ 4η .

Proof. Recall that s` = bc`+ηnc and that M(π`) being good implies that m` > n−`−δn.
Also notice that ` < k < n/(1 + c) 6 2n/3 and that δ � η. Hence,

s`
m`

6
c`+ ηn

n− `− δn

=
c`− δn

n− `− δn
+

(δ + η)n

n− `− δn

6
c`

n− `
+

(δ + η)n

n− `− δn

6
c`

n− `
+

(δ + η)n

n/3− δn

6
c`

n− `
+ 4η .

Lemma 22 below proves that if all stages satisfy a certain condition, then all stages
are successful. The next lemma describes this condition and proves that it holds with
positive probability.
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Lemma 21. Let A denote the intersection of the two following events:

(i) M(πt) is good for all stages 1 6 t 6 k − 1.

(ii) For all 1 6 t 6 k − 1, for all W ⊆ Vt+1 with |W | = bctc, and for all Q ⊂ [n] with
|Q| = q there exists T ∗ ⊆ {1, . . . , t} with |T ∗| > t − δn such that for all ` ∈ T ∗, a
(Q, `,W, r`,t)-intersection exists.

Then A holds with positive probability.

Proof. By Corollary 15, (i) holds with probability at least 1
2
e−C . As for (ii), observe that

the number of choices for Q is less than 2n and that for a given t, the number of possible
choices for W is less than 2n. Hence, the number of possible triples (t, Q,W ) is less than
n4n. For each such triple, the probability that there exists T ∗ as specified is at least 1−5−n

by Lemma 19. So, the probability that (ii) is satisfied is at least 1 − n4n5−n > 1 − 1/n.
Hence the event A holds with probability at least 1

2
e−C − 1/n > 0.

Lemma 22. If A holds then all stages are successful.

Proof. Assume by contradiction that A holds, yet there is an unsuccessful stage t. First
observe that we must have t > ηn/3, since by Lemma 16, for smaller t, Stage t is successful
as M(πt) is good (since we assume that A holds). Now, the only reason that Stage t is
unsuccessful is because the (Bt,M

′(πt), st)-reshuffling is not successful. Hence, by Lemma
17, there exists W ⊂ Vt+1 with |W | = bctc such that |NBt(W )| < n−bηn/7c. This means
that there are at least q = bηn/7c elements of Ft that are non-neighbors in Bt of all
elements of W . Let, therefore, Q ⊂ [n] with |Q| = q be such that Ft(Q) = {I(t, i) | i ∈
Q} ⊂ Ft and for each pair (I(t, i), y) where I(t, i) ∈ Ft(Q) and y ∈ W , I(t, i) and y are
non-adjacent in Bt. Being non-adjacent in Bt means that for each y ∈ W and for each
I(t, i) ∈ Ft(Q), there is at least one vertex x ∈ I(t, i) such that xy is an edge of G. Let
P = ∪i∈QI(t, i) and let P ∗ ⊆ P be such that x ∈ P ∗ if and only if there exists y ∈ W
such that xy is an edge of G. So we have that |P | = qt and

|P ∗| > q|W | = qbctc > q(ct− 1) (2)

since every y ∈ W has at least q neighbors in G that belong to P ∗, and these neighbors
are unique for y since G is an [n, k, 1]-graph (every vertex in P ∗ has exactly one neighbor
in W ). We will now count the number of elements of P ∗ in another way, and obtain that
it is less than q(ct− 1), hence reaching a contradiction with (2).

For every 1 6 ` 6 t, let P` = P ∩ V` and P ∗` = P ∗ ∩ V`. Clearly |P`| = q so |P ∗` | 6 q,
but we can obtain a better upper bound for |P ∗` | for most values of `. In order to show
this, recall that as we assume that A holds, there exist T ∗ ⊆ {1, . . . , t} with |T ∗| > t− δn
such that for all ` ∈ T ∗, a (Q, `,W, r`,t)-intersection exists.

Consider first ` ∈ T \T ∗. For such ` we will use the trivial bound |P ∗`+1| 6 q but since
there are at most δn such `, we have that∑

`∈T\T ∗
|P ∗`+1| 6 δnq .
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Consider next ` ∈ T ∗ in which case a (Q, `,W, r`,t)-intersection exists. First observe
that by the definition of P`+1, when we perform Stage ` extending F` to F`+1, the elements
of F`(Q) are matched with the vertices of P`+1 to obtain F`+1(Q). Let us recall what it
means for our Q,W that a (Q, `,W, r`,t)-intersection exists. By Definition 18 applied to
Stage `, Q and W , we see that Case (i) of that definition holds since A holds. Now, Cases
(ii) and (iii) of Definition 18 say that when we extend F`(Q) to F`+1(Q), at least r`,t
elements of F`(Q) are matched to vertices of Y`+1(W ) and notice that Y`+1(W )∩P ∗`+1 = ∅
since the elements in Y`+1(W ) are non-neighbors in G of the vertices of W while the
elements of P ∗`+1 are neighbors in G of the vertices of W . Hence we have

|P`+1 \ P ∗`+1| > r`,t

or equivalently,

|P ∗`+1| 6 q − r`,t 6 q − q(n− ct− `)
n

(
1− c`

n− `

)
+ 5ηq .

Altogether, we have

|P ∗| =
t∑

`=1

|P ∗` | 6 |P1|+ δnq +
t−1∑
`=1

(
q − q(n− ct− `)

n

(
1− c`

n− `

)
+ 5ηq

)
.

Observe that in the last inequality we are summing over all 1 6 ` 6 t−1 although it would
have been enough to sum over the elements of T ∗. To obtain the desired contradiction to
(2) it therefore suffices to prove that

q + δnq +
t−1∑
`=1

(
q − q(n− ct− `)

n

(
1− c`

n− `

)
+ 5ηq

)
< q(ct− 1) .

Dividing both sides by q, our remaining task is to prove

δn+
t−1∑
`=1

(
1− (n− ct− `)

n

(
1− c`

n− `

)
+ 5η

)
< ct− 2 .

Rearranging the terms, it suffices to show that

t−1∑
`=1

(
1− (n− ct− `)

n

(
1− c`

n− `

))
< ct− 2− δn− 5ηt .

Recall that t > ηn/3 and that δ � η so ct−2− δn−5ηt > t(c−6η). Now, define µ = t/n
and define x = `/n. So it suffices to prove that

1

n

 ∑
x∈{ `

n
| 16`6t−1}

(
1− (1− cµ− x)

(
1− cx

1− x

)) 6 µ(c− 6η).
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As the (real) function f(x) = 1−(1−cµ−x)
(
1− cx

1−x

)
is monotone increasing in [0, µ] and

f(x) ∈ [0, 1] in that range, the sum in square brackets is at most n times the corresponding
integral of f(x) in the range [0, µ], hence it suffices to prove that∫ µ

0

[
1− (1− cµ− x)

(
1− cx

1− x

)]
dx 6 µ(c− 6η).

But now µ = t/n 6 k/n 6 1−ε
1+c

and η 6 γ/6 so the last inequality indeed holds by
Lemma 7.

From the last two lemmas we immediately obtain:

Corollary 23. With positive probability, all stages are successful.

4 f(4) = 4

Here we provide a computer-assisted proof that f(4) = 4. Recall from the introduction
that f(4) > 4 and recall from the first paragraph in Section 2 that to prove f(4) 6 4 it
suffices to prove that every [4, 4, 1]-graph has a factor of independent transversals.

Consider the set of [4, 4, 1]-graphs with vertex parts Vi = {xi,1, xi,2, xi,3, xi,4} for 1 6
i 6 4. As adding edges only makes the problem more difficult, we may assume that each
of the 6 pairs (Vi, Vj) with 1 6 i < j 6 4 induces a perfect matching Mi,j. By relabeling
vertices, we may assume that the perfect matching (V1, Vj) for j = 2, 3, 4 is

M1,j = {(x1,1, xj,1), (x1,2, xj,2), (x1,3, xj,3), (x1,4, xj,4)}

as the 12 edges of these three matching are a spanning forest. Thus, the set of graphs
that we must construct and check correspond to constructing the remaining three perfect
matchingsM2,3, M2,4, M3,4. There are 4! = 24 choices for each of them, each corresponding
to a permutation of one of the vertex classes involved in the matching. Overall, there are
243 = 13824 graphs constructed this way (some may be isomorphic).

Checking each constructed graph for a factor of independent transversals proceeds
as follows. Take three permutations π2, π3, π4 of V2, V3, V4 respectively, and check if the
following factor {{x1,j, x2,π2(j), x3,π3(j), x4,π4(j)} | j = 1, 2, 3, 4} is a factor of independent
transversals. Note that there are only (4!)3 = 13824 choices for π2, π3, π4, so there are
only 13824 checks to perform for each of the 13824 constructed graphs. It turns out
that each of these graphs has a factor of independent transversals. A simple program
implementing this search and verifying its conclusion appears in Appendix A.
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A Source code determining f(4)

const int N = 4 ; const int F = 24 ;
int permutat ions [F ] [ N] = {
{0 ,1 , 2 , 3} ,{1 ,0 , 2 , 3} ,{2 ,0 , 1 , 3} ,{0 ,2 , 1 , 3} ,{1 ,2 , 0 , 3} ,{2 ,1 , 0 , 3} ,
{2 ,1 , 3 , 0} ,{1 ,2 , 3 , 0} ,{3 ,2 , 1 , 0} ,{2 ,3 , 1 , 0} ,{1 ,3 , 2 , 0} ,{3 ,1 , 2 , 0} ,
{3 ,0 , 2 , 1} ,{0 ,3 , 2 , 1} ,{2 ,3 , 0 , 1} ,{3 ,2 , 0 , 1} ,{0 ,2 , 3 , 1} ,{2 ,0 , 3 , 1} ,
{1 ,0 , 3 , 2} ,{0 ,1 , 3 , 2} ,{3 ,1 , 0 , 2} ,{1 ,3 , 0 , 2} ,{0 ,3 , 1 , 2} ,{3 ,0 , 1 , 2} } ;

int g [N ] [ N ] [ N ] [ N ] ;

bool check ( )
{

int p [N ] ; // p [ i ] determines the order o f v e r t i c e s o f s e t i
p [ 0 ] = 0 ;

for (p [ 1 ] = 0 ; p [ 1 ] < F; p[1]++)
for (p [ 2 ] = 0 ; p [ 2 ] < F; p[2]++)

for (p [ 3 ] = 0 ; p [ 3 ] < F; p[3]++)
{

bool cur rent = true ;
for ( int i = 0 ; i < N; i++)

for ( int j = 0 ; j < N; j++)
for ( int k = j + 1 ; k < N; k++)

i f ( g [ j ] [ permutat ions [ p [ j ] ] [ i ] ] [ k ] [ permutat ions [ p [ k ] ] [ i ] ]==1)
cur rent = fa l se ;

i f ( cur r ent )
return true ;

}
return fa l se ;

}

int main ( )
{

for ( int i = 0 ; i < N; i++)
for ( int j = 0 ; j < N; j++)

for ( int k = 0 ; k < N; k++)
for ( int l = 0 ; l < N; l++)

g [ i ] [ j ] [ k ] [ l ] = 0 ;
for ( int i = 0 ; i < N; i++)

for ( int k = 1 ; k < N; k++)
g [ 0 ] [ i ] [ k ] [ i ] = 1 ;

int p [ 7 ] ;
for (p [ 1 ] = 0 ; p [ 1 ] < F; p[1]++) //p1 determines matching between s e t s 1 ,2

for (p [ 2 ] = 0 ; p [ 2 ] < F; p[2]++) //p2 determines matching between 1 ,3
for (p [ 3 ] = 0 ; p [ 3 ] < F; p[3]++) //p3 determines matching between 2 ,3
{

/∗ r e s e t the graph ∗/
for ( int i = 1 ; i < N; i++)

for ( int j = 0 ; j < N; j++)
for ( int k = 1 ; k < N; k++)
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for ( int l = 0 ; l < N; l++)
g [ i ] [ j ] [ k ] [ l ] = 0 ;

g [ 1 ] [ 0 ] [ 2 ] [ permutat ions [ p [ 1 ] ] [ 0 ] ] = 1 ;
g [ 1 ] [ 1 ] [ 2 ] [ permutat ions [ p [ 1 ] ] [ 1 ] ] = 1 ;
g [ 1 ] [ 2 ] [ 2 ] [ permutat ions [ p [ 1 ] ] [ 2 ] ] = 1 ;
g [ 1 ] [ 3 ] [ 2 ] [ permutat ions [ p [ 1 ] ] [ 3 ] ] = 1 ;
g [ 1 ] [ 0 ] [ 3 ] [ permutat ions [ p [ 2 ] ] [ 0 ] ] = 1 ;
g [ 1 ] [ 1 ] [ 3 ] [ permutat ions [ p [ 2 ] ] [ 1 ] ] = 1 ;
g [ 1 ] [ 2 ] [ 3 ] [ permutat ions [ p [ 2 ] ] [ 2 ] ] = 1 ;
g [ 1 ] [ 3 ] [ 3 ] [ permutat ions [ p [ 2 ] ] [ 3 ] ] = 1 ;
g [ 2 ] [ 0 ] [ 3 ] [ permutat ions [ p [ 3 ] ] [ 0 ] ] = 1 ;
g [ 2 ] [ 1 ] [ 3 ] [ permutat ions [ p [ 3 ] ] [ 1 ] ] = 1 ;
g [ 2 ] [ 2 ] [ 3 ] [ permutat ions [ p [ 3 ] ] [ 2 ] ] = 1 ;
g [ 2 ] [ 3 ] [ 3 ] [ permutat ions [ p [ 3 ] ] [ 3 ] ] = 1 ;
i f ( ! check ( ) )

p r i n t f ( ” f a i l e d \n , ” ) ;
}

p r i n t f ( ”Ended\n” ) ;
return 0 ;

}
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