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Abstract

By means of the Lagrange expansion formula, we establish a general pair of
nonlinear inverse series relations, which are expressed via partial Bell polynomi-
als with the connection coefficients involve an arbitrary formal power series. As
applications, two examples are presented with one of them recovering the difficult
theorems discovered recently by Birmajer, Gil and Weiner (2012 and 2019).

Mathematics Subject Classifications: Primary 05A15, Secondary 05A19

1 Introduction and Motivation

For the formal power series X(z) with its coefficients in a commutative ring

X(z) :=
∑
k>1

xkz
k 
 xk := [zk]X(z),

the ordinary partial Bell polynomials (cf. Comtet [11, §3.3]) are defined by

Bn,m(x̃) :=Bn,m(x1, x2, . . . , xn−m+1) = [zn]Xm(z)

=
∑
σm(n)

(
m

m1,m2, . . . ,mn

) n∏
k=1

xk
mk ,

where
(

m
m1,m2,...,mn

)
denotes the usual multinomial coefficient and the sum runs over the

subset of partitions of n with m-parts represented by (m1,m2, . . . ,mn) ∈ Nn
0 subject to

m1 +m2 + · · ·+mn = m and m1 + 2m2 + · · ·+ nmn = n.
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There exist a number of topics related to Bell polynomials. The interested reader can
find strange identities in Chu [4, 9, 10], Cvijovic [12] and Hsu [16], summation formulae of
special functions in Hsu–Chu [17] and Hsu–Shiue [18], as well as determinant evaluation
of Wronskian matrices (cf. Chu [6]).

Let f(z) and g(z) be the two formal power series which are compositional inverses of
each other f � g(z) = g � f(z) = z. Chou–Hsu–Shiue [3] found the following nonlinear
inverse series relations

yn =
n∑
k=1

f (k)(a)

k!
Bn,k(x̃) ⇐⇒ xn =

n∑
k=1

g(k)
(
f(a)

)
k!

Bn,k(ỹ).

Mihoubi [19] derived more examples for polynomial sequences of binomial type.
When the connection coefficients are dependent upon also n, Comtet [11, Theorem F,

Page 151] recorded a pair of Bell–inverse series relations, which can be reproduced under
the replacements xk → −xk in the symmetric form:

yn =
n∑
k=1

(−1)k
(
an+ k

k

)
Bn,k(x̃)

an+ 1
,

xn =
n∑
k=1

(−1)k
(
an+ k

k

)
Bn,k(ỹ)

an+ 1
.

The following Bell inverse series relations are more difficult, which were discovered by
Birmajer–Gil–Weiner [1] (see Wang [21] for a different proof via the Lagrange expansion
formula): 

yn =
n∑
k=1

(
1 + an+ bk

k

)
Bn,k(x̃)

1 + an+ bk
,

xn =
n∑
k=1

(
1− an− b

k

)
(an+ bk)Bn,k(ỹ)

(an+ b)(1− an− b)
.

(1)

This pair of Bell inversions are recently extended by the same authors [2] with four free
parameters {a, b, c, d}:

yn =
n∑
k=1

(−1)k
Bn,k(x̃)

k!

k−1∏
i=1

(an+ bk + ci+ d),

xn =
n∑
k=1

(−1)k
Bn,k(ỹ)

k!

Λn,k(b+ c)− Λn,k(b)

c
;

(2)

where

Λn,k(ρ) := ρ

k−1∏
j=1

(an+ dj + ρ).
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They found also an interesting convolution formula

n∑
k=1

Bn,k(ỹ)

k!

k−1∏
i=1

(λ− di) =
n∑
k=1

Bn,k(x̃)

k!

k−1∏
j=1

(an+ bk + cj + λ). (3)

The aim of this paper is to generalize further these results by expressing the connection
coefficients in terms of an arbitrary formal power series. The main theorems and proofs
will be presented in the next section. Then the paper will end with two examples as
applications in Section 3. The first example involves the binomial coefficients of Hagen–
Rothe type, which recovers the above displayed formulae of Birmajer–Gil–Weiner [1, 2].
Another example contains nonlinear inverse series relations with the Abel coefficients,
Cayley numbers (of trees) and harmonic numbers.

2 Main Results and Proofs

In combinatorial analysis and enumerative combinatorics, the Lagrange expansion formula
(see Comtet [11, §3.8], Gessel [13] and [5, 8]) is fundamental.

Lemma 1. For a formal power series ϕ(x) subject to ϕ(0) 6= 0, the functional equation
x = y/ϕ(y) determines y as an implicit function of x. Then for another formal power
series F (y) in the variable y, the following expansions hold for both composite series:

F (y(x)) = F (0) +
∑
n>1

xn

n
[yn−1]

{
F ′(y)ϕn(y)

}
, (4)

F (y(x))

1− yϕ′(y)/ϕ(y)
=
∑
n>0

xn[yn]
{
F (y)ϕn(y)

}
. (5)

By repeatedly making use of the above lemma, we shall prove the general theorem.

Theorem 2. Let φ(τ) be a formal power series with φ(0) = 1 and φ′(0) 6= 0. Then we
have the generalized nonlinear inverse relations:

yn =
n∑
k=1

U(n, k)Bn,k(x̃),

xn =
n∑
k=1

V (n, k)Bn,k(ỹ);

(6)

where the coefficients U and V in the Bell polynomial representations of the sequences are
respectively given by

U(n, k) =
λ

λ+ nα + kβ
[τ k]φλ+nα+kβ(τ),

V (n, k) =
n∑
i=0

β − i
nα + β − i

( i−nα−β
λ

k

) n∑
j=1

(−1)i

j

(
j

i

)
[τ j−1]

{ τ

1− φ(τ)

}j
.

(7)
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Remark. If we write φ(τ) = 1−τ/ϕ(τ), then ϕ(τ) will be another formal power series
with ϕ(0) 6= 0. In this case, the connection coefficients in Theorem 2 can be expressed as

U(n, k) =
λ

λ+ nα + kβ
[τ k]
{

1− τ/ϕ(τ)
}λ+nα+kβ

,

V (n, k) =
n∑
i=0

β − i
nα + β − i

( i−nα−β
λ

k

) n∑
j=1

(−1)i

j

(
j

i

)
[τ j−1]ϕj(τ).

(8)

Proof. For the formal power series φ(z) and another one X(z) =
∑

k>1 xkz
k, as well

as an implicit function τ determined by X := τ/φβ(τ), define the composite series by

f(z) := z/φ
(
τ
(
X(zα)

))
.

Then there exists the compositional inverse g such that f � g(z) = g � f(z) = z and the
power series expansion

gλ(z) :=
∑
m>0

ymz
λ+mα. (9)

In view of Lagrange inversion formula (4), we can express the coefficient yn as

yn = [zλ+nα]gλ(z) =
λ

λ+ nα
[znα]φλ+nα

(
τ
(
X(zα)

))
.

Applying the expansion formula (4) again, we have also

φλ+nα(τ) =1 +
∑
k>1

Xk

k
(λ+ nα)[τ k−1]φ′(τ)φλ−1+nα+kβ(τ)

=1 +
∑
k>1

λ+ nα

λ+ nα + kβ
Xk[τ k]φλ+nα+kβ(τ).

Therefore, we get the explicit expression of yn in terms of the Bell polynomials:

yn =
∑
k>1

λ[τ k]φλ+nα+kβ(τ)

λ+ nα + kβ
[znα]Xk(zα) =

n∑
k=1

λ[τ k]φλ+nα+kβ(τ)

λ+ nα + kβ
Bn,k(x̃).

In order to determine xn in terms of {yk}, we examine the coefficient

xn = [znα]X(zα) = [znα]
τ

φβ(τ)
.

Recall that φ(z) is a formal power series subject to φ(0) = 1 and φ′(0) 6= 0. We can define
another formal power series ψ(τ) with ψ(0) = 1 by

ψ(τ) =
τφ′(0)

φ(τ)− 1



φ(τ)− 1

φ′(0)
= τ/ψ(τ).
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This gives rise to the following expansion

τ =
∑
j>1

{ τ

ψ(τ)

}j [ηj−1]

j
ψj(η) =

∑
j>1

{
1− φ(τ)

}j [ηj−1]

j

{ η

1− φ(η)

}j
.

Further, τ is also an implicit formal power series of zα with the constant term equal to
zero because of the functional equation X(zα) = τ/φβ(τ). Hence we can proceed with
extracting the coefficient

xn =[znα]
τ

φβ(τ)
=

n∑
j=1

[ηj−1]

j
ψj(η)[znα]

{
τ j

φβ(τ)ψj(τ)

}

=
n∑
j=1

[ηj−1]

j

{ η

1− φ(η)

}j j∑
i=0

(−1)i
(
j

i

)
[znα]φi−β(τ)

=
n∑
i=0

n∑
j=1

(−1)i
(
j

i

)
[ηj−1]

j

{ η

1− φ(η)

}j
[znα+β−i]fβ−i(z).

Keeping in mind that f is the compositional inverse of g, we have, in turn, the following
expression

[znα+β−i]fβ−i(z) =
β − i

nα + β − i
[znα]

{g(z)

z

}i−nα−β
=

β − i
nα + β − i

[znα]

{
1 +

(g(z)

z

)λ
− 1

} i−nα−β
λ

=
β − i

nα + β − i
[znα]

n∑
k=1

( i−nα−β
λ

k

){(g(z)

z

)λ
− 1

}k
=

β − i
nα + β − i

n∑
k=1

( i−nα−β
λ

k

)
Bn,k(ỹ).

Substituting this into the last expression of xn and then reorganize the terms, we get the
dual relation displayed in (6).

Observe that in Theorem 2, the sequence {yn} is dependent on the parameter “λ”. In
order to highlight this fact, we introduce the symbol y〈λ〉n and the corresponding generating
function Y〈λ〉(z) by

y〈λ〉n :=
n∑
k=1

λBn,k(x̃)

λ+ nα + kβ
[τ k]φλ+nα+kβ(τ), (10)

Y〈λ〉(z) :=
∞∑
n=0

zλ+nαy〈λ〉n . (11)

When λ = 1, the superscript “〈1〉” will be suppressed from those notations.
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Let λ and µ be two natural numbers. Even though there exist no explicit expressions
for Y〈λ〉(z), we do have, according to (9), the exponential relation and the convolution
formula

Y〈λ〉(z) = Yλ(z) ⇐⇒ y〈λ〉n =
n∑
k=1

(
λ

k

)
Bn,k(ỹ).

Consequently, the exponential laws assert further that

Y〈λµ〉(z) =
{

Y〈µ〉(z)
}λ

and Y〈λ+µ〉(z) = Y〈λ〉(z)× Y〈µ〉(z). (12)

They correspond to the binomial and convolutional formulae in the following theorem,
where the restriction for λ and µ to be natural numbers is released to be complex param-
eters since (12) is valid for any two complex numbers.

Theorem 3. Let λ and µ be two complex parameters. For the sequence {y〈λ〉n } defined by
(10), there hold the binomial and convolutional identities

y〈λµ〉n =
n∑
k=1

(
λ

k

)
Bn,k(ỹ〈µ〉) and y〈λ+µ〉n =

n∑
k=0

y
〈λ〉
k y

〈µ〉
n−k. (13)

In particular, we have the orthogonal relation

n∑
k=0

y
〈λ〉
k y

〈−λ〉
n−k =

{
1, n = 0;

0, n > 0;

which implies the linear inverse series relations

F (n) =
n∑
k=0

y
〈λ〉
n−kG(k) ⇐⇒ G(n) =

n∑
k=0

y
〈−λ〉
n−k F (k).

3 Examples and Applications

Since the connection coefficients in (7) involve an arbitrary formal power series φ(τ),
numerous nonlinear inverse series relations and convolution formulae can be derived the-
oretically from Theorems 2 and 3. We limit to present two significant examples in this
section, where the connection coefficients are expressed in terms of Hagen–Rothe coeffi-
cients and Abel coefficients, given respectively by

λ

λ+ kβ

(
λ+ kβ

k

)
and

λ

λ+ kβ

(λ+ kβ)k

k!
.

There have been extensive explorations about these numbers. Generating functions and
convolution identities can be found, for example, in Graham–Knuth–Patashnik [15, §5.4],
Riordan [20, §4.5] and Wilf [22, §2.5] as well as in [7, 14].
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§3A Letting φ(τ) = 1 + τ in (7), we can compute the connection coefficients

U(n, k) =
λ

λ+ nα + kβ
[τ k](1 + τ)λ+nα+kβ

=
λ

λ+ nα + kβ

(
λ+ nα + kβ

k

)
,

V (n, k) =
n∑
i=0

β − i
nα + β − i

( i−nα−β
λ

k

)(
1

i

)
(−1)i+1

=
β − 1

nα + β − 1

(1−nα−β
λ

k

)
− β

nα + β

(−nα−β
λ

k

)
.

According to Theorems 2 and 3, we have the following statements.

• Nonlinear inverse series relations
y〈λ〉n =

n∑
k=1

(
λ+ nα + kβ

k

)
λ Bn,k(x̃)

λ+ nα + kβ
,

xn =
n∑
k=1

{(1−nα−β
λ

k

)
(β − 1) Bn,k(ỹ〈λ〉)
nα + β − 1

−
(−nα−β

λ

k

)
β Bn,k(ỹ〈λ〉)
nα + β

}
.

(14)

When λ = 1, this pair of inversions reduce to (1) due to Birmajer–Gil–Weiner [1].
Furthermore, the above inversions are equivalent to those displayed in (2), discovered
also by Birmajer–Gil–Weiner [2]. This can be verified by making substitutions
α→ −a/c, β → −b/c, λ→ −d/c and then replacements xk → −cxk and yk → dyk.

• Binomial and convolutional identities

n∑
k=1

(
λ

k

)
Bn,k(ỹ〈µ〉) =

n∑
k=1

(
λµ+ nα + kβ

k

)
(λµ) Bn,k(x̃)

λµ+ nα + kβ
, (15)

n∑
k=0

y
〈λ〉
k y

〈µ〉
n−k =

n∑
k=1

(
λ+ µ+ nα + kβ

k

)
(λ+ µ) Bn,k(x̃)

λ+ µ+ nα + kβ
. (16)

Analogously, one can check that the second identity implies a formula due to
Birmajer–Gil–Weiner [2, Proposition 5]; while the first one contains, as special
cases, (3) and three further identities found by the same authors [2, Lemma 18
and Propositions 19–20].

§3B Instead, for φ(τ) = e−τ in Theorem 2, the corresponding connection coefficients
can be expressed as:

U(n, k) =
λ

λ+ nα + kβ
[τ k]e−τ(λ+nα+kβ) =

λ(−1)k

λ+ nα + kβ

(λ+ nα + kβ)k

k!
,
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V (n, k) =
n∑
i=0

β − i
nα + β − i

( i−nα−β
λ

k

) n∑
j=1

(−1)i

j

(
j

i

)
[τ j−1]

{ τ

1− e−τ
}j
.

Recall that “1 − e−τ” is the compositional inverse of “− ln(1 − τ)”. By making use of
Lemma 1, we have

[τ j−1]
{ τ

1− e−τ
}j

= −j[τ j] ln(1− τ) = 1.

Therefore, we can evaluate further

n∑
j=1

(−1)i

j

(
j

i

)
[τ j−1]

{ τ

1− e−τ
}j

=
n∑
j=1

(−1)i

j

(
j

i

)
=


Hn, i = 0;

(−1)i

i

(
n

i

)
, 1 6 i 6 n;

where Hn =
∑n

k=1
1
k

stands for the nth harmonic number. Therefore, we have derived an
explicit formula

V (n, k) =
βHn

nα + β

(−nα−β
λ

k

)
+

n∑
i=1

(−1)i
(
n

i

)( i−nα−β
λ

k

)
β − i

i(nα + β − i)
.

In order to simplify the last sum “S” with respect to i, we examine the function(x−nα−β
λ

k

)
β − x

x(nα + β − x)
= P (x) +

β

x(nα + β)

(−nα−β
λ

k

)
where P (x) is a polynomial of degree k − 1 in x. Denote by ∆ the forward difference
operator of unit increment with respect to x. Then we can compute, in the closed form,
the following finite sum

S(x) :=
n∑
i=0

(−1)i
(
n

i

)(x+i−nα−β
λ

k

)
β − i− x

(x+ i)(nα + β − i− x)

=(−1)n∆n

{
P (x) +

β

x(nα + β)

(−nα−β
λ

k

)}
=

n! β

(x)n+1(nα + β)

(−nα−β
λ

k

)
.

Hence we can evaluate “S” by the limiting process below

S = lim
x→0

{
S(x)−

(x−nα−β
λ

k

)
β − x

x(nα + β − x)

}
= lim

x→0

1

x

{
n! β

(1 + x)n(nα + β)

(−nα−β
λ

k

)
−
(x−nα−β

λ

k

)
β − x

nα + β − x

}
=

1

nα + β

(−nα−β
λ

k

){
1 +

k−1∑
i=1

β

nα + β + iλ

}
− β Hn

nα + β

(−nα−β
λ

k

)
.
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This yields consequently the explicit expression for the connection coefficient

V (n, k) =
1

nα + β

(−nα−β
λ

k

){
1 +

k−1∑
i=1

β

nα + β + iλ

}
.

According to Theorems 2 and 3, we have reached the the following statements.

• Nonlinear inverse series relations
y〈λ〉n =

n∑
k=1

(−1)k
(λ+ nα + kβ)k

k!

λ Bn,k(x̃)

λ+ nα + kβ
,

xn =
n∑
k=1

Bn,k(ỹ〈λ〉)
nα + β

(−nα−β
λ

k

){
1 +

k−1∑
i=1

β

nα + β + iλ

}
.

(17)

• Binomial and convolutional identities

n∑
k=1

(
λ

k

)
Bn,k(ỹ〈µ〉) =

n∑
k=1

(−1)k
(λµ+ nα + kβ)k

k!

(λµ) Bn,k(x̃)

λµ+ nα + kβ
, (18)

n∑
k=0

y
〈λ〉
k y

〈µ〉
n−k =

n∑
k=1

(−1)k
(λ+ µ+ nα + kβ)k

k!

(λ+ µ) Bn,k(x̃)

λ+ µ+ nα + kβ
. (19)

• By specifying α = 0 and β = λ = 1 further in (17), we derive the following re-
markable inverse pair, where harmonic numbers and the Cayley numbers (of trees)
emerge as connection coefficients.

yn =
n∑
k=1

(−1)k
(k + 1)k−1

k!
Bn,k(x̃),

xn =
n∑
k=1

(−1)kHk Bn,k(ỹ).

(20)
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