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Abstract

Convex geometries (Edelman and Jamison, 1985) are finite combinatorial struc-
tures dual to union-closed antimatroids or learning spaces. We define an operation
of resolution for convex geometries, which replaces each element of a base con-
vex geometry by a fiber convex geometry. Contrary to what happens for similar
constructions—compounds of hypergraphs, as in Chein, Habib and Maurer (1981),
and compositions of set systems, as in Möhring and Radermacher (1984)—, resolu-
tions of convex geometries always yield a convex geometry.

We investigate resolutions of special convex geometries: ordinal and affine. A
resolution of ordinal convex geometries is again ordinal, but a resolution of affine
convex geometries may fail to be affine. A notion of primitivity, which generalize
the corresponding notion for posets, arises from resolutions: a convex geometry is
primitive if it is not a resolution of smaller ones. We obtain a characterization of
affine convex geometries that are primitive, and compute the number of primitive
convex geometries on at most four elements. Several open problems are listed.

Mathematics Subject Classifications: 05B25, 06A07, 52A01

aIn honour of Mario Gionfriddo, for his academic career and recent emeritus professorship.
bCorresponding author.
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1 Introduction

Convex geometries, named after Edelman and Jamison (1985), are finite mathematical
structures that capture combinatorial features of convexity from various settings. A ‘reso-
lution’ of convex geometries, as we define it here, is a procedure that builds a new convex
geometry from given ones. Intuitively, this procedure replaces each element of a given
‘base’ convex geometry by another convex geometry, called a ‘fiber’, and consistently
defines a new family of convex sets on the union of the fibers.

Resolutions of convex geometries are related to a similar construction in the field of
choice theory, namely ‘resolutions of choice spaces’,1 recently introduced by Cantone,
Giarlotta and Watson (2021). This is hardly surprising in view of an enlightening result
of Koshevoy (1999), who shows that there is a one-to-one correspondence between convex
geometries and special choice spaces, called ‘path independent’ (see also Johnson and
Dean, 1996 and Johnson and Dean, 2001, who independently obtained the same result).
Our construction is also reminiscent of the ‘compounds of hypergraphs’ (Chein, Habib,
and Maurer, 1981) or ‘compositions of set systems’ (Möhring and Radermacher, 1984).
There is, however, a salient difference between these two constructions: a composition
of convex geometries may fail to be a convex geometry, whereas a resolution of convex
geometries is always a convex geometry.

In this paper, we examine resolutions of two special types of convex geometries: ordinal
and affine. We also investigate ‘primitive’ convex geometries, that is, convex geometries
that cannot be obtained as resolutions of smaller convex geometries. In particular, we
show that the notion of a primitive convex geometry generalizes the classical notion of
a primitive poset (partially ordered set). We also perform some computations related to
‘small’ convex geometries, showing that among the 6 convex geometries on three elements
only 1 is primitive, and exactly 12 of the 34 geometries on four elements are primitive.

The paper is organized as follows. Section 2 collects preliminary facts on convex
geometries. Section 3 introduces resolutions of convex geometries, and compares them to
compositions. Here we also relate resolutions to homomorphisms of (semi)lattices attached
to convex geometries.2 Section 4 deals with resolutions of affine and ordinal convex
geometries; here we also investigate which of these geometries are primitive, and provide
a characterization of affine convex geometries that are resolvable. Section 5 provides a
taxonomy of all primitive convex geometries having at most 4 elements. Section 6 collects
several questions and open problems.

2 Background on Convex Geometries

In this section we provide the basic notions and tools for our analysis.

1A choice space is a pair pX, cq, where X is a nonempty set, and c : 2X Ñ 2X maps each nonempty
set A Ď X to a nonempty subset cpAq Ď A (and the empty set to the empty set).

2This part is based on the insightful comments of a referee.
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2.1 Definitions and Examples

We start with one of the many equivalent definitions of a convex geometry, a notion that
is originally due to Edelman and Jamison (1985). Unless otherwise specified, X is a finite
nonempty set, which consists of points or elements, depending on the context. As usual,
2X denotes the family of all subsets of X.

Definition 1. A convex geometry on a finite nonempty set X is a collection G of subsets
of X satisfying the following three axioms:

(G1) ∅ P G;

(G2) G is closed under intersection: if F and G are in G, then F XG is in G;

(G3) G is upgradable: for any G in GztXu, there exists x in XzG such that GYtxu P G.

Here X is the ground set of G, and the sets in G are called convex. We slightly abuse
terminology, and also call the pair pX,Gq a convex geometry. A convex geometry pX,Gq
is nontrivial if |X| ě 2, and trivial otherwise.

Since X is finite, Axioms (G1) and (G3) of a convex geometry pX,Gq imply that
X “

Ť

G P G. Thus, for any A P 2X , the family of convex sets G such that A Ď G always
contains X. This fact, along with Axiom (G2), ensures the soundness of the following
notion:

Definition 2. Let pX,Gq be a convex geometry. For any A P 2X , the convex hull of A in
X is the smallest convex superset of A, that is,

convGpAq :“
č

 

G P G : A Ď G
(

.

Whenever the family G is clear from context, we shall often simplify notation, and write
convpAq in place of convGpAq.

The next example provides six instances of convex geometries on a three element set. It
is not difficult to prove that any convex geometry on three elements is isomorphic3 to one
of these. (The number of convex geometries for additional sizes of the ground set appears
in the Sequence A224913 in the OEIS, which considers ‘(union-closed) antimatroids’, that
is, the structures that are complementary to convex geometries.)

Example 3. The following are convex geometries on X “ tx, y, zu:

• G1 “
 

∅, txu, tx, yu, X
(

;

• G2 “
 

∅, txu, tyu, tx, yu, X
(

;

• G3 “
 

∅, txu, tx, yu, tx, zu, X
(

;

3Two convex geometries pX,GXq and pY,GY q are isomorphic if there is a bijection σ : X Ñ Y such
that, for each A P 2X , we have A P GX if and only if σpAq P GY .
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• G4 “
 

∅, txu, tyu, tx, yu, tx, zu, X
(

;

• G5 “
 

∅, txu, tyu, tzu, tx, yu, tx, zu, X
(

;

• G6 “ 2X .

There are plenty of settings where convex geometries naturally appear (under various
names): see, for instance, Edelman and Jamison (1985), Goecke, Korte and Lovász (1989),
Korte, Lovász, and Schrader (1991), Doignon and Falmagne (1999), and Falmagne and
Doignon (2011). For nice historical overviews with reference to additional settings, see
Monjardet (1985, 1990, 2008).

In the next two examples we present two important classes of convex geometries (Edel-
man and Jamison, 1985), namely ‘ordinal’ and ‘affine’. In Section 4, we shall study in
detail these two classes with respect to ‘resolutions’.

Example 4. (Ordinal convex geometries) Let pX,ďq be a nonempty finite poset. Further,
let G be the collection of all ideals of pX,ďq, that is,

G :“
 

G P 2X p@x, y P Xq px ď y ^ y P Gq ùñ x P G
(

.

Then pX,Gq is a convex geometry, which is the ordinal convex geometry derived from the
partial order ď (or, equivalently, from the poset pX,ďq).

Ordinal convex geometries have a very simple characterization:

Theorem 5 (Edelman and Jamison, 1985). A convex geometry pX,Gq is ordinal if and
only if G is closed under union. Further, if pX,Gq is a convex geometry with G closed
under union, then there is exactly one partial order ď on X such that G consists of the
ideals of ď: in fact, x ď y if and only if x P convptyuq, for all x, y P X.

The partial order ď in Theorem 5 is said to be associated to the ordinal convex
geometry G. Notice that, for all z, t P X, we have

z ď t ðñ z P convpttuq.

Example 6. (Affine convex geometries) Let X be a nonempty finite set of points in some
real affine space Rd. Moreover, let G be the collection of all sets obtained as intersections
of X with convex subsets of Rd, that is,

G :“
 

X X C C is a convex subset of Rd
(

.

Then pX,Gq is a convex geometry, which we call affinely embedded. The family G is the
geometry induced on the subset X of Rd. For any subset A of X, we have convGpAq “
X X convRpAq, where convR denotes the convex hull in Rd. A convex geometry is affine
if it is isomorphic to some affinely embedded convex geometry.
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A special feature of affine convex geometries is that they are atomistic, which means
that all their one-element sets are convex (Edelman and Jamison, 1985). The problem
of algorithmically characterizing affine convex geometries is nontrivial: on this topic,
see Hoffmann and Merckx (2018).

Substructures of arbitrary convex geometries are defined with a procedure similar to
the construction of affine convex geometries in Example 6:

Definition 7. Let pZ,Gq be a convex geometry, and ∅ ‰ X Ď Z. The convex geometry
H induced on X by G consists of all intersections of X with elements of G.4 In this case,
we also say that pX,Hq is a subgeometry of pZ,Gq.

2.2 Extreme Elements

The notion of an ‘extreme element’ of a set is central in the theory of convex geometries
(see, for instance, Edelman and Jamison, 1985).

Definition 8. Let pX,Gq be a convex geometry, and A P 2X . An element a P A is an
extreme element of A if a R convpAztauq. We write exGpAq for the set of extreme elements
of A, or simply expAq when there is no risk of confusion. The function exG : 2X Ñ 2X is
the extreme operator on pX,Gq.

Given a convex geometry pX,Gq, any nonempty set A Ď X always has at least one
extreme element; in particular, exGptxuq “ txu for any x P X. Observe also that the
extreme operator exG : 2X Ñ 2X is such that exGp∅q “ ∅ and ∅ ‰ exGpAq Ď A for all
A P 2Xzt∅u; that is, according to Footnote 1 or to Definition 15 below, the pair pX, exGq

is a choice space.

Example 9. We determine the extreme elements of some sets with respect to the convex
geometries of Example 3. For A “ tx, zu and B “ ty, zu, we have:

exGi
pAq “

"

tzu if 1 ď i ď 4
A if 5 ď i ď 6 ,

and exGi
pBq “

"

tzu if 1 ď i ď 2
B if 3 ď i ď 6 .

The next four lemmas collect several properties of the extreme operator, which will be
used in later sections. Since the first three lemmas are well-known, we shall only prove
the fourth.

Lemma 10. Let pX,Gq be a convex geometry. The following properties are equivalent for
any A P 2X and a P A:

(1) a P expAq;

(2) convpAztauq Ĺ convpAq;

(3) pDG P Gq
`

Aztau Ď G ^ a R G
˘

.

4The proof that H is a convex geometry is straightforward.
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Theorem 2 in Monjardet and Raderanirina (2001) yields

Lemma 11. Let pX,Gq be a convex geometry. For any A P 2X , we have:

(i) expconvpAqq “ expAq;

(ii) convpexpAqq “ convpAq.

The following properties are given in Edelman and Jamison (1985):

Lemma 12. Let pX,Gq be a convex geometry. For any G P G and E P 2X , we have:

(i) expGq “ tg P G Gztgu P Gu;

(ii) G “ convpexpGqq;

(iii) E Ď expGq ùñ GzE P G.

Finally, we prove

Lemma 13. Let pX,Gq be a convex geometry. For any A,B P 2X , we have:

(i) A Ď B ùñ AX expBq Ď expAq;

(ii) expAq XB ‰ ∅ ùñ expAYBq XB ‰ ∅.

Proof. To prove (i), suppose A Ď B, and let a P A X expBq. By Lemma 10, there exists
G in G such that Bztau Ď G and a R G. Then Aztau Ď G and a R G, hence a P expAq
again by Lemma 10.

To prove (ii), let p P expAq X B. Toward a contradiction, suppose expA Y Bq X B
is empty. Then, expA Y Bq Ď A Y B yields expA Y Bq Ď A, which in turn implies
convpA Y Bq Ď convpAq by Lemma 11(ii). It follows that B Ď convpAq. On the other
hand, Lemma 11(i) gives p P expconvpAqq. By Lemma 12(i), it follows that convpAqztpu is
a convex set. Since the latter set includes pAYBqztpu but does not contain p, Lemma 10
entails p P expAYBq. We conclude that p P expAYBq XB “ ∅, a contradiction.

Lemma 13(i) has a simple rephrasing that we will often use: If an element of a set A
is not extreme in A, then it cannot be extreme in any superset of A.

Remark 14. Lemma 13(ii) cannot be strengthened (as its proof might suggest) by requiring
that the inclusion expAq X B Ď expAY Bq X B holds. Consider, for instance, the convex
geometry G5 on X “ tx, y, zu defined in Example 3. Then, for A :“ tx, zu and B :“ X,
we have

exG5pAq XB “ exG5pAq “ tx, zu Ę ty, zu “ exG5pBq “ exG5pAYBq XB .

The next definition, due to Plott (1973), introduces ‘path independent choice spaces’,
which are important structures in mathematical economics.
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Definition 15. A function c : 2X Ñ 2X such that, for any A P 2X ,

(i) cpAq Ď A, and

(ii) A ‰ ∅ ùñ cpAq ‰ ∅

is called a choice correspondence; in this case, the pair pX, cq is a choice space. If, in
addition, c satisfies the property of path independence, i.e.,

(iii) cpAYBq “ cpcpAq Y cpBqq

for any A,B P 2X , then pX, cq is a path independent choice space.

Path independent choice spaces come up in the analysis of convex geometries because
of the following striking result:

Theorem 16 (Koshevoy, 1999). If pX,Gq is a convex geometry, then pX, exq is a path
independent choice space; in particular, for all A,B P 2X , we have

expAYBq “ expexpAq Y expBqq.

Conversely, if pX, cq is a path independent choice space, then there is a unique convex
geometry Gc on X whose extreme operator coincides with c, namely

Gc “
 

G P 2X
`

@A P 2X
˘ `

cpAq “ cpGq ùñ A Ď G
˘(

.

Theorem 16 allows one to establish properties of convex geometries by translating prop-
erties of path independent choice spaces. For instance, the two implications in Lemma 13
can also be derived from path independence: see, e.g., Moulin (1985) for (i), and Cantone
et al. (2021) for some rephrasing of (ii). Several additional properties of the extreme
operator of a convex geometry pX,Gq can also be derived as analogous features of choice
correspondences. For instance, the following property (Aizerman Property) holds for any
A,B P 2X :

expBq Ď A Ď B ùñ expAq Ď expBq .

In fact, Aizerman and Malishevski (1981) show that the join of the property in
Lemma 13(i)5 and Aizerman Property is equivalent to path independence.

We close this section with two remarks about the main examples of convex geometries
that will be examined in this paper.

Remark 17. Let pX,Gq be an ordinal convex geometry having ď as associated partial
order. It is immediate to check that the extreme operator coincides with the operator of
maximization w.r.t. ď, that is, for all nonempty A Ď X,

expAq “ maxpA,ďq :“ ta P A p@a1 P Aq a ď a1 ùñ a “ a1u .

5This property is originally due to Chernoff (1954).
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In other words, the extreme elements of a set in an ordinal convex geometry are exactly
the non-dominated ones. The choice space pX, exq that arises in view of Theorem 16 is
said to be ‘rationalizable’6 by the partial order7 ď.

Remark 18. For a finite subset X of a real affine space Rd as in Example 6, let G be the
convex geometry induced on X. Then the extreme elements of a subset A of X are the
vertices of the polytope convRpAq. In other words, expAq is composed of all the points a
of A with the property that some linear functional on Rd is maximized on A at a but at
no other point of A.

3 Resolutions of Convex Geometries

Here we introduce the main notion of this paper, namely resolutions of convex geometries.
This is an application of a general notion of resolution, which captures the concept of
expanding a mathematical structure by substituting each of its elements by structures of
the same type.

Historically, resolutions were originally defined in a topological setting by Fedorc̆uk
(1968), and then extensively studied by Watson (1992). Resolutions have proven to be
extremely useful in set-theoretic topology, providing a unified point of view for many
seemingly different topological spaces.

Very recently, the notion of resolution has been adapted to the field of choice theory
by Cantone et al. (2021). Upon restricting this notion to path independent choice spaces,
and in view of the structural bijection provided by Theorem 16, resolutions of convex
geometries naturally arise.

3.1 Definition and Examples

Definition 19. Let pX,GXq be a convex geometry, which we call the base geometry,
and tpYx,Gxq x P Xu a family of convex geometries, which we call the fiber geometries.
Suppose the sets Yx’s are pairwise disjoint, and they are also disjoint from X. Let

Z :“
ď

xPX

Yx ,

and define the projection by

π : Z Ñ X , z ÞÑ x for all x P X and z P Yx.

6 The rationalizability of a choice space is a well-known notion within the classical theory of revealed
preferences, pioneered by the economist Samuelson (1938). Formally, a choice space pX, cq is rationalizable
if there is an acyclic binary relation À (not necessarily a partial order) on X such that, for any A P 2X ,
the equality cpAq “ maxpA,Àq “ ta P A pEa1 P Aq a ă a1u holds. We refer the reader to the collection
of papers by Suzumura (2016) for a vast account of the topic of rationalizable choices. For some related
notions of bounded rationality, which use binary relations or similar tools to explain choice behavior in
different ways, see the recent survey by Giarlotta (2019) and references therein.

7A related topic is the rationalization of a choice space by means of a binary relation that is more
structured than a partial order, such as one satisfying an ‘pm,nq-Ferrers property’ in the sense of Giarlotta
and Watson (2014, 2018). On the point, it would be interesting to study (resolutions of) convex geometries
that correspond to ‘pm,nq-rationalizable choices’ (Cantone et al., 2016).
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The resolution of pX,GXq into tpYx,Gxq x P Xu is the pair pZ,GZq, where GZ consists of
all subsets A of Z satisfying the following three requirements:

(R1) (base coherence) πpAq P GX ;

(R2) (fiber coherence) AX Yx P Gx for all x P πpAq ;

(R3) (non-extreme indiscernibility) Yx Ď A for all x P πpAqz exGX
pπpAqq .

We shall use the suggestive notation

pZ,GZq “ pX,GXqh pYx,GxqxPX ,

and generically call pZ,GZq a resolution of convex geometries. A resolution of convex
geometries is nontrivial if both the base and at least one fiber have more than one element.
(See Figure 1, where each element x of the base X “ t1, 2, 3, 4, 5u is resolved into a fiber
Yx, to obtain a nontrivial resolution.)

Similarly, we define the composition

pZ, CZq “ pX,GXqa pYx,GxqxPX

of the base pX,GXq into the fibers pYx,Gxq, x P X, by letting CZ be the family of all
subsets of Z that satisfy (R1) and (R2) (but not necessarily (R3)). The nontriviality of a
composition of convex geometries is defined similarly to resolutions.

A

πpAq

1 2 3 4 5

X

Y1 Y2 Y3 Y4 Y5

Z

π

Figure 1: A nontrivial resolution pZ,GZq “ pX,GXqh pYx,GxqxPX , having X “ t1, . . . , 5u
as base set; each fiber Yx is above the corresponding element x P X. The set A Ď Z and
its projection πpAq “ t1, 2, 3, 4u are emphasized in grey.

Compositions of convex geometries are special cases of ‘compound of hypergraphs’
(Chein et al., 1981), and of (the equivalent notion of) ‘compositions of set systems’
(Möhring and Radermacher, 1984), hence also of the more abstract ‘set operads’ (Méndez,
2015). Contrary to what happens for resolutions, compositions do not differentiate
fibers according to the status of their index (whereas resolutions do because of Require-
ment (R3)). This is the reason why a composition of convex geometries may fail to be a
convex geometry, as the next example shows.

the electronic journal of combinatorics 28(4) (2021), #P4.26 9



Example 20. Let

X “ t1, 2u, GX “ t∅, t1u, Xu,
Y1 “ ta1, b1u, G1 “ 2Y1 ,

Y2 “ ta2u, G2 “ 2Y2 .

Clearly, pX,GXq and pYi,Giq, for i “ 1, 2, are all convex geometries; in fact, they are
even ordinal. Their (nontrivial) composition CZ , defined on Z “ ta1, b1, a2u, contains
both ta1, a2u and tb1, a2u but not their intersection ta2u, and so it fails to be a convex
geometry. Instead, the resolution pZ,GZq “ pX,GXqh pYi,Giq2i“1 is a convex geometry (in
fact, an ordinal one), because GZ “ t∅, ta1u, tb1u, ta1, b1u, Zu.

As announced in the Introduction, we have:

Theorem 21. A resolution of convex geometries is a convex geometry.

Proof. Let pX,GXq be a convex geometry, and tpYx,Gxq x P Xu a family of convex
geometries such that the sets Yx’s are pairwise disjoint and disjoint from X. To prove
that also pZ,GZq “ pX,GXqh pYx,GxqxPX is a convex geometry, we show that GZ satisfies
Axioms (G1)–(G3) in Definition 1 by using Requirements (R1)–(R3) in Definition 19. To
simplify notation, here we abbreviate exGX

into ex.

(G1) The empty set is in GZ , because it trivially satisfies Requirements (R1)–(R3).

(G2) To prove that GZ is closed under intersection, suppose F and G are arbitrary ele-
ments of GZ , and so they satisfy (R1)–(R3). We show that F XG satisfies (R1)–(R3)
as well.

For (R1), we prove πpF XGq P GX . Set E :“ pπpF q X πpGqqzπpF XGq. Elementary
computations yield πpF X Gq “ pπpF qzEq X pπpGqzEq. Since GX is closed under
intersection, it suffices to show that both πpF qzE and πpGqzE are in GX .

Claim: E Ď expπpF qqX expπpGqq. Indeed, if x P E, then F XYx ‰ ∅, GXYx ‰ ∅,
and pF X Yxq X pG X Yxq “ ∅. Then x P πpF q and not Yx Ď F , so by (R3)
x P expπpF qq. The proof that the inclusion E Ď expπpGqq holds is similar, and so
the Claim is established.

Since πpF q, πpGq P GX by (R1), now the Claim and Lemma 12(iii) allow us to
conclude what we were after, namely πpF qzE and πpGqzE are in GX .

Proving (R2) is easy: we know F X Yx P Gx and G X Yx P Gx, which implies
pF XGq X Yx “ pF X Yxq X pGX Yxq is in Gx, as claimed.

Finally, to establish (R3), let x P πpF X Gqz expπpF X Gqq. Then x P πpF q, and
moreover x R expπpF qq by Lemma 13(i) (for A “ πpF XGq and B “ πpF q). Thus,
since F satisfies (R3), we have Yx Ď F . Similarly, Yx Ď G. It follows that Yx Ď FXG,
proving that F XG satisfies (R3).

the electronic journal of combinatorics 28(4) (2021), #P4.26 10



(G3) To show that GZ is upgradable, let F P GZztZu. If F hits some fiber Yx without
including all of it, then F X Yx belongs to Gx by (R2), hence, by the upgradability
of the convex geometry Gx, there is some y in YxzF such that pF X Yxq Y tyu P Gx.
It follows that F Y tyu is in GZ . On the other hand, if F is a union of fibers, then,
since F ‰ Z and πpF q P GX , there is x in XzπpF q such that πpF qYtxu P GX . There
exists y in Yx such that tyu P Gx. Then F Y tyu P GZ (because x P expπpF Y tyuq).

This completes the proof.

Remark 22. Let pZ,GZq “ pX,GXq h pYx,GxqxPX be a resolution of convex geometries.
For any A P 2X , we have

π´1pAq P GZ ðñ A P GX ,

hence, in particular, for any x P X,

Gx Ď GZ ðñ Yx P GZ ðñ txu P GX . (1)

(To prove that Yx P GZ implies Gx Ď GZ , observe that Requirement (R3) is vacuously
satisfied, because the unique element of txu is extreme.) Also, the resolution is atomistic
if and only if the base and all fibers are atomistic. Moreover, for any x P X, the equivalence

ZzYx P GZ ðñ x P exGX
pXq (2)

holds. Any fiber pYx,Gxq is a subgeometry of pZ,GZq. Furthermore, if S Ď Z is a
transversal (i.e., S intersects each fiber in exactly one element), then the convex geometry
induced by pZ,GZq on S is isomorphic to pX,GXq.

We shall show in Section 4 that the two main classes of convex geometries examined
in this paper, namely ordinal (Example 4) and affine (Example 6), behave in a radically
different way with respect to resolutions: in fact, ordinality is preserved whereas affineness
is not. Specifically, the resolution of ordinal convex geometries is again ordinal, and this
procedure encapsulates a well-known construction on posets (Theorem 54). On the other
hand, we shall provide an elementary example of a resolution of affine convex geometries
that fails to be affine (Example 42).

We conclude these preliminaries with a technical result, which describes the extreme
operator and the convex hull operator in a resolution.

Lemma 23. Let pZ,GZq “ pX,GXq h pYx,GxqxPX be a resolution of convex geometries.
For any A Ď Z, we have

convGZ
pAq “

ď

x P exGXpπpAqq

convGxpAX Yxq Y
ď

x P convGXpπpAqqz exGXpπpAqq

Yx (3)

and
exGZ

pAq “
ď

x P exGXpπpAqq

exGxpAX Yxq. (4)
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Proof. Let A P 2Z . We prove (3). To start, we show that the right-hand side of (3) be-
longs to GZ . Indeed, it satisfies (R1), because its projection is equal to convGX

pπpAqq,
and so it is in GX . Moreover, it satisfies (R2) and (R3), too: use the special case
exGX

pconvGX
pπpAqqq “ exGX

pπpAqq of Lemma 11(i). This proves that the right-hand
side of (3) is convex. Therefore, to complete the proof of (3), it suffices to show that any
convex set G in GZ that includes A also includes the right-hand side.

To that end, let G P GZ be such that A Ď G. Take any x P exGX
pπpAqq. Since the con-

vex set G includes AXYx, it follows that GXYx is a convex set in Yx including AXYx, and
so convGxpAX Yxq Ď GX Yx Ď G. On the other hand, let x P convGX

pπpAqqz exGX
pπpAqq.

Observe that Requirement (R1) yields πpAq Ď πpGq P GX , hence convGX
pπpAqq Ď πpGq.

Since exGX
pπpGqq X convGX

pπpAqq Ď exGX
pπpAqq by Lemma 13(i), it follows that x P

πpGqz exGX
pπpGqq, and so Yx Ď G by Requirement (R3). This proves that (3) holds.

Next, we prove (4). For the forward inclusion, let z P exGZ
pAq. Set x :“ πpzq.

To prove the claim, we show that (i) x P exGX
pπpAqq, and (ii) z P exGxpA X Yxq. By

Lemma 10(3), there exists G P GZ such that Aztzu Ď G and z R G. Now, if GX Yx ‰ ∅,
then Yx Ę G, and so x P exGX

pπpGqq by Requirement (R3). It follows that x P exGX
pπpAqq

by Lemma 13(i). On the other hand, suppose GX Yx “ ∅. Then the set πpGq is convex
in GX and includes πpAqztxu but not x, which again implies x P exGX

pπpAqq. This proves
(i). For (ii), observe that G X Yx is convex in Yx, includes pA X Yxqztzu but does not
contain z; therefore, z P exxpA X Yxq. This completes the proof of the forward inclusion
in (4).

For the reverse inclusion, let x P exGX
pπpAqq and z P exGxpA X Yxq. It suffices to

show z R convGZ
pAztzuq, which we do by applying (3) to Aztzu in two exhaustive cases.

If pAztzuq X Yx “ ∅, then x R convGxpπpAztzuq because x P exGxpπpAqq, and so z R
convGZ

pAztzuq. If pAztzuq X Yx ‰ ∅, then πpAztzuq “ πpAq, so x P exGxpπpAztzuqq.
Together with z R convGxppAztzuq X Yxq, this gives again z R convGZ

pAztzuq.

3.2 Primitivity vs Resolvability. Shrinkable Sets

Using resolutions, convex geometries can be partitioned in two classes:

Definition 24. A convex geometry is primitive (or irresolvable) if it cannot be obtained
as a nontrivial resolution; otherwise, it is resolvable.

How can we directly recognize whether a given convex geometry is primitive or re-
solvable? Definition 19 implies that the convex geometry resulting from a resolution is
partitioned into fibers. Then a naive algorithm to test primitiveness should check one by
one all nontrivial partitions of the convex geometry, derive the corresponding base and
fibers, and stop when their resolution is the initial convex geometry. Obviously, this al-
gorithm is highly ineffective. A better algorithm can be derived from Theorem 26 below.
To state it, we need the following notion of ‘shrinkability’:

Definition 25. Let pZ,Gq be a convex geometry. A subset S of Z is shrinkable (in Z) if
it is a nontrivial fiber in some nontrivial resolution producing pZ,Gq.
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Observe that if S is shrinkable in X, then 1 ă |S| ă |X|. Clearly, a convex geometry
is primitive if and only if it has no shrinkable set. The following characterization of
shrinkability yields a more effective test for the primitiveness of a convex geometry:

Theorem 26. Let pZ,GZq be a convex geometry. The following statements are equivalent
for a subset S of Z such that 1 ă |S| ă |Z|:

(i) S is shrinkable;

(ii) S satisfies the following two properties:

(S1) p@G P GZq pGX S ‰ S ùñ GzS P GZq;
(S2) p@G,H P GZq pGX S ‰ ∅^GzS P GZq ùñ pGzSq Y pH X Sq P GZ.

Proof. (i) ùñ (ii). Suppose S is shrinkable. Thus, pZ,GZq can be written as

pZ,GZq “ pX,GXqh pYx,GxqxPX ,

where S “ Ys for some s P X. Let G,H P GZ , hence πpGq, πpHq P GX by (R1). Below we
show that Properties (S1) and (S2) hold for S “ Ys.

For (S1), suppose G P GZ is such that ∅ ‰ G X Ys ‰ Ys (if G X Ys “ ∅, then
the result holds trivially). Then s P exGX

pπpGqq by (R3), hence Lemma 12(i) yields
πpGzYsq “ πpGqztsu P GX , which proves that (R1) holds for GzYs. Furthermore, GzYs
satisfies Requirement (R2), because so does G. Thus, to prove that GzYs P GZ , it remains
to show that also Requirement (R3) holds forGzYs. To that end, observe that Lemma 13(i)
yields πpGzYsq X exGX

pπpGqq Ď exGX
pπpGzYsqq. It follows that any non-extreme element

of πpGzYsq is also non-extreme in πpGq. Hence GzY satisfies (R3) because so does G.
For (S2), suppose G P GZ satisfies G X Ys ‰ ∅ and GzYs P GZ . If H X Ys “ ∅, then

(S2) holds. Thus, let H X Ys ‰ ∅. Below we show that pGzYsq Y pH X Ysq is in GZ by
proving that Requirements (R1)–(R3) hold for it. Requirement (R1) readily follows from
πppGzYsqYpHXYsqq “ πpGq P GX . Requirement (R2) holds, because both G and H satisfy
it. Finally, for (R3), observe that s is an extreme element for πpGzYsqYpHXYsqq “ πpGq,
because πpGq, πpGqztsu P GX . Thus, pGzYsqYpHXYsq satisfies Requirement (R3), because
so does G.

(ii) ùñ (i). Suppose S is a subset of the convex geometry pZ,GZq such that 1 ă |S| ă
|Z|, and Properties (S1) and (S2) hold for all G,H P GZ . To show that S is shrinkable,
we shall express pZ,GZq as a nontrivial resolution having S as its unique nontrivial fiber.

Select s R Z. Let σ : ZzS Ñ W be a bijection from ZzS onto a set W that is disjoint
from Z Y tsu, and denote xz :“ σpzq for all z P ZzS. As base set, take X :“ W Y tsu.
Notice that X X Z “ ∅ by construction, and |X| ě 2 because S ‰ Z by hypothesis. As
fiber sets, take Ys :“ S, and Yxz :“ tzu for all xz P W “ Xztsu. Therefore, Z is equal to
Ť

xPX Yx, where |X| ě 2 and |Ys| ě 2. As usual, let π : Z Ñ X be the (projection) map
defined by πpzq :“ xz if z P ZzS, and πpzq :“ s if z P S. Next, we endow both the base
set X and the fiber sets Yx’s with convex geometries induced by GZ .
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Concerning the base, let GX be the family of subsets of X defined by

GX :“ tπpGq G P GZu.

We now check that pX,GXq is a convex geometry. To begin with, observe that πp∅q “
∅ P GX , that is, Axiom (G1) holds.

To prove Axiom (G2) (closure under intersection), we let πpGq, πpHq P GX , where
G,H P GZ , and show that πpGqXπpHq P GX . We know that πpGXHq Ď πpGqXπpHq. If
equality holds, then we are immediately done, since GXH P GZ . Otherwise, we must have
∅ ‰ GXS ‰ S, ∅ ‰ H XS ‰ S, pGXHqXS “ H, and πpGqXπpHq “ πpGXHqY tsu.
Now apply Property (S1) to G and next Property (S2) to G and H, to derive that the
set K :“ pGzSq Y pH X Sq is an element of GZ . Since K XH P GZ , and πpGq X πpHq “
πpGXHq Y tsu “ πpK XHq, we conclude that πpGq X πpHq is an element of GX also in
this case, as claimed. This shows that GX satisfies Axiom (G2).

To prove Axiom (G3), let πpGq ‰ X, with G P GZ . By Axiom (G3) for pZ,GZq, there
is z1 P ZzG such that G1 :“ GY tz1u P GZ . If GX S is either empty or equal to S, there
holds πpz1q R πpGq, and the set πpGq Y tπpz1qu “ πpG1q P GX is what we were looking
for. On the other hand, suppose ∅ ‰ G X S ‰ S. If z1 R S, then πpG1q “ πpGq Y txz1u,
and we are done. Otherwise, there is z2 P ZzG1 such that G2 :“ G1Ytz2u P GZ . Again, if
z2 R S, the claim holds. Otherwise, we iterate. Since πpGq ‰ X and X is finite, we shall
eventually get Gn :“ Gn´1 Y tznu P GZ such that πpGiq “ πpGq for all i “ 1, . . . , n ´ 1,
and zn R S. Then πpGnq “ πpGq Y txznu proves that GX satisfies (G3).

To complete the definition of the resolution, we provide each fiber Yx with the convex
geometry Gx induced by GZ , that is,

Gx :“

"

t∅, txuu if x P W,
tGX S G P GZu if x “ s.

Below we show that pZ,GZq “ pX,GXqh pYx,GxqxPX , thus completing the proof.

To start, we prove that any convex set G from GZ is also convex in the resolution
pX,GXq h pYx,GxqxPX , that is, G satisfies Requirements (R1)–(R3). Clearly πpGq P GX
by the very definition of GX , thus (R1) holds for G. Furthermore, the intersection of G
with an arbitrary fiber Yx is convex in Yx by definition of Gx, so G also satisfies (R2).
Finally, if GX S “ ∅ or GX S “ S, then (R3) holds trivially for G. On the other hand,
if ∅ ‰ G X S ‰ S, then we can apply Property (S1) to S “ Ys to get GzS P GZ . Since
tsu “ πpGqzπpGzSq, we obtain that s is an extreme element in the convex set πpGq P GX .
We conclude that G satisfies (R3) also in this case, and so G is convex in the resolution
pX,GXqh pYx,GxqxPX .

For the reverse inclusion, we show that if K is a nonempty convex set in pX,GXq h

pYx,GxqxPX , then K P GZ . Since πpKq P GX by Requirement (R1) of a resolution, there
is G P GZ such that πpKq “ πpGq. Clearly, K X Yx “ G X Yx for all x P W . If also
KXS “ GXS holds, then we have K “ G, and we are immediately done. Since the latter
fact trivially holds if K and S are disjoint, we may assume that K X S is different from
both ∅ and G X S (so G X S is nonempty, too). Next we appeal to Requirement (R2),
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and get K X S P Gs, hence, by the very definition of Gs, there is H P GZ such that
K X S “ H X S ‰ ∅. It follows that K “ pGzSq Y pH X Sq. To conclude our proof, we
deal separately with the following two exhaustive cases.

(1) In case S Ę G, we have G X S ‰ S, hence Property (S1) yields GzS P GZ . Since
GX S ‰ ∅, Property (S2) entails K “ pGzSq Y pH X Sq P GZ , as required.

(2) In case S Ď G, we have S Ę K, because K X S differs from G X S. Then, by
Requirement (R3), s is extreme in πpKq. The latter set is convex in X, and moreover it is
equal to πpGq. We derive that πpGqztsu is also convex in GX , and next that GzS belongs
to GZ (because πpGqztsu must be the image by π of a convex set from GZ , which must be
GzS). By (S2) we conclude K “ pGzSq Y pH X Sq P GZ , as required.

Remark 27. If in (S2) we replace GX S ‰ ∅ with |GX S| “ 1, then we get an equivalent
condition. Indeed, assume the modified (S2) is true, and let us prove (S2) in case |GXS| ą
1. Since both GzS and G are convex by assumption, there exists some s P G X S such
that G1 :“ pGzSq Y tsu P GZ (this follows from the axioms of a convex geometry). By
assumption the modified (S2) holds for G1. As we have pGzSqYpHXSq “ pG1zSqYpHXSq,
it follows that (S2) holds for G. This completes the proof of the equivalence of the two
conditions. Finally, observe that in the modified (S2), the element s forming GX S is an
extreme element of G, because G and Gztsu are convex.

Properties (S1) and (S2) are logically independent, even on some (small) affine convex
geometry pZ,Gq. The next example shows such independence, at the same time exhibiting
a resolvable, affine convex geometry.

Example 28. Let Z consist of four points a, b, c, d in the real affine plane, where c belongs
to the segment having b and d as extreme points, and a is outside the line passing through
the other three points (see Figure 2). Consider the affine convex geometry GZ induced on
Z.

To show that (S1) and (S2) are mutually independent properties, let S 1 “ ta, bu and
S2 “ ta, cu. Then, S 1 satisfies (S1) (because all subsets of ZzS 1 are convex) but not
(S2) (take G “ ta, du and H “ tbu). On the other hand, S2 does not satisfy (S1) (take
G “ tb, c, du) but satisfies (S2) (because there are only two sets in Z that are not convex,
namely tb, du and ta, b, du).

Observe also that S “ tb, c, du is a shrinkable set in pZ,GZq, which is therefore a
resolvable convex geometry. In fact, it is easy to check that pZ,GZq is the resolution with
base pt1, 2u, 2t1,2uq and fibers pY1,G1q and pY2,G2q, where

Y1 “ tau, G1 “ 2Y1 ,

Y2 “ tb, c, du, G2 “ 2Y2ztb, du.

Here, the base, the fibers, and the resolution are affine convex geometries.

For compositions (or compounds) of hypergraphs, ‘committees’ play a role akin to our
shrinkable sets. According to Chein et al. (1981), a committee in a hypergraph pX,Gq
(where by definition G Ď 2X) is any subset S of X satisfying a property similar to (S2)
in Theorem 26, where the antecedent is GX S ‰ ∅ and H X S ‰ ∅.
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Figure 2: Four points in the real affine plane; the induced convex geometry on ta, b, c, du
admits S as a shrinkable set (see Example 28).

Cantone et al. (2021) characterize shrinkable sets in the more general setting of choice
spaces. In view of Koshevoy’s result (Theorem 16) and a simplification due to the path
independence of the associated choice space, this directly yields an alternative test for the
primitiveness of a convex geometry which employs the extreme operator.

Theorem 29. Let pZ,Gq be a convex geometry. The following statements are equivalent
for a subset S of Z such that 1 ă |S| ă |Z|:

(i) S is shrinkable;

(ii) S satisfies the following properties for any A P 2Z:

(T1) exGpAq X S ‰ ∅ ùñ exGpAX Sq Ď exGpAq ;

(T2) AX S ‰ ∅ ùñ exGpAqzS Ď exGpAY Sq ;

(T3)
`

AX S ‰ ∅ ^ exGpAY Sq X S ‰ ∅
˘

ùñ exGpAq X S ‰ ∅ .

Moreover, when pZ,Gq is atomistic, (T1) implies (T3), and so Properties (T1) and (T2)
characterize the shrinkability of S.

We now establish the independence among the three Properties (T1)–(T3).

Example 30. As in Example 28, consider the affine convex geometry induced on four
points a, b, c and d in the real affine plane, with c between b and d and moreover a
outside the line through b, c and d. If we let S “ ta, b, cu, then S does not satisfy (T1)
(for A “ ta, b, cu) but it satisfies (T2) and (T3). If we now let S “ ta, du, then S satisfies
(T1) and thus also (T3), but not (T2) (for A “ ta, b, cu). Thus even in affine convex
geometries, (T1) and (T2) are each one independent of the other two properties.

To show that (T3) is independent of (T1) and (T2), consider the ordinal convex
geometry derived from the partial order ď on Z “ ta, b, cu with a ă b, a ă c and no other
strict comparison. Then the subset S “ ta, bu satisfies (T1) and (T2), but not (T3) (take
A “ ta, cu).

3.3 Extreme Resolutions and Extremely Shrinkable Sets

Here we study resolutions whose nontrivial fibers are all indexed by extreme elements of
the base.

the electronic journal of combinatorics 28(4) (2021), #P4.26 16



Definition 31. A resolution

pZ,GZq “ pX,GXqh pYx,GxqxPX

is extreme when for each x P X, if x R exGX
pXq then |Yx| “ 1.

As we shall see in Theorem 43, any resolution of convex geometries that happens to be
affine is also extreme. The next result uses extremeness to further clarify the link between
compositions and resolutions.

Theorem 32. Let pZ,GZq “ pX,GXqh pYx,GxqxPX be a resolution of convex geometries,
and pZ, CZq “ pX,GXqa pYx,GxqxPX the composition with the same base and fibers. Then
GZ Ď CZ, and GZ “ CZ holds if and only if the resolution is extreme.

Proof. Definition 19 readily yields GZ Ď CZ . Next we show that if the resolution is
extreme, then CZ Ď GZ . Indeed, in an extreme resolution, any subset A of Z satisfies
Requirement (R3), because an element x that is non-extreme in πpAq is also non-extreme
in X, hence Yx has only one element and is contained in A.

Conversely, we show that if the resolution is not extreme, then CZ Ď GZ does not hold.
By assumption, there exists some x in Xz exGxpXq such that the fiber Yx contains at least
two elements. By the definition of a convex geometry, GYx contains a nonempty convex
set G distinct from Yx. Now it is easy to check that pZzYxq YG belongs to CZ but not to
GZ .

Remark 33. Theorem 32 has a direct extension to a large family of set systems, as we now
explain. A set system is a pair pX,Fq, where X is a nonempty set, and F is a nonempty
collection of subsets of X. A set system pX,Fq is simple if

Ť

F “ X; in particular,
pX,Fq is plain if it is simple and moreover F ‰ t∅, Xu whenever |X| ą 1.

Compositions of set systems are defined exactly as compositions of convex geometries
(using only Conditions (R1) and (R2) as in Definition 19). To define resolutions of set
systems, we only need a notion of extreme element in set systems, and then again copy
from Definition 19. Lemma 10 suggests the following definition: given a set system pX,Fq,
an element x in a subset A of X is extreme in A when there exists some F P F such that
Aztxu Ď F and x R F (compare with, for instance, Ando, 2006).

Now consider a composition pZ,FZq “ pX,FXq a pYx,FxqxPX and at the same time
a resolution pZ, CZq “ pX,FXq h pYx,FxqxPX of set systems (with the same base and
fibers). As for convex geometries (Theorem 32), the resolution FZ is a subcollection of
the composition CZ . For plain set systems, the arguments in the proof of Theorem 32
show that the equality FZ “ CZ occurs exactly when the following property is satisfied:
for any nontrivial fiber Yx and convex set F in FX containing x, there holds x P exFX

pF q.
(Observe that if X P FX , it suffices to require this property to hold for F “ X, because
an element x that is extreme in X is also extreme in any subset of X containing x.)

To recognize which convex geometries can be written as a nontrivial extreme resolution,
we introduce and characterize a variant of shrinkability.
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Definition 34. Let pZ,GZq be a convex geometry. A subset S of Z with at least two
elements is extremely shrinkable (in Z) if it is a fiber in some nontrivial extreme resolution
producing pZ,GZq. Whenever Z contains such a set, we say that pZ,GZq is extremely
resolvable.

Theorem 35. Let pZ,GZq be a convex geometry. The following statements are equivalent
for a shrinkable set S Ď Z:

(i) S is extremely shrinkable;

(ii) for any resolution pX,GXqh pYx,GxqxPX equal to pZ,GZq, if S coincides with a fiber
Yx, then x P exGX

pXq;

(iii) for at least one resolution pX,GXqh pYx,GxqxPX equal to pZ,GZq, if S coincides with
a fiber Yx, then x P exGX

pXq;

(iv) ZzS P GZ.

Proof. We prove (i) ùñ (iv) ùñ (ii) ùñ (i), and leave the (simple) proof of (ii) ùñ
(iii) ùñ (iv) to the reader. Let T :“ ZzS, where S is shrinkable in Z.

(i) ùñ (iv). If S is extremely shrinkable in pZ,GZq, then by definition there is an
extreme resolution pX,GXq h pYx,GxqxPX equal to pZ,GZq such that S “ Yx for some
x P X. Since |S| ě 2, the hypothesis yields x P exGxpXq. We claim that T P GZ .
Requirement (R1) in Definition 19 holds for T by the equivalence (2) in Remark 22.
Next, as T X Yx “ ∅ and T X Yx1 “ Yx1 for x1 P Xztxu, we derive that (R2) holds for T
as well. Since T also satisfies (R3), the implication (i) ùñ (iv) is fully proved.

(iv) ùñ (ii). Suppose T P GZ . In the resolution considered in (ii), the assumption
implies πpT q “ Xztxu P GX . It follows that x P exGxpXq.

(ii) ùñ (i). Suppose (ii) holds. As S is assumed to be shrinkable, there exists (as
in the proof of Theorem 26) a resolution in which one fiber equals S and all the other
fibers have size 1. By (ii), the projection of S is an extreme element of the base. As a
consequence, the resolution is extreme.

A characterization of shrinkable subsets in terms of convex sets appeared in Theo-
rems 26. We derive a simpler characterization for extremely shrinkable sets.

Theorem 36. Let pZ,GZq be a convex geometry. The following statements are equivalent
for a subset S of Z such that 1 ă |S| ă |Z|:

(i) S is extremely shrinkable;

(ii) S satisfies the following properties for any G,H P GZ:

(V1) |GX S| “ 1 ùñ GY S P GZ;

(V2) pZzSq Y pH X Sq P GZ.
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Proof. (i) ùñ (ii). Assume S is extremely shrinkable. To prove (V1), suppose G P GZ
and |G X S| “ 1. By Theorem 35, the hypothesis entails ZzS P GZ , whence GzS “

G X pZzSq P GZ . Since S is shrinkable, Property (S2) from Theorem 26 yields (taking
H :“ Z) G Y S P GZ . To prove (V2), let H P GZ . Then, for G :“ Z in (S2), we get
pZzSq Y pH X Sq P GZ , as desired.

(ii) ùñ (i). Assume (V1) and (V2) hold. We first derive the shrinkability of S
by establishing Properties (S1) and (S2) in Theorem 26. Property (S1) holds because
GzS “ G X pZzSq P GZ follows from (V2) with H “ ∅. To prove (S2), let G,H P GZ be
such that GX S ‰ ∅ and GzS P GZ . In view of Remark 27, we can assume |GX S| “ 1.
Using

pGzSq Y pH X Sq “ pGY Sq X
`

pZzSq Y pH X Sq
˘

,

we derive from both (V1) and (V2) that the latter set lies in GZ . This proves that S is
shrinkable. Finally, observe that S is also extremely shrinkable, because ZzS P GZ follows
from (V2) with H :“ ∅, hence we can make use of Theorem 35.

Remark 37. In case an extremely shrinkable set S is convex in GZ , Property (V2) becomes
equivalent to the following one:

(V2’)
`

H P GZ ^ H 1 Ď S
˘

ùñ pZzSq YH 1 P GZ .

The reason is that tH X S H P GZu “ tH 1 P GZ H 1 Ď Su whenever S P GZ .

3.4 Resolutions and Homomorphisms of Semilattices

This subsection is a brief detour from the main topic, and it is not needed to read the
remainder of the paper. However, it becomes important in view of possible developments,
because it establishes a connection between resolutions of convex geometries and homo-
morphisms of certain semilattices. We thank an anonymous referee for pointing out the
relevance of semilattice homomorphisms, and making several important remarks.

Let pX,GXq be a convex geometry. The poset pGX ,Ďq is a join-semilattice,8 in which
the join G _ H of any two elements G,H P GX is equal to convGX

pG Y Hq. Although
pGX ,Ďq is also a lattice (in which the meet G^H of G and H is equal to GXH), here we
are especially interested in the join-semilattice structure, because the canonical projection
of a resolution yields an epimorphism of join-semilattices:9

Proposition 38. Let pZ,GZq “ pX,GXqhpYx,GxqxPX be a resolution of convex geometries
with projection π : Z Ñ X. The induced set-function π : GZ Ñ GX is a homomorphism of
the join-semilattice pGZ ,Ďq onto the join-semilattice pGX ,Ďq, where homomorphism here
means that the equality

πpG_Hq “ πpGq _ πpHq

8For the terminology on semilattices, we recommend Grätzer (2011). For links with convex geometries,
two main references are Monjardet (1990) and Adaricheva and Nation (2016b).

9We use the same notation _ and ^ for, respectively, the join and the meet in the two lattices pGZ ,Ďq
and pGX ,Ďq. An epimorphism is a surjective homomorphism.
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holds for all G, H P GZ . On the contrary, π may fail to be a lattice homomorphism,
because πpG^Hq “ πpGq ^ πpHq does not hold in all resolutions.

Proof. By Definition 19 of resolutions, the set-function π is well-defined because πpGq P
GX for any G P GZ . Furthermore, π is surjective, because any convex set A in GX is the
image by π of the convex set tz P Z πpzq P Au in GZ .

Next, we show that π is a join-semilattice homomorphism. To start, observe that an
application of π to both sides of Equation (3) in Lemma 23 yields for all A P 2Z

πpconvGZ
pAqq “ exGX

pπpAqq Y convGX
pπpAqqz exGX

pπpAqq “ convGX
pπpAqq.

Now apply the last equality to the set A :“ GYH to obtain

πpG_Hq “ πpconvGZ
pGYHqq (5)

“ convGX
pπpGYHqq (6)

“ convGX
pπpGq Y πpHqq (7)

“ πpGq _ πpHq. (8)

This proves that π : GZ Ñ GX is an epimorphism of join-semilattices.
Finally, we show that π may fail to preserve meet. Suppose there are two disjoint

convex sets K,L P Gx for some x P X. Set

A :“ convGX
ptxuq, G :“ K Y

ď

yPAztxu

Yy, H :“ LY
ď

yPAztxu

Yy.

Note that G,H P GZ and Yx X G X H “ ∅, whence x R πpG ^ Hq “ πpG X Hq. Since
x P πpGq X πpHq “ πpGq ^ πpHq, π is not a meet-semilattice homomorphism.

A join-semilattice pS,ďSq is the join-semilattice of some convex geometry if and only
if pS,ďSq is ‘graded’, with height one more than the number of the ‘join-irreducible’
elements (see definition in next paragraph). This characterization as well as several other
ones are detailed in Monjardet (1990), and Adaricheva and Nation (2016b).

As we now explain10 any convex geometry pX,GXq is canonically recoverable from
(the structure of) its join-semilattice pGX ,Ďq. By definition, an element J of pGX ,Ďq
is join-irreducible when (i) A Ĺ J for some A P GX , and (ii) for all B,C P GX the
equality J “ B _ C implies J “ B or J “ C (thus J is join-irreducible if and only if
it covers exactly one other element11). It is not difficult to check that a convex set J in
the convex geometry pX,GXq is a join-irreducible element of the join-semilattice pGX ,Ďq
if and only if J “ convGX

ptxuq for some x P X. We denote by jirpGXq the set of all join-
irreducible elements of the join-semilattice pGX ,Ďq: see Figures 3 and 4 for examples of

10For the more general case of standard closure spaces, see Adaricheva and Nation (2016a, Theorem 4-
2.14).

11In any ordered set pE,ďq, the element b covers the element a when a ă b and there is no element c
such that a ă c ă b. Then pa, bq is a covering pair.
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join-semilattices of convex geometries, with the join-irreducible elements shown as filled-
square nodes and their covering edges highlighted. This gives a bijection

g : X Ñ jirpGXq : x ÞÑ convGxptxuq.

Next, we define the function

h : GX Ñ 2jirpGXq : G ÞÑ tJ P jirpGXq J Ď Gu.

This function is injective, because hpGq “ tgpaq a P Gu for each G P GX . To make h
bijective, we take its image J pGXq :“ hpGXq as codomain. Because for all G P GX

G “ convGx

˜

ď

aPG

convGxptauq

¸

(9)

“
ł

aPG

convGxptauq (10)

“
ł

gpGq, (11)

the image J pGXq of h consists of the subsets K of jirpGXq satisfying

K “

!

J P jirpGXq J Ď
ł

K
)

. (12)

To conclude: the canonical bijections g and h lead to identify, respectively X with jirpGXq,
and GX with J pGXq. Moreover, for x P X and G P GX , we have x P G exactly when
gpxq P hpGq, or equivalently gpxq Ď G.

Next, we similarly interpret resolutions of convex geometries in terms of certain ho-
momorphisms. According to Proposition 38, the projection π of any resolution pZ,GZq “
pX,GXqh pYx,GxqxPX induces a join-semilattice homomorphism π : GZ Ñ GX , defined by
G ÞÑ πpGq. Note that π´1p∅q “ t∅u; in Grätzer (2011) terms, the homomorphism π is
t0u-separating (when a join-semilattice has a minimum, the latter is often denoted as 0).
Moreover, π also maps jirpGZq onto jirpGXq.
Remark 39. A homomorphism of join-semilattices of convex geometries needs not map
join-irreducible elements on join-irreducible elements. Figure 3 displays the Hasse dia-
grams of the join-semilattices pS,Ďq and pS 1,Ďq of two convex geometries. The function
π : S Ñ S 1, defined by K ÞÑ K 1, provides a counterexample. Indeed, it is a join ho-
momorphism from pS,Ďq onto pS 1,Ďq, and it maps the join-irreducible element D to the
join-reducible element D1.

It would be interesting to characterize, for two given join-semilattices pGZ ,Ďq and
pGX ,Ďq of convex geometries, when a function π : GZ Ñ GX is induced by a resolution
(the resolution has as result the first convex geometry and as base the second convex
geometry). The condition that π is a 0-separating join-homomorphism mapping jirpGZq
onto jirpGXq is necessary but not sufficient, as next example shows.
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Figure 3: The homomorphism of join-semilattices of convex geometries used in Remark 39.

Example 40. The left part of Figure 4 shows a join-semilattice communicated by a ref-
eree, which is the join-semilattice pGZ ,Ďq of a convex geometry pZ,GZq on 4 elements.
On the right, the figure displays the join-semilattice pGX ,Ďq of another convex geom-
etry pX,GXq. The function described in the middle of the figure is a join-semilattice
homomorphism, which is 0-separating and maps jirpGZq onto jirpGXq. However, there is
no resolution with base pX,GXq producing pZ,GZq. Indeed, pZ,GZq is a primitive (or
irresolvable) convex geometry: it has no shrinkable set, as seen through a (bit tedious)
application of Theorem 26.

As we just noted, the convex geometry pZ,GZq in the left of Figure 4 is primitive. The
referee considers that pZ,GZq is ‘decomposable’. Therefore, two problems (which are left
for future work) arise: first, to characterize resolutions of convex geometries in terms of
join-semilattice homomorphisms; second, to understand the other type of decomposability
pointed out by the referee. Of course, to answer the first problem, we could just mimic
the definition of resolutions in terms of the join-semilattice homomorphism produced by
the projection (recovering each convex geometry on the set of join-irreducible elements
of the join-semilattice of the convex geometry); however, what we are asking here is an
answer which is truly at the level of join-semilattice homomorphisms.

4 Resolutions of Special Convex Geometries

Here we examine resolutions of the two classes of convex geometries introduced in Sec-
tion 2.1: ordinal and affine. We start with the affine case.

4.1 Affine Convex Geometries

Recall from Example 6 that a convex geometry is affine if and only if it is isomorphic to
a convex geometry induced on a finite subset of a real affine space.

Lemma 41. If a resolution is an affine convex geometry, then the base and the fibers of
the resolution are also affine convex geometries.

Proof. The result follows at once from Remark 22: the fibers are subgeometries of the
resolution, and the base is isomorphic to a subgeometry of the resolution.
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∅

A B C

D E F

G H I

J

J ÞÑ Q

G ÞÑ N

H ÞÑ Q

I ÞÑ P

D ÞÑ N

E ÞÑ L

F ÞÑ P

A ÞÑ K

B ÞÑ L

C ÞÑ M
∅ ÞÑ ∅ ∅

K L M

N P

Q

Figure 4: See Example 40. On the left, the Hasse diagram of the join-semilattice of a con-
vex geometry communicated by a referee (we have added a representation of the preimages
of the join homomorphism—which are thus the equivalence classes of a ‘join-semilattice
congruence’). In the middle, the specification of the join-semilattice homomorphism. On
the right, the join-semilattice (of a convex geometry) that is the image of this homomor-
phism.

The converse of Lemma 41 does not hold: Examples 42 and 50 below show that
resolutions of affine convex geometries need not be affine.

Example 42. Let
X “ t1, 2, 3u , GX “ 2Xztt1, 3uu ,
Y1 “ tau , G1 “ 2Y1 ,
Y2 “ tb, cu , G2 “ 2Y2 ,
Y3 “ tdu , G3 “ 2Y3 .

All pairs pX,GXq and pYi,Giq, for i “ 1, 2, 3, are affine convex geometries. A simple
computation shows that the resolution of pX,GXq into tpYi,Giq i P Xu is the convex
geometry pZ,GZq “ pX,GXqh pYi,GiqiPX , where Z “ ta, b, c, du, and

GZ “ 2Zz
 

ta, du, ta, b, du, ta, c, du
(

.

(See Figure 5, which describes the lattice pGZ ,Ďq of convex sets.) However, the convex
geometry pZ,GZq is not affine. This readily follows from the fact that b, c P convGZ

pta, duq,
but b R convGZ

pta, cuq and c R convGZ
pta, bu: indeed, if pZ,GZq were affinely embedded in

some real affine space, we would have b and c on the segment ra, ds, and so either b P ra, cs
or c P ra, bs.
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Figure 5: The lattice of convex sets of the (non-affine) resolution in Example 42.

Observe that the non-affine resolution pZ,GZq of Example 42 is also non-extreme, since
2 R exGX

pXq and yet |Y2| ą 1. In fact, to conclude that pZ,GZq is non-affine, it suffices
to check that it is non-extreme, as the next result guarantees.

Theorem 43. An affine resolution of convex geometries is extreme.

Theorem 43 is a special case of a more general result (Theorem 44), which shows that
Axiom (EA) below is sufficient for a resolution to be extreme. A convex geometry pZ,GZq
satisfies Axiom (EA) when, for any A P 2Z and p P Z,

(EA) p P convGZ
pAq ùñ convGZ

pAq Ď
Ť

aPA convGZ

`

pAztauq Y tpu
˘

.

Levi (1951) formulated this condition for ‘closure spaces’ (named (C3)). Sierksma (1984)
calls it the ‘exchange axiom’.12 In terms of Adaricheva and Nation (2016c), it is the
‘n-carousel rule’ restricted to n “ |X|´ 2. Theorem 43 follows from Theorem 44, because
any affine convex geometry satisfies (EA).

Theorem 44. A resolution of convex geometries satisfying Axiom (EA) is extreme.

Proof. Let pZ,GZq “ pX,GXq h pYx,GxqxPX be a resolution of convex geometries which
satisfies Axiom (EA). Denote by E the set of all extreme points of the base set X. Toward
a contradiction, assume there is w P XzE such that |Yw| ě 2, and let a, b be two distinct
elements of Yw. Since w P X “ convGX

pEq, there is a minimal subset V of E such that
w P convGX

pV q. For each v P V , denote by VvÐw the set pV ztvuqYtwu. By the minimality
of V , we have

w P exGX
pVvÐwq for all v P V . (13)

12Not to be confused with the ‘exchange condition’ for matroids.
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Now let T Ď Z be a transversal for the family tYv v P V u, that is, |T X Yv| “ 1 for each
v in V . Observe that exGX

pπpT qq “ exGX
pV q “ V by Lemma 12(i). Therefore, Lemma 23

yields
convGZ

pT q “
ď

vPV

convGvpT X Yvq Y
ď

x P convGXpV qzV

Yx ,

and so, since w P convGX
pV qzV and a, b P Yw, we deduce

a, b P convGZ
pT q . (14)

Since a P convGZ
pT q, Axiom (EA) entails

convGZ
pT q Ď

ď

tPT

convGZ
pTtÐaq ,

where TtÐa stands for pT zttuq Y tau. Since b P convGZ
pT q, it follows

b P convGZ
pTuÐaq for some u P T . (15)

Let r “ πpuq. Another application of Lemma 23 yields

convGZ
pTuÐaq “

ď

x P exGXpVrÐwq

convGxpTuÐa X Yxq Y
ď

x P convGXpVrÐwqz exGXpVrÐwq

Yx ,

whence, by (13) and (15), we deduce

b P convGwpTuÐa X Ywq “ convGwptauq ,

which in turn implies b R exGwpta, buq. The roles of a and b being exchangeable, we also
have a R exGwpta, buq. It follows that exGwpta, buq “ ∅, a contradiction.

Corollary 45. Let pZ,GZq be an affine convex geometry. For any shrinkable set S Ď Z,
we have:

(i) S P GZ;

(ii) GzS P GZ for all G P GZ, in particular ZzS P GZ.

Proof. Fix S Ď Z shrinkable. Thus there is a resolution pX,GXqh pYx,GxqxPX producing
pZ,GZq in which S is a (nontrivial) fiber Yx.

(i) By Lemma 41, the base pX,GXq is an affine convex geometry, which implies that any
one-element set txu in 2X belongs to GX . By (1) in Remark 22, we conclude S “ Yx P GZ .

(ii) To start, we prove ZzS P GZ . By Theorem 43, the resolution pZ,GZq “ pX,GXqh

pYx,GxqxPX is extreme, and so S “ Yx is extremely shrinkable. An application of Theo-
rem 35 readily yields ZzS P GZ . Then, for arbitrary G P GZ , we get GzS P GZ , because
GzS “ GX pZzSq.
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Finally, we obtain a characterization of all affine convex geometries that are resolvable
(hence of primitive ones):

Corollary 46. The following statements are equivalent for an affine convex geometry
pZ,GZq:

(1) pZ,GZq is resolvable;

(2) there is a shrinkable subset S of Z;

(3) there is an extremely shrinkable subset S of Z;

(4) there is a subset S of Z, with 1 ă |S| ă |X|, satisfying the following properties for
any G,H P GZ:

(V1)
`

G P GZ ^ |GX S| “ 1
˘

ùñ GY S P GZ,

(V2) H P GZ ùñ pZzSq Y pH X Sq P GZ.

Proof. Simply observe that as a consequence of Theorem 43, affine resolutions fall under
the application of Theorem 36.

The primitivity of a convex geometry is characterized by the non-existence of a shrink-
able set. However, even for affine convex geometries, this characterization is not compu-
tationally effective, because Properties (V1) and (V2) are to be checked for all convex sets
of the given geometry. We wonder whether there are more instructive answers to the next
two, related problems.

Problem 47. Given an affine convex geometry pZ,Gq, characterize when a subset of Z
is shrinkable.

Problem 48. Geometrically characterize when an affine convex geometry is primitive.

By Theorems 43 and 32, Problems 47 and 48 are also problems about compositions of
affine convex geometries. Although they appear to be central problems, we were unable
to find any mention of them in the literature.

The next result states an equivalent (geometric) formulation of Property (T1) in The-
orem 29. This reformulation is in the spirit of the answers we would like to obtain for
Problems 47 and 48. In what follows, ‘convGZ

’ denotes the convex hull operator in a
convex geometry GZ , whereas ‘convR’ is used for the standard convex hull in the affine
space Rd.

Proposition 49. Let Z be a finite subset of Rd, and pZ,Gq the convex geometry induced
on Z. The following statements are equivalent for any set S Ď Z such that 1 ă |S| ă |Z| :

(i) S satisfies Property (T1) in Theorem 29, namely for all A P 2Z,

(T1) expAq X S ‰ ∅ ùñ expAX Sq Ď expAq;
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(ii) there exist proper faces F1, F2, . . . , Fk (k ě 1q of the convex polytope convRpZq such
that S “ Z X pF1 Y F2 Y ¨ ¨ ¨ Y Fkq.

A simple consequence of Condition (ii) is that S lies in the relative boundary13 of
convRpZq However, Condition (ii) asserts more than that.

Proof. Fix S Ď Z such that 1 ă |S| ă |Z|.

(ii) ùñ (i): Suppose there exist proper faces F1, F2, . . . , Fk of the convex polytope
convRpZq such that S “ Z X pF1 Y F2 Y ¨ ¨ ¨ Y Fkq. If any face Fi equals convRpZq, then
S “ Z, and so S satisfies (T1). Thus we may assume that all Fi’s are proper faces of
convRpZq. Let A P 2Z ; we shall show that expAX Sq Ď expAq. Given w in expAX Sq, we
know by (ii) that w belongs to some face Fi of convRpZq, with moreover Z X Fi Ď S. If
w P expAq does not hold, then there exists a subset B of Aztwu such that w P convRpBq.
Such a minimal subset B of Aztwu is formed by the vertices b1, b2, . . . , b` of a simplex
containing w in its relative interior. Then all bj’s belong to Fi, because the proper face Fi
of convR equals the intersection of convRpZq with some hyperplane supporting convRpZq.
It follows that, for all j’s, we have bj P A X Fi Ď A X Z X Fi Ď A X S, contradicting the
initial assumption w P expAX Sq.

(i) ùñ (ii): Suppose S satisfies Property (T1).

Claim: If some point w of S is in the relative interior of any face F (proper or not) of
convRpZq, then Z X F Ď S and the face F is proper.

Proof of Claim. Toward a contradiction, assume there is f0 P pZXF qzS. The line passing
through f0 and w must meet the relative boundary of F on the side of w opposite to f0.
Thus there exist vertices f1, f2, . . . , fk of the face F such that w belongs to the relative
interior of the simplex with vertices f0, f1, . . . , fk. Notice tf0, f1, f2, . . . , fku Ď Z
(because all vertices of convRpZq must be in Z). We split the analysis in the only two
possible cases.

Case 1: fi is in S, for some i P t1, 2, . . . , ku. Set A “ tw, f0, f1, . . . , fku, and notice
fi P expAqXS together with w P expAXSqz expAq. This contradicts the assumption
that S satisfies (T1).

Case 2: tf0, f1, . . . , fku Ď ZzS. By our assumption |S| ě 2, there is v P Sztwu. Consider
two subcases for the possible position of the point v. First, if v R convRptf0, f1,
f2, . . . , fkuq, then we set A “ tv, w, f0, f1, f2, . . . , fku. Notice v P expAq X S
and w P expAX Sqz expAq, again a contradiction with S satisfying (T1). Second, if
v P convRptf0, f1, f2, . . . , fkuq, there is a point x on the relative boundary of the
simplex T “ convRptf0, f1, . . . , fkuq such that w P sv, xr. Let now A be formed by
the points v, w and the vertices of the minimal face of the simplex T which contains
x. Again we get a contradiction because v P expAq X S and w P expAX Sqz expAq.

To complete the proof of the Claim, simply observe that F must be proper, because
otherwise we would have Z “ S.

13That is, the boundary computed in the affine subspace generated by convRpZq.
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From the Claim, we derive that S contains the intersection of Z with any face of
convRpZq containing in its relative interior at least one point of S. Thus S includes
the intersection of Z with the union of all such faces. The reverse inclusion also holds,
because any point w of S belongs to both Z and the relative interior of the smallest face
of convRpZq containing w.

We are still missing a translation of Property (T2) in Theorem 29. This translation
appears to be of some interest in view of the fact that, along with the translation of (T1)
obtained in Proposition 49, it would deliver a solution to Problem 47.

The next example illustrates another type of obstruction to the affineness of a resolu-
tion.

Example 50. Let
X “ t1, 2, 3u , GX “ 2Xztt1, 3uu ,
Y1 “ tau , G1 “ 2Y1 ,
Y2 “ tbu , G2 “ 2Y2 ,
Y3 “ tc, du , G1 “ 2Y3 .

The resolution of pX,GXq into tpYi,Giq i P Xu is the convex geometry pZ,GZq “ pX,GXqh
pYi,GiqiPX , where Z “ ta, b, c, du, and

GZ “ 2Zz
 

ta, cu, ta, du
(

.

Although all convex geometries pX,GXq and pYi,Giq, i “ 1, 2, 3, are affine, their reso-
lution pZ,GZq is not. Indeed, we have b P convGZ

pta, cuq X convGZ
pta, duq, along with

c R convGZ
ptb, du and d R convGZ

ptb, cu, which is impossible in any affine geometry. (If
pZ,GZq were affinely embedded, we would have in some real affine space c and d on the
line through a and b, on the side of b opposite to a. However, this implies c P rb, ds or
d P rb, cs.)

The crucial assumptions in the last example are that 2 lies between 1 and 3, and that
the fiber Y3 contains more than one element. We generalize them in the next proposition
(where p plays the role of 2).

Proposition 51. Suppose a resolution pZ,GZq “ pX,GXqh pYx,GxqxPX of convex geome-
tries is affine, with GZ the geometry induced on the subset Z of some real affine space
Rd. Assume that the base contains elements p, p1, . . . , pn`1 such that p P convGX

ptp1,
p2, . . . , pn`1uq and p R convGX

pT q for any proper subset T of tp1, p2, . . . , pn`1u. For
i “ 1, 2, . . . , n` 1, let qi be any point in the fiber Ypi. Then all fibers Ypi lie in the affine
subspace of dimension n generated by the points q1, q2, . . . , qn`1, and so all fibers pYpi ,Gpiq
are isomorphic to convex geometries affinely embedded in a real affine space of dimension
n.

Proof. As mentioned in Lemma 41, the base pX,GXq and all fibers pYx,Gxq are also affine
geometries. By Theorem 43, the fiber Yp contains just one point, say q. Note that
q P convRptq1, q2, . . . , qn`1uq in Rd (the reason is that the projection on the base of the
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convex hull convGZ
tq1, q2, . . . , qn`1u in Z must be convex in the base X and at the same

time contain p1, p2, . . . , pn`1; thus by our assumptions the projection contains also p).
Moreover, q cannot be in the convex hull of less than n` 1 of the points q1, q2, . . . , qn`1
(because the projection p of q does not lie in the convex hull in X of less than n`1 of the
pi’s). Thus in Rd, the point q is in the relative interior of the simplex with vertices q1, q2,
. . . , qn`1. To derive the thesis for i “ 1 (the arguments are similar for the other values of
i), note that q1 lies in the affine hull of the points q, q2, q3, . . . , qn. As this result holds
for any point in the fiber Yp1 in place of q1, we deduce that the fiber Yp1 is included in
the affine hull of q, q2, q3, . . . , qn`1, which is the same as the affine hull of q1, q2, q3, . . . ,
qn`1.

We know of several other necessary conditions for an affine convex geometry to be
primitive, but none of them is both necessary and sufficient. We leave Problems 47 and
48 unsolved.

4.2 Ordinal Convex Geometries

Recall from Example 4 and Theorem 5 that a convex geometry pZ,GZq is ordinal if and
only if GZ is closed under union, or, equivalently, GZ consists of all ideals of some unique
partial order ď on Z (the partial order associated to GZ). Remark 17 readily yields that
the equivalence

 pz ă z1q ðñ z P exGZ
ptz, z1uq (16)

holds for all z, z1 P Z. Here we show that (1) a resolution of ordinal convex geometries
is always ordinal, and (2) its associated partial order is the ‘resolution’ (as in the next
definition) of the partial orders associated to the base and the fibers.

Definition 52. Let X be a finite base set, and tYx x P Xu a family of finite, pairwise
disjoint fiber sets disjoint from the base set. Furthermore, let RX be a binary relation on
X, and Rx a binary relation on Yx for each x P X. Set Z :“

Ť

xPX Yx, and call projection
the function π : Z Ñ X, with πpzq “ x when z P Yx. The resolution of pX,RXq into
tpYx, Rxq x P Xu is the pair pZ,RZq, where RZ is the binary relation on Z defined by

zRZz
1
ðñ

#

either pDx P Xq pz, z1 P Yx ^ zRxz
1q ,

or pDx, x1 P Xq px ‰ x1 ^ z P Yx ^ z
1 P Yx1 ^ xRXx

1q
(17)

for all z, z1 P Z. With a slight abuse of terminology, we shall also say that RZ is the
resolution of RX into the family tRx x P Xu. We use a notation similar to the one
employed for convex geometries, namely

pZ,RZq “ pX,RXqm pYx, RxqxPX .

A binary relation on a finite set is primitive when it cannot be obtained as a nontrivial
resolution of relations, and is resolvable otherwise.14

14As usual, nontrivial means that the base has more than one element, and there is at least a fiber
that has more than one element.
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Remark 53. Resolutions of binary relations are well-known, often under a different name:
see, for instance, Dörfler (1971). For the special case of partial orders, they are called
sums by Hiraguchi (1951), lexicographic sums by Trotter (1992, page 24), and ordered
sums by Harzheim (2005, page 85). Observe that Bang-Jensen and Gutin (2001, page 8)
use the term ‘composition’ in place of ‘resolution’. In this paper, we employ the term
‘resolution’ for binary relations not only to avoid confusion, but also in an attempt to
use a common name for the codification of the same concept in different mathematical
settings.

It is well-known that the resolution of binary relations is a partial order exactly when
the base relations and the fiber relations are all partial orders: see Hiraguchi (1951),
Trotter (1992), or Harzheim (2005). The main result of this section (Theorem 54) proves
two things: (1) a resolution of convex geometries is ordinal if and only if so are its base and
its fibers; (2) there is a tight connection between resolutions of ordinal convex geometries
and resolutions of partial orders.

Theorem 54. A resolution of convex geometries is an ordinal convex geometry if and
only if its base and all its fibers are ordinal convex geometries. Furthermore, the partial
order associated to the resolved convex geometry is equal to the resolution of the partial
order associated to the base into the family of partial orders associated to the fibers.

Proof. Let pZ,GZq “ pX,GXqh pYx,GxqxPX be a resolution of convex geometries.
If the convex geometry pZ,GZq is ordinal, equivalently GZ is closed under union (The-

orem 5), Remark 22 implies that all geometries pX,GXq and pYx,Gxq, for x P X, are also
ordinal (because a subgeometry of an ordinal geometry is itself ordinal).

To prove the converse, suppose now that pX,GXq and pYx,Gxq, for x P X, are all
ordinal convex geometries. By Theorem 5, it suffices to show that GZ is closed under
union. Let B,C P GZ . We shall prove that D “ B Y C satisfies Requirements (R1)–(R3)
in Definition 19.

(R1) Requirement (R1) applied to B and C yields πpBq, πpCq P GX , hence πpDq “
πpBq Y πpCq P GX , because GX is closed under union.

(R2) Let x P πpDq. Without loss of generality, assume that x P πpBq X πpDq (indeed,
if x belongs to exactly one between πpBq and πpCq, the result is trivial). Now
Requirement (R2) applied to B and C yields B X Yx, C X Yx P Gx. Since D X Yx “
pBXYxqYpCXYxq and Gx is closed under union by assumption, we deriveDXYx P Gx,
as claimed.

(R3) Let x P πpDqz exGX
pπpDqq “ pπpBq Y πpCqqz exGX

pπpBq Y πpCqq. It follows that
x P πpBqz exGX

pπpBqq or x P πpCqz exGX
pπpCqq holds. By Requirement (R3) applied

to B or C, we get Yx Ď B or Yx Ď C, hence Yx Ď BYC “ D. Thus, D satisfies (R3),
too.

Next, we prove the second assertion. Let ďX , ďx, and ďZ be the partial orders
associated to the ordinal convex geometries pX,GXq, pYx,Gxq, and pZ,GZq, respectively.
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We show that pZ,ďZq is the resolution (in terms of relations) of pX,ďXq into the family
pYx,ďxqxPX , that is,

pZ,ďZq “ pX,ďXqm pYx,ďxqxPX .

Indeed, in view of the equation (4) in Lemma 23, the equivalence (16), and the equiva-
lence (17) in Definition 52, we have, for all z, z1 P Z,

 pz ăZ z
1
q ðñ z P exGZ

ptz, z1uq

ðñ z P
ď

x P exGX pπptz,z
1uqq

exGxptz, z
1
u X Yxq

ðñ pDx P Xqpz, z1 P Yx ^ z P exGxptz, z
1uqq or

pDx, x1 P Xqpx ‰ x1 ^ z P Yx ^ z
1 P Yx1 ^ πpzq P exGX

pπptz, z1uqqq

ðñ pDx P Xqpz, z1 P Yx ^ pz ăx z
1qq or

pDx, x1 P Xqpx ‰ x1 ^ z P Yx ^ z
1 P Yx1 ^ pπpzq ăX πpz1qqq.

We conclude that z ăZ z
1 does not hold if and only if the pair pz, z1q does not belong to

the resolution of the partial order ďX into the family tďx x P Xu. This completes the
proof.

The following consequence of Theorem 54 is immediate:

Corollary 55. An ordinal convex geometry is primitive if and only its associated partial
order is primitive.

For information on primitive posets, we refer the reader to Schmerl and Trotter (1993)
or Boudabbous, Zaguia, and Zaguia (2010). The concept of primitivity applies to more
general relational structures: see Ille (2005) for a survey.

The shrinkable sets of an ordinal convex geometry pZ,Gq are exactly the autonomous
sets of the associated partial order ď, where (see Schröder, 2016) S Ď Z is autonomous
if for all s, s1 P S and z P ZzS,

s ď z ùñ s1 ď z and z ď s ùñ z ď s1.

Finally, observe that Theorem 54 does not hold for compositions: indeed, Example 20
exhibits a composition of ordinal convex geometries that fails to be a convex geometry.15

5 Primitivity of Small Convex Geometries

Here we determine all primitive convex geometries on at most four elements. Observe
preliminarily that our classification task is simple for the special case of ordinal convex
geometries. In fact, by Corollary 55, to test whether an ordinal convex geometry is
primitive, it suffices to check whether its associated poset is primitive (as a poset), which
in turn amounts to investigate whether the poset has an autonomous subset.

15A close link between compositions of set systems and compositions of posets results from attaching
to a poset its set of chains, as explained in Möhring and Radermacher (1984).
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To start, note that all convex geometries on one or two elements are primitive. The
next proposition inspects which convex geometries on three and four elements are primi-
tive, also determining whether they are ordinal or affine. A list of all 34 convex geometries
on four elements appear in Merckx (2013), and their number is confirmed in Uznanski
(2013).

Proposition 56. Up to isomorphisms, there are:

(i) 6 convex geometries on three elements, of which 1 is primitive and non-ordinal, and
5 are resolvable and ordinal;

(ii) 34 convex geometries on four elements, 12 of which are primitive; among the prim-
itive ones, 1 is ordinal and 2 are affine.

Proof. (i) On three elements there are, up to isomorphisms, 6 geometries, which are
listed in Example 3. By using Theorem 5, one can readily check that exactly 5 of them
are ordinal: in fact, there is only one convex geometry that is not closed under union,
namely G5. All 5 corresponding posets on three elements are resolvable, hence also the
associated ordinal convex geometries are resolvable. Furthermore, the unique non-ordinal
geometry G5 is primitive, since otherwise its base and fibers would be ordinal, and so G5

itself would also be ordinal by Theorem 54.

(ii) On four elements, there are 34 convex geometries, 16 of which are ordinal. The
16 posets on four elements are listed, for instance, in Monteiro, Savini and Viglizzo (2017)
and Steinbach (1990); only one of these posets is primitive (it is the ‘N-poset’). To find
out how many of the 18 non-ordinal convex geometries on four elements are primitive, we
rather look for the number of resolvable ones.

By Theorem 54, non-ordinal resolutions have either a non-ordinal base or a non-ordinal
fiber (or both). Furthermore, all fibers of a nontrivial resolution on four elements have
size at most three. Thus there are only two cases:

(a) the base is the unique non-ordinal geometry G5 on three elements, and the three
fibers have one, one, and two elements, respectively;

(b) the base has two elements and one fiber is G5.

Taking into account the automorphisms of small convex geometries, we are left with
7 possible resolutions, of which 4 are of type (a), and 3 of type (b). It is simple to
construct these 7 resolvable geometries, and check that they are pairwise non-isomorphic.
We conclude that among the 18 non-ordinal convex geometries on four elements, 11 are
primitive. Moreover, exactly 2 of these 11 primitive geometries are affine. In fact, there
are exactly 4 affine convex geometries on four points, which are those induced on the
subsets of the real affine plane shown in Figure 6; only the first and the fourth produce a
primitive convex geometry.
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Figure 6: Four subsets of the real affine plane (see the proof of Proposition 56).

6 Future Work and Open Problems

Here we list a few natural problems (they might be easy or difficult). By a class of convex
geometries, we mean a class closed under taking isomorphic images.

1. For a property (P) shared by some convex geometries, consider the following two
assertions:

(i) if the base and the fibers of a resolution all satisfy (P), then the resolution also
satisfies (P);

(ii) if a resolution satisfies (P), then its base and its fibers satisfy (P).

We say that the property (P) is forward stable when (i) is true, backward stable when
(ii) is true, and stable when both (i) and (ii) are true. For instance, ordinality of a
convex geometry is a stable property (Theorem 54), whereas affineness is a backward
stable property (Lemma 41) that fails to be forward stable (Example 42). An interest-
ing problem consists of determining which (additional) properties of convex geometries
considered in the literature are preserved by resolutions, in particular which of the
known families of convex geometries are stable under resolutions (see Goecke et al.,
1989 for several types of such families). Carpentiere (2019) shows that neither mono-
phonic convex geometries nor geodetic convexity geometries form a stable family (for
monophonic vs geodetic convex sets in graphs, see Farber and Jamison, 1986).

2. Any class C of convex geometries is included in a smallest class S of convex geometries
forward stable under resolutions. When C itself is not forward stable, S differs from
C. Characterize S when C is the class of affine convex geometries, and also for other
nonstable classes C.

3. Design a non-näıve algorithm to test whether a given convex geometry is primitive, and
another one to generate the primitive convex geometries on small numbers of elements.
Enright (2001) investigates various encodings of convex geometries. Uznanski (2013)
discusses a code generating all convex geometries up to seven elements (reporting
ingegneous programming efforts).

4. As it is the case for many classes of structures with respect to compositions (see
Möhring and Radermacher, 1984), does the fraction of primitive convex geometries on
n elements tend to one? (Notice that there are two questions here, one for convex ge-
ometries on labeled sets and one for convex geometries up to isomorphisms.) About the
asymptotic number of labelled convex geometries, see Echenique (2007) and Monjardet
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(2008). For examples of recent results concerning prime structures, see Boudabbous
and Ille (2011) for binary relations, Guillet, Leblet, and Rampon (2017) for posets, Ille
and Villemaire (2014) as well as Chudnovsky et al. (2016) for graphs.

5. As explained in Section 3, our definition of resolutions of convex geometries was inspired
from the one of resolutions of (path-independent) choice spaces in Cantone et al. (2021).
On the other hand, Ando (2006) (see also Danilov and Koshevoy, 2009) relate so-called
quasi-choice spaces to ‘closure spaces’. Investigate (a variant of) resolutions for all those
structures.

6. When a convex geometry is expressed as a resolution, the fibers could again be resolv-
able, and again their fibers, etc. This leads to a notion of ‘deresolution tree’, which
is similar to that of a decomposition tree based on hypergraph compounds (Chein
et al., 1981) or set-system compositions (Möhring and Radermacher, 1984; Möhring,
1985). A manuscript under preparation contains a uniqueness result for a well-defined
deresolution tree of a convex geometry, and even of a choice space. ‘Strong shrinkable
sets’ are the main tools, similar to strong modules for decomposition trees (for recent
work on the latter, see, for instance, Bonizzoni and Della Vedova, 1999; Foldes and
Radeleczki, 2016; Habib et al., 2019).

7. Kashiwabara, Nakamura and Okamoto (2005) show that any convex geometry can be
obtained by a construction that generalizes the one for affine convex geometries (which
is obtained by taking Q “ ∅ below). Specifically, given two finite subsets P and Q in
some real affine space Rd with the property that P ‰ ∅ and P X convRpQq “ ∅, let

L :“
 

G P 2P convRpGYQq X P “ G
(

.

Then pP,Lq is a convex geometry, and moreover any convex geometry is isomorphic
to such a geometry. The following are extensions of Problems 47 and 48: (i) char-
acterize the shrinkable subsets of the convex geometry pP,Lq in terms of P and Q;
(ii) characterize the pairs pP,Qq for which the convex geometry pP,Lq is primitive.

8. There are some definitions of infinite convex geometries in the literature: see, for in-
stance, Adaricheva (2014b), Adaricheva and Nation (2016d), Jamison-Waldner (1982),
Mao (2017), Mao and Liu (2012), Marti and Pinosio (2020), Wahl (2001). In view of
these notions, extending the investigation of resolutions to infinite convex geometries
appears to be of some interest.

9. As already emphasized in Footnote 7, it may be interesting to study resolutions of
special convex geometries, which correspond to choice spaces that are rationalizable by
means of ‘well-behaved’ binary relations—that is, satisfying pm,nq-Ferrers properties
in the sense of Giarlotta and Watson (2014, 2018). This topic of research appears to be
closely related to Topic 1 of this list, because several properties of ‘choice consistency’
are both forward and backward stable: see Cantone et al. (2021).
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the electronic journal of combinatorics 28(4) (2021), #P4.26 36



Guillet, A., J. Leblet, and J.-X. Rampon. Faithful extension on finite order classes. The Aus-
tralasian Journal of Combinatorics 69: 1–17.

Habib, M., F. de Montgolfier, L. Mouatadid, and M. Zou, 2019 A general algorithmic scheme
for modular decompositions of hypergraphs and applications. In Combinatorial algorithms,
vol. 11638 of Lecture Notes in Computer Science, pp. 251–264. Springer, Cham.

Harzheim, E., 2005. Ordered Sets, vol. 7 of Advances in Mathematics. Springer, New York.

Hiraguchi, T., 1951. On the dimension of partially ordered sets. Science Reports of Kanazawa
University 1: 77–94.

Hoffmann, U., and K. Merckx, 2018. A universality theorem for allowable sequences with appli-
cations. arXiv:1801.05992
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