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Abstract

For a subset A of {1, 2, . . . , N}2 of size αN2 we show existence of (m,n) 6= (0, 0)
such that the set A contains at least (α3−o(1))N2 triples of points of the form (a, b),
(a + m, b + n), (a − n, b + m). This answers a question by Ackelsberg, Bergelson,
and Best. The same approach also establishes the corresponding result for compact
abelian groups. Furthermore, for a finite field Fq we comment on exponential small-
ness of subsets of (Fnq )2 that avoid the aforementioned configuration. The proofs
are minor modifications of the existing proofs regarding three-term arithmetic pro-
gressions.

Mathematics Subject Classifications: 11B30, 05D05

1 Introduction

The main result of this note deals with a configuration consisting of three distinct points
in Z2 of the form

(a, b), (a+m, b+ n), (a− n, b+m). (1.1)

In other words, we are interested in triples of points forming vertices of a right isosceles
triangle.

Theorem 1. For every ε ∈ (0, 1] there exists a positive integer N0(ε) such that the
following holds: for every integer N > N0(ε) and a set A ⊆ {1, 2, . . . , N}2 with density
α := |A|/N2 there exists a pair (m,n) ∈ Z2 \ {(0, 0)} such that∣∣A ∩ (A− (m,n)

)
∩
(
A− (−n,m)

)∣∣ > (α3 − ε)N2,

i.e., A contains at least (α3 − ε)N2 triples of points of the form (1.1) for the same fixed
value of (m,n) 6= (0, 0).
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Theorem 1 confirms the conjecture of Ackelsberg, Bergelson, and Best formulated in
a preprint version of the paper [1], later acknowledged as [1, Theorem 1.19]. In fact,
these authors have established a certain infinitary result dealing with the same point
configuration (1.1) using multiple recurrence techniques from ergodic theory, while our
approach is combinatorial. However, note that the Furstenberg correspondence principle
does not apply to this type of problems, so Theorem 1 cannot be automatically deduced
from [1].

Analogous results for three-term and four-term arithmetic progressions,

a, a+ d, a+ 2d, (a+ 3d, ) (1.2)

had been conjectured by Bergelson, Host, and Kra [2], and they were established by
Green [9] and Green and Tao [10], respectively. These results are often called “popular
difference” strengthenings of the theorems of Roth [14] and Szemerédi [19]. They find
a nonzero d such that the number of progressions (1.2) in the set A ⊆ {1, 2, . . . , N}
with difference d comes close to the theoretical maximum, obtained by constructing A
at random. In the appendix of [2], Ruzsa gave a construction showing that arithmetic
progressions of length five or more no longer share this property. Moreover, Mandache [11]
showed that the corresponding result also fails for corners, i.e., patterns of the form (1.1)
with n = 0, while Fox, Sah, Sawhney, Stoner, and Zhao [8] found the sharp asymptotics
for this pattern. Configurations (1.1) allow an additional degree of freedom, as right
isosceles triangles can now be rotated. Let us also remark that Sah, Sawhney, and Zhao
[15] characterized all point configurations for which a popular difference result holds, but
they only allowed dilations and translations in pattern formation, so their discussion does
not include rotated right isosceles triangles.

We will establish a more general result in the context of 2-divisible compact Hausdorff
abelian groups (G,+), in perfect analogy with [20, Theorem 3] from an expository note
by Tao. Recall that a group G is 2-divisible if the map G → G, x 7→ 2x is surjective.
This is the case with finite cyclic groups of odd order, which will be sufficient for the
intended application to Theorem 1. The Bohr set BG(S, ρ) associated with a finite set of

frequencies S ⊆ Ĝ and a radius ρ ∈ (0, 1] is

BG(S, ρ) :=
{
x ∈ G : max

ξ∈S
‖ξ(x)‖R/Z < ρ

}
.

The group G is equipped with its probability Haar measure µ, which leads us to the
algebra L1(G) with respect to convolution. We also define the tent function νS,ρ over
BG(S, ρ) as a constant multiple of

x 7→
(

1− ρ−1 max
ξ∈S
‖ξ(x)‖R/Z

)
+

normalized so that ‖νS,ρ‖L1(G) = 1 and we set χS,ρ := νS,ρ∗νS,ρ. Finally, for any three func-
tions f, g, h ∈ L∞(G2) and a “weight” function χ ∈ L∞(G) define the weighted counting
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form

Λχ(f, g, h) :=

∫
G

∫
G

∫
G

∫
G
f(x, y) g(x+ s, y + t)h(x− t, y + s)

× χ(s)χ(t) dµ(s) dµ(t) dµ(x) dµ(y). (1.3)

Theorem 2. For every ε ∈ (0, 1] there exists R(ε) ∈ (0,∞) such that the following holds:
for every 2-divisible compact Hausdorff abelian group (G,+) with the Haar probability
measure µ and a Borel-measurable function f : G2 → [0, 1] there exist a set of frequencies

S ⊆ Ĝ with cardinality |S| 6 R(ε) and a radius ρ ∈ [R(ε)−1, ε] such that

ΛχS,ρ(f, f, f) >
(∫

G

∫
G
f(x, y) dµ(x) dµ(y)

)3
− ε.

In the case of G = Z/NZ we can choose S, ρ so that χS,ρ is supported in {−2bρNc, . . . ,
2bρNc}+NZ.

Derivation of Theorem 1 from Theorem 2 is standard by embedding {1, 2, . . . , N} in
a slightly larger cyclic group of odd order and taking f = 1A. We have an upper bound
on the height of the function χS,ρ in question (by the standard “volume packing bound”
for Bohr sets [20]), so the trivial “difference” (s, t) = (0, 0) contributes negligibly to the
count. The additional support requirement for χS,ρ makes the impact of wraparounds
negligible too.

Let us remark that a variant of Theorem 2 in a more general context of matrix patterns
was established by Berger, Sah, Sawhney, and Tidor [3] shortly after the appearance of
this note. This resulted in an independent resolution to the aforementioned question of
Ackelsberg, Bergelson, and Best.

From the previous discussion one gets an impression that configuration (1.1) is easier
than the previously mentioned arithmetic configurations. In this paper we argue that it
is certainly not more difficult than the three-term arithmetic progression and we treat it
in close analogy with it. This similarity in the “Fourier complexity” has also been noted
by several other authors [4, 3, 18].

Now let G be a finite abelian group with N elements. If one asks about the size of
the largest subset of {1, 2, . . . , N}2 or G2 that does not contain the configuration (1.1),
then a bound N2/(log logN)c comes from Shkredov’s results [16, 17] on corners, i.e., by
considering n = 0 only. A stronger result, for rotated squares, has been established by
Prendiville [13]. An improvement is possible in the form of a polylogarithmic bound
N2/(logN)c for sets avoiding (1.1). A standard density argument can be based on a
“uniformity” estimate that follows from formula (2.2) below:

|Λ1(f, g, h)| 6 min
{∥∥f̂∥∥

`∞(Ĝ2)
,
∥∥ĝ∥∥

`∞(Ĝ2)
,
∥∥ĥ∥∥

`∞(Ĝ2)

}
for Borel-measurable functions f, g, h : G2 → [−1, 1], at least when N = |G| is odd. We
do not discuss this argument in detail, as, in fact, Bloom [4, Theorem 2.21] showed a
more general result, while studying certain multidimensional patterns. Finally, Shkredov
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and Solymosi [18] recently posed a challenge of breaking the logarithmic barrier in this
polylogarithmic bound for rotated triangles in {1, 2, . . . , N}2; see [18, Conjecture 2] and
[18, Remark 14]. The problem can be reformulated in terms of either three-term matrix
progressions, [

a
b

]
,

[
a
b

]
+

[
1 0
0 1

] [
m
n

]
,

[
a
b

]
+

[
0 −1
1 0

] [
m
n

]
,

see [4, 3], or three-term progressions in the Gaussian integers Z[i],

z, z + w, z + iw,

but the literature on both seems to be scarce. In fact, the author is not aware of any
asymptotically nontrivial lower bounds. Maximal sizes of sets in the grid {1, 2, . . . , N}2
that do not contain (1.1) are known for N 6 11 and are listed as sequence A271906 in
the encyclopedia OEIS [12].

Instead, we will comment on the finite field case, i.e., when G = Fnq , where Fq denotes
the finite field with q elements.

Theorem 3. For every prime power q there exists a number cq ∈ (0, q) such that the
following holds for every positive integer n: if a set A ⊆ (Fnq )2 does not contain a triple
of distinct points (1.1) with a, b,m, n ∈ Fnq , then its cardinality needs to satisfy the bound
|A| 6 3c2nq .

We will see that the polynomial method by Croot, Lev, and Pach [6] and Ellenberg
and Gijswijt [7] devised for three-term arithmetic progressions works here without any
major modifications. In fact, we will follow its elegant reformulation in terms of the tensor
slice rank due to Tao [21]. This points out yet another similarity between configurations
(1.1) and (1.2).

The proof of Theorem 2 is given in Section 2, while the proof of Theorem 3 is given
in Section 3. As we have already said, both of them will be minor modifications of the
existing proofs.

2 Proof of Theorem 2

Before we begin with the proof, let us observe formulae

Λχ(f, g, h) =
∑

ξ,ζ,ξ′,ζ′∈Ĝ

f̂(−ξ − ξ′,−ζ − ζ ′) ĝ(ξ, ζ) ĥ(ξ′, ζ ′) χ̂(−ξ − ζ ′) χ̂(−ζ + ξ′), (2.1a)

Λχ(f, g, h) =
∑

ξ,ζ,ξ′,ζ′∈Ĝ

f̂(ξ, ζ) ĝ(−ξ − ξ′,−ζ − ζ ′) ĥ(ξ′, ζ ′) χ̂(ξ + ξ′ − ζ ′) χ̂(ζ + ξ′ + ζ ′),

(2.1b)

Λχ(f, g, h) =
∑

ξ,ζ,ξ′,ζ′∈Ĝ

f̂(ξ, ζ) ĝ(ξ′, ζ ′) ĥ(−ξ − ξ′,−ζ − ζ ′) χ̂(ζ − ξ′ + ζ ′) χ̂(−ξ − ξ′ − ζ ′)

(2.1c)
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for f, g, h, χ as before. Indeed, substituting x′ = x + s and y′ = y + t we see that
Λχ(f, g, h) is the scalar product of complex-valued functions

(x, y, x′, y′) 7→ f(x, y) g(x′, y′)

and
(x, y, x′, y′) 7→ h(x+ y − y′,−x+ y + x′)χ(−x+ x′)χ(−y + y′)

on the group G4. Since the latter function has Fourier transform

Ĝ4 ∼= Ĝ4 → C, (ξ, ζ, ξ′, ζ ′) 7→ ĥ(−ξ − ξ′,−ζ − ζ ′) χ̂(ζ − ξ′ + ζ ′) χ̂(−ξ − ξ′ − ζ ′),

we arrive at (2.1c) by applying Plancherel’s theorem, i.e., the fact that the Fourier trans-

form is a unitary operator from L2(G4) to `2(Ĝ4). The same argument guarantees that
the right hand side of (2.1c) converges absolutely and then the other two formulae, (2.1a)

and (2.1b), follow by easy changes of variables in the summation over Ĝ4. A particular
case of (2.1a) for the constant weight χ = 1 is worth formulating:

Λ1(f, g, h) =
∑
ξ,ζ∈Ĝ

f̂(−ξ − ζ, ξ − ζ) ĝ(ξ, ζ) ĥ(ζ,−ξ). (2.2)

Useful inequalities that immediately follow from (2.1a)–(2.1c) are∣∣Λχ(f, g, h)
∣∣ 6 ∥∥f̂∥∥

`∞(Ĝ2)
‖g‖L2(G2)‖h‖L2(G2)

∥∥χ̂∥∥2
`1(Ĝ)

, (2.3a)∣∣Λχ(f, g, h)
∣∣ 6 ‖f‖L2(G2)

∥∥ĝ∥∥
`∞(Ĝ2)

‖h‖L2(G2)

∥∥χ̂∥∥2
`1(Ĝ)

, (2.3b)∣∣Λχ(f, g, h)
∣∣ 6 ‖f‖L2(G2)‖g‖L2(G2)

∥∥ĥ∥∥
`∞(Ĝ2)

∥∥χ̂∥∥2
`1(Ĝ)

. (2.3c)

For instance, equality (2.1b) and the Cauchy–Schwarz inequality in ξ, ζ, ξ′, ζ ′ give

∣∣Λχ(f, g, h)
∣∣ 6 ∥∥ĝ∥∥

`∞(Ĝ2)

( ∑
ξ,ζ∈Ĝ

∣∣f̂(ξ, ζ)
∣∣2( ∑

ξ′,ζ′∈Ĝ

∣∣χ̂(ξ + ξ′ − ζ ′)
∣∣ ∣∣χ̂(ζ + ξ′ + ζ ′)

∣∣))1/2

×
( ∑
ξ′,ζ′∈Ĝ

∣∣ĥ(ξ′, ζ ′)
∣∣2( ∑

ξ,ζ∈Ĝ

∣∣χ̂(ξ + ξ′ − ζ ′)
∣∣ ∣∣χ̂(ζ + ξ′ + ζ ′)

∣∣))1/2

and then Plancherel’s theorem on G2 deduces (2.3b). Here is where we need the 2-

divisibility assumption on G. It is equivalent with the fact that the map Ĝ→ Ĝ, ξ 7→ 2ξ
is injective and here we need it to argue that the map

Ĝ2 → Ĝ2, (ξ′, ζ ′) 7→ (ξ + ξ′ − ζ ′, ζ + ξ′ + ζ ′)

takes each value of Ĝ2 at most once for each fixed choice of ξ, ζ ∈ Ĝ. On the other hand,
already the definition (1.3) gives easy inequalities∣∣Λχ(f, g, h)

∣∣ 6 ‖f‖L1(G2)‖g‖L∞(G2)‖h‖L∞(G2)‖χ‖2L1(G), (2.4a)
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∣∣Λχ(f, g, h)
∣∣ 6 ‖f‖L∞(G2)‖g‖L1(G2)‖h‖L∞(G2)‖χ‖2L1(G), (2.4b)∣∣Λχ(f, g, h)
∣∣ 6 ‖f‖L∞(G2)‖g‖L∞(G2)‖h‖L1(G2)‖χ‖2L1(G). (2.4c)

For example,∣∣Λχ(f, g, h)
∣∣ 6 ‖f‖L∞(G2)‖h‖L∞(G2)

×
∫
G

∫
G

(∫
G

∫
G
|g(x+ s, y + t)| dµ(x) dµ(y)

)
|χ(s)| |χ(t)| dµ(s) dµ(t),

which confirms (2.4b).
We are closely following the elegant “energy pigeonholing” proof of Roth’s theorem

by Tao [20], appearing to some extent in the papers by Bourgain [5] and Green [9]. Thus,
we will be concise, performing only a few necessary modifications.

For M = 2b104ε−2c+4 we recursively construct an increasing sequence (Si)
M
i=0 of finite

subsets of Ĝ and a decreasing sequence (δj)
3M+2
j=0 of positive numbers. We define them in

the order
S0, δ0, δ1, δ2, S1, δ3, δ4, δ5, . . . , SM , δ3M , δ3M+1, δ3M+2,

i.e., each object in this list depends only on preceding ones. We also denote νi := νSi,δ3i .
Let the initial set S0 consist of the nul-character and, if G = Z/NZ is a cyclic group,

also the character G → R/Z, x + NZ 7→ x/N + Z, which distinguishes the points of G.
Consequently, in the latter case we know that each Bohr set BG(Si, ρ) will certainly be
contained in {−bρNc, . . . , bρNc} + NZ. Also set δ0 := ε/104. The recurrence relation

used to define the sets Si is the following: let Si+1 ⊆ Ĝ be the smallest set such that

Si+1 ⊇ Si ∪
{
ξ ∈ Ĝ :

∣∣ν̂i(ξ)∣∣ > ε/100
}

and
S2
i+1 ⊇

{
(ξ, ζ) ∈ Ĝ2 :

∣∣f̂(ξ, ζ)
∣∣ > δ3i+2

}
.

In particular, cardinality of the set Si will be controlled by δ0, . . . , δ3i−1. We insist on
containing large Fourier coefficients of f in a square S2

i+1 being motivated by

BG(Si, ρ)2 ⊆ BG2

(S2
i , 2ρ) ⊆ BG(Si, 2ρ)2

for any ρ > 0. The numbers δj will be chosen later, in different ways according to the
remainder that j gives when divided by 3.

By the Plancherel formula and the pigeonhole principle there exists an index 0 6 i 6
M − 2 such that ∑

(ξ,ζ)∈S2
i+2\S2

i

∣∣f̂(ξ, ζ)
∣∣2 6 ε2

104
. (2.5)

Define

f0 := f ∗ (νi ⊗ νi), f1 := f ∗ (νi+1 ⊗ νi+1 − νi ⊗ νi), f2 := f − f ∗ (νi+1 ⊗ νi+1)
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and observe that f0 still takes values in [0, 1], while f1 and f2 take values in [−1, 1]. By∣∣f̂2(ξ, ζ)
∣∣ 6 ∣∣f̂(ξ, ζ)

∣∣ ∫
G

∫
G

∣∣1− e−2πiξ(x)e−2πiζ(y)∣∣ νi+1(x) νi+1(y) dµ(x) dµ(y)

we see that |f̂2(ξ, ζ)| can be estimated either by the definition of Si+1 for pairs (ξ, ζ) 6∈ S2
i+1,

or by the fact that νi+1 vanishes outside ofBG(Si+1, δ3i+3) and |1−e−2πiξ(x)|, |1−e−2πiζ(y)| 6
2πδ3i+3 for x, y ∈ BG(Si+1, δ3i+3) and pairs (ξ, ζ) ∈ S2

i+1. Thus, δ3i+3 can be chosen
sufficiently small so that ∥∥f̂2∥∥`∞(Ĝ2)

6 2δ3i+2. (2.6)

Next, we write

‖f1‖2L2(G2) =
∑

(ξ,ζ)∈Ĝ2

∣∣f̂(ξ, ζ)
∣∣2∣∣ν̂i+1(ξ)ν̂i+1(ζ)− ν̂i(ξ)ν̂i(ζ)

∣∣2
and split the sum according to whether (ξ, ζ) ∈ S2

i+2 \ S2
i , or (ξ, ζ) 6∈ S2

i+2, or (ξ, ζ) ∈ S2
i .

The first part of the sum is controlled using (2.5), the second one by |ν̂i(ξ)|, |ν̂i+1(ξ)| 6
ε/100 or |ν̂i(ζ)|, |ν̂i+1(ζ)| 6 ε/100, following from the definition of Si+2, while for the third
one we expand the definition of ν̂i and ν̂i+1 as before. We conclude

‖f1‖L1(G2) 6 ‖f1‖L2(G2) 6
ε

27
. (2.7)

From

|f0(x+s, y+t)−f0(x, y)| 6
∫
G

∫
G
|f(x−u, y−v)|

∣∣νi(u+s)νi(v+t)−νi(u)νi(v)
∣∣ dµ(u) dµ(v)

and

∣∣νi(u+ s)νi(v + t)− νi(u)νi(v)
∣∣ 6 ‖νi‖2L∞(G)

δ3i

(
max
ξ∈Si
‖ξ(s)‖R/Z + max

ζ∈Si
‖ζ(t)‖R/Z

)
we also see that δ3i+1 can be chosen sufficiently small so that

sup
x,y∈G

s,t∈BG(Si,2δ3i+1)

|f0(x+ s, y + t)− f0(x, y)| 6 ε

54
. (2.8)

Finally, we take S := Si and ρ := δ3i+1. Using multilinearity we split

ΛχS,ρ(f, f, f) = ΛχS,ρ(f0 + f1 + f2, f0 + f1 + f2, f0 + f1 + f2)

into 27 terms. The terms involving f1 are estimated by ε/27 using (2.4a)–(2.4c) and (2.7).
Among the remaining terms, those that contain f2 are bounded using (2.3a)–(2.3c) and
(2.6) by

2δ3i+2

∥∥χ̂S,ρ∥∥2`1(Ĝ)
= 2δ3i+2

∥∥ν̂S,ρ∥∥4`2(Ĝ)
= 2δ3i+2‖νSi,δ3i+1

‖4L2(G),
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which is at most ε/27 provided that δ3i+2 is sufficiently small in terms of |Si| and δ3i+1.
It remains to observe that ΛχS,ρ(f0, f0, f0) differs by at most ε/27 from∫

G

∫
G

∫
G

∫
G
f0(x, y)3 χS,ρ(s)χS,ρ(t) dµ(s) dµ(t) dµ(x) dµ(y) =

∫
G

∫
G
f0(x, y)3 dµ(x) dµ(y),

thanks to (2.8). The last display is greater than or equal to the third power of∫
G

∫
G

(
f ∗ (νi ⊗ νi)

)
(x, y) dµ(x) dµ(y) =

∫
G

∫
G
f(x, y) dµ(x) dµ(y).

This completes the proof of Theorem 2.

3 Proof of Theorem 3

This time we are closely following the approach by Tao from an expository note [21].
Observe that the configuration (1.1) can equivalently be written as

(x, y), (x′, y′), (x′′, y′′)

with constraints x− y − x′ + y′′ = 0 and x+ y − y′ − x′′ = 0 in Fnq . For a set A as in the
theorem formulation we have the equality

δ0(x− y − x′ + y′′)δ0(x+ y − y′ − x′′) =
∑

(a,b)∈A

δ(a,b)(x, y)δ(a,b)(x
′, y′)δ(a,b)(x

′′, y′′) (3.1)

of functions A3 → Fq in variables (x, y), (x′, y′), (x′′, y′′). Just as in [21] we define the
(slice) rank of a function F : A3 → Fq to be the minimal number of terms of the form

f(x, y)g(x′, y′, x′′, y′′) or f(x′, y′)g(x, y, x′′, y′′) or f(x′′, y′′)g(x, y, x′, y′)

that sum up to F ((x, y), (x′, y′), (x′′, y′′)). From [21, Lemma 1] we know that the right
hand side of (3.1) has slice rank precisely |A|.

On the other hand, if x = (xi)
n
i=1, x

′ = (x′i)
n
i=1, etc., then the left hand side of (3.1)

can be written as

n∏
i=1

(
1− (xi − yi − x′i + y′′i )q−1

)(
1− (xi + yi − y′i − x′′i )q−1

)
. (3.2)

Note that the polynomial (3.2) is a linear combination of the terms

n∏
i=1

(xi − yi)αi(xi + yi)
βi(x′i)

α′i(y′i)
β′i(y′′i )α

′′
i (x′′i )

β′′i

for some αi, βi, α
′
i, β
′
i, α
′′
i , β

′′
i ∈ {0, 1, . . . , q − 1} such that

n∑
i=1

(αi + βi + α′i + β′i + α′′i + β′′i ) 6 2(q − 1)n.
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We divide those terms into three groups, one of them determined by tuples of exponents
such that

n∑
i=1

(αi + βi) 6
2(q − 1)n

3
(3.3)

and the other two groups defined analogously. The terms in the first group can be orga-
nized into a sum of D products of the form( n∏

i=1

(xi − yi)αi(xi + yi)
βi
)
g(x′, y′, x′′, y′′),

where D is the number of tuples (α1, . . . , αn, β1, . . . , βn) ∈ {0, 1, . . . , q − 1}2n satisfying
(3.3). Note that charFq = 2 is allowed, as this degeneracy can only decrease the count.
Using a standard trick of estimating a restricted sum by a weighted sum, we can bound
D for any 0 < t 6 1 as

D 6
q−1∑

α1,...,αn,β1,...,βn=0

t
∑n
i=1(αi+βi)−

2(q−1)n
3 = ϕq(t)

2n,

where ϕq(t) := (1 + t + · · · + tq−1)t−(q−1)/3. Thus, the slice rank of the left hand side of
(3.1) is at most

3D 6 3
(

min
t∈(0,1]

ϕq(t)
)2n

.

The above minimum is certainly less than q, because ϕq(1) = q and ϕ′q(1) = q(q−1)/6 > 0.
This completes the proof of Theorem 3.
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