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Abstract

A temporal digraph G is a triple (G, γ, λ) where G is a digraph, γ is a function
on V (G) that tells us the time stamps when a vertex is active, and λ is a function on
E(G) that tells for each uv ∈ E(G) when u and v are linked. Given a static digraph
G, and a subset R ⊆ V (G), a spanning branching with root R is a subdigraph of G
that has exactly one path from R to each v ∈ V (G). In this paper, we consider the
temporal version of Edmonds’ classical result about the problem of finding k edge-
disjoint spanning branchings respectively rooted in given R1, · · · , Rk. We introduce
and investigate different definitions of spanning branchings, and of edge-disjointness
in the context of temporal digraphs. A branching B is vertex-spanning if the root
is able to reach each vertex v of G at some time where v is active, while it is
temporal-spanning if each v can be reached from the root at every time where v
is active. On the other hand, two branchings B1 and B2 are edge-disjoint if they
do not use the same edge of G, and are temporal-edge-disjoint if they can use the
same edge of G but at different times. This lead us to four definitions of disjoint
spanning branchings and we prove that, unlike the static case, only one of these
can be computed in polynomial time, namely the temporal-edge-disjoint temporal-
spanning branchings problem, while the other versions are NP-complete, even under
very strict assumptions.
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1 Introduction

A temporal digraph is a digraph that changes in time. That is, given a static digraph G,
a temporal digraph G with base static digraph G and lifetime set T changes as follows: at
each time stamp t ∈ T , only a subdigraph of G is active, and edges might have a delay,
leaving a vertex at some time stamp but arriving only later. The maximum value in T
is called the lifetime of G. If a vertex v ∈ V (G) is active at every t ∈ T , we say that v
is permanent. We will refer to static digraphs simply as digraphs and, when referring to
temporal digraphs, we will always use the complete term. We restrict our attention to
digraphs that may have multiple edges and T ⊆ N.

In this paper we deal with disjoint spanning branchings in temporal digraphs, which
are well-understood structures in digraphs due to a characterization by Edmonds [10].
In this paper, we work on a formulation due to Schrijver [25]. Given a digraph G, and
a subset R ⊆ V (G), we say that H ⊆ G is a spanning branching of G with root R if
V (H) = V (G), and H contains exactly one path between some r ∈ R and u, for each
u ∈ V (G). Edmonds’ result [10] gives a necessary and sufficient condition for the existence
of k edge-disjoint branchings given root sets R1, . . . , Rk. A polynomial time algorithm for
finding these branchings can be obtained from Lovász [18] and Tarjan [28].

When translating concepts to temporal (di)graphs, it is often the case that theorems
coming from graph theory, in the classical sense, can hold or not depending on the adopted
definition. Indeed, in [16] the authors give an example where Edmonds’ result on branch-
ings does not hold on the temporal context. However, as we will see later, their concept
is just one of many possible definitions, which can behave very differently in terms of
complexity.

Another example of such behavior is the validity of Menger’s Theorem. It has been
shown that the edge version of Menger’s Theorem holds [2], even if one considers weights
on the edges [1]. However, the vertex version of Menger’s Theorem holds or not, depending
on how one interprets what a cut should be [2, 16,20].

Our contribution. Given a temporal digraph G with base digraph G, and subsets of
vertices in time R1, · · · , Rk, i.e., sets of pairs (u, t) where u is a vertex of G and t a time
stamp, here we investigate the many variations of finding (pairwise) disjoint spanning
branchings with roots R1, · · · , Rk. Spanning can mean that one wants to pass by at
least one appearance of each u ∈ V (G) (called vertex-spanning), or by all appearances
of each u ∈ V (G) (called temporal-spanning). Similarly, edge-disjoint can have different
interpretations, as it can refer to edges of G or to the appearances of these edges in G.
We say that two branchings are edge-disjoint if they do not share any edge of G, and
that they are temporal-edge-disjoint (or t-edge-disjoint for short) if they do not share any
appearance of an edge of G in G.

We found that the only case in which this problem is polynomial (as its static counter-
part) is when we want t-edge-disjoint temporal-spanning branchings. In addition, when-
ever edges have a delay, i.e. they require a traversal time, the latter problem becomes
linear on the size of the temporal graph. This is because we have found that, given a
directed acyclic static graph (in short, DAG) D, finding k edge-disjoint spanning branch-
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ings in D can be done in linear time, if they exist. On the other hand, having delay on
the edges does not make the other cases easier, since our NP-completeness proofs extend
to them.

We also have found that if vertices are permanent (this is the more popular case where
vertices are always active), the problem is polynomial for temporal-spanning branchings
and NP-complete otherwise.

Our results are summarized in Table 1 and detailed in the following main theorem. A
digraph G is an in-star if there exists u ∈ V (G) such that all the edges in G are incoming
edges to u.

Theorem 1. Let G be a temporal digraph with base digraph G, k > 2 be a fixed integer,
and consider subsets of vertices in time, R1, · · · , Rk. The problem of finding k branchings
rooted in R1, · · · , Rk is:

1. Polynomial for t-edge-disjoint temporal-spanning, and linear on the size of G if all
edges have a delay or if each snapshot is a DAG.

2. NP-complete for edge-disjoint temporal-spanning even if G is an in-star, and each
snapshot has constant size, or if G has lifetime 3. Furthermore, if vertices are
permanent or G has lifetime 2, then edge-disjoint temporal-spanning can be solved
in polynomial time, and in linear time on the size of G if all edges have a delay or
if each snapshot is a DAG.

3. NP-complete for edge-disjoint vertex-spanning even if G is a DAG, the lifetime of G
is 2, and vertices are permanent.

4. NP-complete for t-edge-disjoint vertex-spanning even if G is a DAG, the lifetime of
G is 2, and vertices are permanent.

Furthermore, the NP-completeness results still hold even if either all or none of the tem-
poral edges have delay, with the lifetime in Items 3 and 4 increasing to 5.

Finally, our reductions further imply that, in the case of edge-disjoint temporal-
spanning, even if the base digraph G is an in-star, the problem cannot be solved by an
algorithm running in time O∗(2o(T )) unless ETH fails, where T is the lifetime of G. More-
over, in the vertex-spanning variations, the problem also cannot be solved in O∗(2o(n+m))
under the same assumption, where n and m are respectively the number of vertices and
edges of the base digraph of G.

A preliminary version of our work appeared in [7].

Related Work: While it is easy to imagine a variety of graph problems that can profit
from considering changes in time, it is hard to pin-point when the study of temporal graphs
and similar structures began. Nevertheless, in the last decade or so, it has attracted a lot
of attention from the community, with a considerable number of papers being published
in the field (we refer the reader to the surveys [17,21]). We mention that temporal graphs
(or other very similar structures) appear in the literature under a number of names,
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not permanent vertices permanent vertices
edge-disjoint t-edge-disjoint edge-disjoint t-edge-disjoint

temporal-
NP-c Poly∗ Poly∗ Poly∗

spanning

vertex-
NP-c NP-c NP-c NP-c

spanning

Table 1: Our results. Vertices are permanent if they are always active. Starred cells
mean that the problem becomes linear whenever the temporal edges have delay or each
snapshot is a DAG.

such as dynamic networks [3], time-varying graphs [8], evolving networks [5], and link
streams [17]. Also, many works consider a temporal graph G as having vertices that are
always active, and edges have the same starting and ending time [1, 6, 16, 20, 23]. While
models where edges that have a delay are more common [8, 30], models where nodes can
be inactive have also been considered in [8, 17].

A path in temporal graphs is generally understood as a sequence of edges respecting
time, i.e. the arrival time in each internal vertex of the path cannot be higher than the
departing time of the next edge leaving this vertex. In this context, a number of metrics
can be related to a path, such as earliest arrival time, latest departure time, minimum
number of temporal edges, and minimum traveling time [30]. When vertices can be
inactive, we have to further ensure that, when waiting for the next edge on a certain
vertex, it must remain active in the waiting period [8]. In this scenario, the definitions of
reachability and connectivity change accordingly, and it is natural to ask how well-known
structures and results from graph theory in the classical sense change taking into account
the temporal constraint.

We mention that most of the applications seem to use only t-edge-disjoint paths be-
tween vertices of the underlying graph, i.e. leaving out Items (1), (2), and (3) of The-
orem 1. However, as we already mentioned, one of the challenges encountered in the
theory of temporal graphs is facing with different possible definitions. These possibilities
depend on the treatment of vertices and edges of the underlying graph in relation to the
treatment of their temporal occurrences. For instance, one of the most important theo-
rems in graph theory is Menger’s Theorem, which says that, given a graph G and vertices
u, v ∈ V (G), the maximum number of internally disjoint u, v-paths equals the minimum
size of a u, v-cut (set of vertices whose removal disconnect u and v). Observe that, using
a similar reasoning as the one adopted here, we could talk about many different ver-
sions of Menger’s Theorem, depending on whether the disjointness of the paths considers
temporal vertices or regular ones (let us call these t-vertex disjoint and vertex-disjoint,
respectively), and whether a cut is a subset of vertices or a subset of temporal vertices (let
us call these u, v-cut and u, v-t-cut, respectively). In [2] and [16] they give simple exam-
ples where Menger’s Theorem does not work on the temporal context. Their examples fall
in the category vertex-disjoint, u, v-cut, i.e., the number of vertex-disjoint temporal walks
between a pair of vertices might be smaller than the size of a u, v-cut. Figure 1 shows the
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example presented in [16]. In contrast to this result, in [20] they give a valid formulation
for a temporal version of Menger’s Theorem by introducing a new cut concept. Without
going into details, we mention that they actually ask that two temporal walks do not share
the same departure time of any vertex (let us call this departure-time-disjoint temporal
walks), and prove that the maximum number of departure-time-disjoint temporal walks
from a vertex u to a vertex v is equal to the mininum size of a departure-time u, v-cut.
Hence, different conclusions can be (and have been) made about the temporal version of
Menger’s Theorem depending on the adopted translation in terms of temporal graphs.

5

2 6

3

1

4

7

v

v4

v3v2

v1

Figure 1: Example presented in [16]. The only way to disconnect v1 from v4 is to remove at
least two vertices between {v, v2, v3}, while there are no internally vertex-disjoint temporal
walks between v1 and v4.

Temporal definitions of trees [6, 17] and (minimum) spanning trees [15], which are
related to our definition of branching, have been proposed and investigated, and usually
consist of ensuring that the root-to-node path in the tree is a valid temporal path. Analo-
gously, temporal cuts from a vertex s to t aim to break any temporal path from s to t and
can be related to extending the max-flow min-cut Theorem to temporal digraphs [1]. Ed-
monds’ Theorem on disjoint branchings is a classical theorem in graph theory, with many
distinct existing proofs (e.g. Lovász [18], Tarjan [28], and Fulkerson and Harding [14]),
and has many interesting consequences on digraph theory (e.g., one can derive Menger’s
Theorem from it, characterize arc-connectivity [26], characterize branching cover [13], en-
sure integer decomposition of the polytope of branchings of size k [19], etc). As far as we
know, the only other time that Edmonds’ Theorem has been investigated on the temporal
context has been in [16], where the authors give an example where the theorem does not
hold. The definition used by them falls into our category of edge-disjoint vertex-spanning
branchings, which we prove to be NP-complete even under very strict constraints.

Structure of the paper. The paper is organized as follows. In Section 2, we formalize
the definitions of spanning branchings and disjointness, also showing that having multiple
roots in each of the k branchings is computationally equivalent to having a single root
for all of the k branchings. In Section 3, we present the results about temporal-spanning
branchings. In Section 4 we present our results concerning vertex-spanning branchings. In
Section 5, we discuss some possible formulations of Edmonds’ Condition in the temporal
context and why we do not believe such a condition can even exist. Finally, in Section 6,
we draw our conclusions and make some final remarks.
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2 Terminology and preliminary results

A digraph G is a triple consisting of a vertex set V (G), an edge set E(G) and a function
assigning each edge to an ordered pair of vertices. The first vertex of the ordered pair
is the tail of an edge, and the second is the head ; together, they are the endpoints. We
say that an edge goes from its tail to its head. Multiple edges are edges having the same
ordered pair of endpoints. We denote an edge e from u to v by uv when it does not cause
any confusion with other edges on the same endpoints. Other than this slight abuse of
notation, we use standard graph theoretic notation which can be found on the textbooks
of West [29] or Bondy and Murty [4].

Given vertices v0, vk in a digraph G, a v0, vk-walk in G is an alternating sequence
(v0, e1, v1, . . . , ek, vk) of alternating vertices and edges such that ei goes from vi−1 to vi for
i ∈ {1, . . . , k}. We say that a u, v-walk is a walk from u to v. If such a walk exists, we say
that u reaches v. Given a subset R ⊆ V (G), we say that H ⊆ G is a spanning branching
of G with root R if V (H) = V (G), and H contains exactly one walk from some r ∈ R
to u, for each u ∈ V (G). Edmonds [10] characterized when there exist k edge disjoint
branchings in a digraph and a polynomial time algorithm for finding these branchings
can be obtained from Lovászz [18] and Tarjan [28]. In this paper, we will cite Edmonds’
Theorem to mean that such branchings can be found in polynomial time.

Although Graph Theory is close to 300 years old, it is interesting to see how notation
has evolved even from 50 years ago to today. This leads to an important trend to move
into a standard notation among recent textbooks. Given that the study of temporal
graphs is relatively young, we note that different papers have vastly different notation.
One of the reasons behind these differences is the context of the application, which often
implies different assumptions on how the input is given. This is the case for instance of
time-varying graphs [23], temporal graphs [21], and link streams [17].

In this paper, we use the notation in [21] and extend it in a very natural way to
include the case in which not only the edges, but also the vertices can become inactive.
This allows us to state our results in a setting which is as general as possible. For the
sake of description, we also give names to notions and concepts recurrent in our paper.

A temporal digraph G is a triple (G, γ, λ) where G is a digraph and γ and λ are
functions on V (G) and E(G), respectively, that tell us when the vertices and the edges
appear. More formally, for each v ∈ V (G) we have γ(v) ⊆ N∗, and for each edge e ∈ E(G)
we have λ(e) ⊆ N∗ × N∗ where N∗ is the set of positive natural numbers. Furthermore,
if (t, t′) ∈ λ(uv), then t ∈ γ(u), t′ ∈ γ(v), and t 6 t′. We call G the base digraph,
T (G) = max

⋃
v∈V (G) γ(v) the lifetime and T (G) = {1, . . . , T (G)} the lifetime set of G. In

this paper, we consider only finite temporal digraphs where G and T (G) are finite.
The vertices and edges of G are the vertices and edges of G. We say that a vertex v is

active at time t if t ∈ γ(v), and that v is active from t1 to t2 if v is active for every time
t with t1 6 t 6 t2. Moreover, we say that v is permanent if v is active throughout the
lifetime of G, i.e., γ(v) = T (G). For e ∈ E(G), we say that e has a delay if t 6= t′ for every
(t, t′) ∈ γ(e) and we say that e is instantaneous if t = t′ for every (t, t′) ∈ γ(e). The set
VT (G) of temporal vertices is the set {(v, t) | v ∈ V (G) and t ∈ γ(v)}, and the set ET (G)
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of temporal edges is the set {(e, t, t′) | e ∈ E(G) and (t, t′) ∈ λ(e)}; if G is clear from the
context, we omit it from the notation. Observe that a temporal digraph G = (G, γ, λ)
can be also seen as a pair of digraphs (G,GT ) where V (GT ) = VT , E(GT ) = ET and
(e, t, t′) ∈ ET goes from (u, t) to (v, t′) when e = uv. When t = t′, we may denote the
temporal edge (e, t, t′) simply by (e, t). This is similar to what has been proposed in [1]
and [8]. We call the digraph GT the (γ, λ)-digraph of G. Also, if not clear from the
context, we use VT (G) and ET (G) to denote the temporal vertex set and the temporal
edge set of G, respectively.

We say that a temporal graph is permanent if every vertex is permanent and we say
that it is instantaneous if every edge is instantaneous. We note that the definition of
temporal graphs given in [16] corresponds to our definition of a permanent and instan-
taneous temporal graph. Our definitions also generalize the definitions of stream graph
given in [17], and of time-varying graphs given in [8].

When presenting an instantaneous temporal digraph G = (G, γ, λ), we may present,
for each timestamp, the active subgraph of G. For i ∈ T (G), the subgraph of G with
vertex set {u ∈ V (G) | i ∈ γ(u)} and edge set {e ∈ E(G) | (i, i) ∈ λ(e)} is called the
i-snapshot of G and is denoted by Gi. A subgraph of G is called a snapshot if it is the
i-snapshot for some i ∈ T (G).

A temporal walk is the analogous concept to a walk in a digraph. Given temporal
vertices s1, sk ∈ VT , an s1, sk-temporal walk in (G,GT ) is a sequence of temporal vertices
and temporal edges, s1, . . . , sk, such that: if si is a temporal edge, then si−1 and si+1 are
temporal vertices and si goes from si−1 to si+1; and if si and si+1 are temporal vertices,
then si = (v, t) and si+1 = (v, t + 1) for some vertex v and some time t. We say that an
s1, sk-temporal walk is a temporal walk from s1 to sk. If such a walk exists, we say that
s1 reaches sk. See Figure 2 for an example.

s

a

b

t

{1, 3}

{4, 5}

{6}

{4}

{2}

{2, 3} {1, 3}

{2}

Figure 2: Example of a temporal walk in a temporal digraph which is permanent and
instantaneous. Next to each edge we depict the snapshots where that edge is active. In
the figure, the sequence ((s, 1), (sa, 1), (a, 1), (a, 2), (ab, 2), (b, 2), (b, 3), (bt, 3), (t, 3)) is
a temporal walk from (s, 1) to (t, 3).

For temporal digraphs B = (G′, γ′, λ′) and G = (G, γ, λ), we say that B is a temporal
subdigraph of G if G′ ⊆ G, γ′(v) ⊆ γ(v) for v ∈ V (G′) and λ′(e) ⊆ λ(e) for e ∈ E(G′).
Let R ⊆ VT (G); a temporal subdigraph B of G is a temporal-spanning branching of G with
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root R if, for every (v, j) ∈ VT (G), there exists (u, i) ∈ R such that (u, i) reaches (v, j) in
B; and we say B is a vertex-spanning branching of G with root R if, for every v in V (G),
there exists (u, i) ∈ R and (v, j) ∈ VT such that (u, i) reaches (v, j) in B.

Note that the definition of branchings in digraphs requires that a unique walk from the
root set to each vertex is taken. In other words, one is interested in a minimal subdigraph
such that all vertices can be reached from the root. Observe that if we take a subdigraph
with the reachability property, but not necessarily minimal, one can obtain a minimal
one simply by discarding any unnecessary edges. In the temporal context, we drop the
minimality requirement and consider walks instead of paths for a number of reasons. First,
we believe that the main desired property of a spanning branching should be reachability
and not uniqueness of reachability. Second, the uniqueness of a walk cannot be insured in
a vertex-spanning branching, as can be seen in Figure 3. Finally, minimality is irrelevant
when looking for disjoint temporal branchings as a minimal representation can be obtained
in polynomial time, not affecting the complexity of the problem.

G1 G2 G3

r

u w

v z

r

u w

v z

Figure 3: Example of a temporal digraph that contains a vertex-spanning branching that
needs to pass by the same vertex twice, namely, vertex u.

Given two branchings B1 = (G′, γ1, λ1) and B2 = (G′′, γ2, λ2) rooted in R1, R2, respec-
tively, either both temporal-spanning or both vertex-spanning, we say that B1 and B2
are temporal-edge-disjoint (or t-edge-disjoint for short) if they have no common temporal
edges; more formally, if λ1(e) ∩ λ2(e) = ∅ for every e ∈ E(G′) ∩ E(G′′). And we say that
B1 and B2 are edge-disjoint if there is no edge in E(G) that has copies in both B1 and B2;
more formally, if E(G′) ∩ E(G′′) = ∅.

Problem 2 (k X-disjoint Y -spanning Branching). Let X ∈ {edge, t-edge}, Y ∈
{temporal, vertex}, and k be a fixed positive integer. Given a temporal digraph G, and
subsets of temporal vertices R1, . . . , Rk ⊆ VT , find k X-disjoint Y -spanning branchings
B1, . . . ,Bk respectively with roots R1, . . . , Rk.

We introduce the following restriction of Problem 2, which corresponds to finding
branchings that have a single root (also called out-arborescence).

Problem 3 (k Single Source X-disjoint Y -spanning Branching). Let X ∈ {edge, t-edge},
Y ∈ {temporal, vertex}, and k be a fixed positive integer. Given a temporal digraph G,
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and a temporal vertex r ∈ VT , find k X-disjoint Y -spanning branchings B1, . . . ,Bk each
one with root r.

Lemma 4. Problem 2 is computationally equivalent to Problem 3.

Proof. Problem 3 is clearly a restriction of Problem 2. In the following we provide the
reduction in the opposite direction, from the problem where each branching has a subset
of VT as roots to the problem where each branching has a single same root. So let
(G, R1, . . . , Rk) be an instance of Problem 2. We suppose without, loss of generality, that
no vertices are active at time 1; for this it suffices to add one to the labels in γ, λ. For
each i ∈ {1, . . . , k} add a new vertex ri to G and the edge riu for every u ∈ V (G) such
that (u, t) ∈ Ri. Then, make γ(ri) = {1}, and for each (u, t) ∈ Ri, add (1, t) to λ(riu)
(which is the same as adding the temporal edge (riu, 1, t) to G). Moreover, add a vertex
r and the edge rri for i ∈ {1, . . . , k}; also make γ(r) = {1} and λ(rri) = {(1, 1)} (which
is the same as adding temporal edges (rri, 1, 1) for every i ∈ {1, · · · , k}).

One can see that k vertex-spanning (resp. temporal-spanning) branchings rooted in r
give k vertex-spanning (resp. temporal-spanning) branchings rooted in R1, · · · , Rk, and
vice-versa. The edge-disjointness, both for t-edge or edge-disjoint versions, clearly are not
altered by adding the new temporal edges.

The next easy proposition tells us that finding k disjoint spanning branchings is hard,
for some fixed k, then so is finding k + 1 of them.

Proposition 5. Let X ∈ {edge, t-edge}, Y ∈ {temporal, vertex} and k be a fixed positive
integer. If Problem k X-disjoint Y -spanning Branching is NP-complete, then the same
holds for Problem k + 1 X-disjoint Y -spanning Branching.

Proof. To reduce from k to k + 1, it suffices to add Rk+1 = VT as an entry. Surely the
(k+ 1)-th branching can be chosen with no temporal edges, which means that the others
form a solution to the initial problem.

3 Temporal-Spanning Branchings

This section is devoted to study Problem 2 in the case where Y is temporal, i.e. we
aim to find k X-disjoint temporal-spanning branchings, with X ∈ {edge, t-edge}. This
corresponds to items 1 and 2 from Theorem 1.

3.1 T-edge-disjoint Temporal-Spanning Branchings

Let G = (G, γ, λ) and R1, · · · , Rk ⊆ VT . Let Hk be a digraph obtained from GT by adding
k parallel edges from (u, t) to (u, t + 1) whenever {(u, t), (u, t + 1)} ⊆ VT . See Figure 4
for an example.

We prove that G has the desired branchings if and only if Hk has k edge-disjoint
spanning branchings with roots R1, · · · , Rk. Then, the first part of Item 1 of Theorem 1
follows by Edmonds’ Theorem [10]. The second part is proven in Section 3.1.1.
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u v

x y

{2, 4}

{2, 3}

{1, 4}

{3, 4}

{1, 2}

{3}

u

v

x

y

1 2 3 4

Figure 4: On the right, the digraph H2 related to the temporal digraph depicted to the
left. For simplicity, we consider only permanent vertices and instantaneous edges.

Lemma 6. Let G = (G, γ, λ) be a temporal digraph, R1, · · · , Rk ⊆ VT , and Hk be con-
structed as above. Then, G has k t-edge-disjoint temporal-spanning branchings rooted in
R1, · · · , Rk if and only if Hk has k edge-disjoint spanning branchings rooted in R1, · · · , Rk.

Proof. Let B1, · · · ,Bk be t-edge-disjoint temporal-spanning branchings rooted in
R1, · · · , Rk, respectively. Partition the edges in E(Hk) \ ET into E1, . . . , Ek such that
Ei has a unique edge from (u, t) to (u, t + 1) whenever {(u, t), (u, t + 1)} ⊆ VT . For
i ∈ {1, . . . , k}, let B′i be a spanning subgraph of Hk containing the temporal edges of Bi
together with the edges in Ei. Let S = s1, . . . , sk be a s1, sk-temporal walk in Bi. We
can obtain a s1, sk-walk in H from S by adding to S the edge from (u, t) to (u, t + 1)
in Ei between si and si+1 whenever si = (u, t) and si+1 = (u, t + 1) for any choices of
i ∈ {1, . . . , k − 1}, u ∈ V (G) and t ∈ T (G). This implies that {B′i : i ∈ {1, . . . , k}} is
a collection of edge disjoint subdigraphs of Hk such that every B′i contains a branching
with root Ri.

The converse can be proved by deleting the edges in E(Hk) \ ET from the disjoint
branchings of Hk to find the disjoint temporal branchings of G.

3.1.1 Linearity of k-branchings on DAGs

In this section, given a DAG G, a positive integer k, and a vertex r ∈ V (G), we prove
that deciding whether G has k edge-disjoint spanning branchings rooted in r can be done
in time O(m + n); the branchings can also be produced in the same time if they exist.
This is done simply by using a topological order of the vertices of G. Observe that, if we
have multiple roots, the same argument as the one used in Lemma 3 can be applied.

Lemma 7. Let G be a DAG on n vertices and m edges, r ∈ V (G) be a source in G, and
k be a positive integer. Then, one can construct k edge-disjoint spanning branchings of G
rooted in r in time O(m+ n) if they exist, or provide a proof that they do not exist.

Proof. We prove that G has k edge-disjoint spanning branchings rooted in r if and only if
d−(v) > k for every v ∈ V (G)\{r}, giving a simple algorithm that produces the branchings
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if they exist. The necessity comes from the fact that a vertex v ∈ V (G) \ {r} has exactly
one in-neighbor in each of the k edge-disjoint spanning branchings. To prove sufficiency,
let (r, v1 · · · , vn) be a topological order of the vertices of G obtained in O(m+n) time using
a depth-first-search. For each i ∈ {1, · · · , n}, denote by Gi the digraph G[{r, v1, · · · , vi}],
and let G0 = G[{r}]. We build the k edge-disjoint spanning branchings by growing
spanning branchings of Gi, for each i. Suppose at step i we have k edge-disjoint spanning
branching of Gi−1. Because we have a topological order of V (G), we know that all the
in-neighbors of vi appear before vi, i.e., that d−Gi(vi) = d−G(vi) > k. Therefore, we can build
k-edge disjoint spanning branchings of Gi simply by choosing a distinct edge incident to
vi to put in each of the spanning branchings of Gi−1.

Observe that, if either each snapshot of G is a DAG or if each edge of G has a delay,
then Hk is a DAG. Therefore, we can use Lemmas 6 and 7 to prove Item 1 of Theorem 1.

3.2 Edge-disjoint Temporal-Spanning Branchings

In this section, we prove Item 2 of Theorem 1. For this, we first prove that the problem is
NP-complete, and then that it is polynomial when each vertex is active for a consecutive
set of time stamps. This includes the popular case where vertices are assumed to be
permanent, as well as the case where T (G) = 2.

Theorems 8 and 9 below detail our NP-completeness results. In the next proof, we
make a reduction from the k-Edge-Disjoint Paths problem (denoted henceforth by
k-EDP for short), where we are given a digraph G and a set I of k pairs of vertices
{(s1, t1), . . . , (sk, tk)} (called the requests) of V (G) and the goal is to find a collection of
pairwise edge-disjoint paths {P1, . . . , Pk} such that Pi is a path from si to ti in G, for each
i ∈ {1, . . . , k}. The k-EDP problem is NP-complete for fixed k > 2 [12] and W[1]-hard
when parameterized by k even in DAGs [27].

Theorem 8. Let k > 2 be a fixed integer, G = (G, γ, λ) be a temporal digraph, and
R1, . . . , Rk ⊆ VT . Deciding whether G has k edge-disjoint temporal-spanning branchings
rooted in R1, · · · , Rk is NP-complete even if G has lifetime 3.

Proof. Let (G, I) be an instance of 2-EDP with I = {(s1, t1), (s2, t2)}, and define W =
{s1, t1, s2, t2}. We may assume that s1, s2 are sources, t1, t2 are sinks, and all vertices in W
are distinct. We construct the temporal digraph G = (G, γ, λ) with subsets R1, R2 such
that G has 2 edge-disjoint temporal-spanning branchings rooted in R1, R2 if and only if
(G, I) is a “yes” instance of 2-EDP. The NP-completeness for higher values of k follows
from Proposition 5.

We let the first snapshot of G initially consist of G− {s2, t2}, and the third snapshot
initially consist of G− {s1, t1}. Then, we add a new vertex x to snapshot 1, and add the
edges: {xv | v ∈ V (G) \ {s2, t2}} ∪ {t1v | v ∈ (V (G) ∪ {x}) \ {s1, s2, t2}}. Similarly, we
add a new vertex y to snapshot 3, and add the edges: {yv | v ∈ V (G) \ {s1, t1}} ∪ {t2v |
v ∈ (V (G) ∪ {y}) \ {s2, s1, t1}}. Observe Figure 5.

Define R1 = {(s1, 1), (y, 3)} and R2 = {(s2, 3), (x, 1)}. Now, we prove that (G, I) is
a “yes” instance of 2-EDP if and only if G contains two edge-disjoint temporal-spanning
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G1 G2 G3

G− s2 − t2
t1 x

G− s1 − t1
t2 y

Figure 5: Temporal digraph constructed from an instance (G, I) of 2-EDP, where I =
{(s1, t1), (s2, t2)} and W = {s1, t1, s2, t2}. Edges arriving in t1 and t2 originally from G
are omitted.

branchings rooted in R1 and R2, respectively. Notice that snapshot 2 of G is empty, thus
each path in G can be represented by either a temporal path on snapshot 1 or a temporal
path on snapshot 2.

First, let P1 and P2 be two edge-disjoint paths from s1 to t1 and from s2 to t2 in
G, respectively. Let T1 be initially the copy of P1 in snapshot 1, and T2 be initially
the copy of P2 in snapshot 3. Note that the vertices not spanned by T1 are all the
copies of v /∈ V (P1) in snapshot 1, together with all the vertices in snapshot 3. To span
snapshot 3, add to T1 all edges between (y, 3) and (v, 3), for every v ∈ V (G) \ {s1, t1}.
To span the remainder of snapshot 1, add all edges between (t1, 1) and (v, 1), for every
v ∈ V (G) \ (V (P1) ∪ {s2, t2}), and the edge from (t1, 1) to (x, 1). A similar argument
can be applied to span every temporal vertex also with T2. Because P1 and P2 are edge-
disjoint, we get that T1 and T2 could only intersect in the added edges, which does not
occur because all edges added to T1 are incident to t1 and y, all edges added to T2 are
incident to t2 and x, and there is no intersection between these.

Now, let T1 and T2 be edge-disjoint temporal-spanning branchings in G with roots
R1, R2. Denote snapshot 1 by G1. Since t1 appears only in G1, and the only root of R1

in G1 is (s1, 1), we get that in T1 there exists a path of G1 going from (s1, 1) to (t1, 1).
Because the only incoming edge to (x, 1) is (t1, 1)(x, 1), we get that (x, 1) cannot be an
internal vertex in this path, and hence it corresponds to a path in G, P1. Applying a
similar argument, we get a path P2 from s2 to t2 in G taken from T2, and since T1 and T2
are edge-disjoint, so are P1 and P2.

The next result concludes the NP-completeness results of Item 2 of Theorem 1. We
first prove NP-completeness when no temporal edges have delay, and later we show that
we can add delay in an arbitrary number of them with no impact in the reduction. This
proves that having delay on the edges does not make the problem easier, contrarily to
what happens in the case of t-edge-disjoint temporal-spanning.

Theorem 9. Let k > 2 be a fixed integer, G = (G, γ, λ) be a temporal digraph, and
R1, . . . , Rk ⊆ VT . Deciding whether G has k edge-disjoint temporal-spanning branchings
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rooted in R1, · · · , Rk is NP-complete, even if G is an in-star, each snapshot has constant
size, and an arbitrary number of temporal edges have a delay. Furthermore, in this case,
there is no algorithm running in time O∗(2o(T (G))) to solve the problem, unless ETH fails.

Proof. To prove NP-completeness when the underlying graph is an in-star, we make a
reduction from NAE-3-SAT, which consists of, given a CNF formula φ such that each
clause has exactly three literals, deciding whether there exists a satisfying truth assign-
ment for φ such that each clause has at least one true literal and one false literal. This
problem is NP-complete [24], and in fact it is a well known standard procedure to make
a reduction from 3-SAT to NAE-3-SAT that produces a formula of size linear on the
size of the original 3-SAT formula (see e.g. [22], Section 5.3.1). Because, as we will see,
our reduction also produces an instance G such that T (G) is linear on the size of φ, and
each snapshot has constant size, we can conclude that our problem cannot be solved
in time O∗(2o(T (G))), unless ETH fails. For more details about ETH and parameterized
complexity, we refer the reader to [9].

Let φ be a CNF formula on variables {x1, . . . , xn} and clauses {c1, . . . , cm}. The first
n odd snapshots are related to variables, and the latter m odd snapshots are related
to clauses; we therefore get 2(n + m) − 1 snapshots in total, with the even snapshots
being empty (no vertices or edges are active). Let G have vertex set {T} ∪ {xi, xi | i ∈
{1, . . . , n}}, and edge set {xiT, xiT | i ∈ {1, . . . , n}}. As previously said, the constructed
temporal graph G has lifetime 2(n+m)−1, and is such that all even snapshots are empty.
As for the odd snapshots, for each i ∈ {1, . . . , n}, the (2i − 1)-th snapshot is related to
variable xi, and consists of the following vertices and edges (see Figure 6):

Vi = {xi, xi, T}, and

Ei = {xiT, xiT}.

Also, add to the sets of roots, R1, R2, the temporal vertices (xi, 2i−1) and (xi, 2i−1).
As for the remaining odd snapshots, for each i ∈ {1, . . . ,m}, let the (2(n + i) − 1)-th
snapshot be related to clause ci = (`i1 ∨ `i2 ∨ `i3) and let it consist of the following vertices
and edges (see Figure 7):

Ci = {`i1 , `i2 , `i3 , T}, and

E ′i = {`i1T, `i2T, `i3T}.

As before, add the temporal vertices (`i1 , 2(n+ i)−1), (`i2 , 2(n+ i)−1) and (`i3 , 2(n+
i) − 1) to the set of roots, R1, R2. Observe then that all appearances of the vertices of
V (G) are roots, except for the appearances of vertex T . This means that we need only to
span the appearances of T , which is active in every odd snapshot.

We note that G is an in-star, and each snapshot has constant size. Also, the lower
bound on the complexity of an algorithm to solve the problem follows because the size of
G is O(T (G)) = O(m+n). It remains to prove that φ is a “yes” instance of NAE-3-SAT
if and only if G has two edge-disjoint temporal-spanning branchings B1 and B2 rooted in
R1 = R2. The theorem holds for bigger values of k by Proposition 5.
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Suppose that φ is a “yes” instance of NAE-3-SAT. For each true variable xi, put all
occurences of the edge xiT in B1, and all occurences of the edge xiT in B2. For each false
variable, do as before, switching between B1 and B2. Figure 6 represents B1 with solid
edges and B2 with dotted edges, when xi is true. Now, consider a clause ci = (`i1∨`i2∨`i3).
Because this is a NAE assignment, we know that there is at least one true literal, say `i1 ,
and one false literal, say `i2 . This means that temporal edges related to `i1T can only be
in B1, and edges related to `i2T can only be in B2. Therefore, for each i ∈ {1, . . . ,m}, we
can span temporal vertex (T, 2(n+ i)− 1) in both B1 and B2 by using these edges (recall
that {(`i1 , 2(n + i) − 1), (`i2 , 2(n + i) − 1)} ⊆ R1 = R2, where `i1 , `i2 , `i3 are the literals
in clause ci). Figure 7 represents the branching related to the assignment (F, F, T ) for
(xi1 , xi2 , xi3) in the clause (xi1 ∨ xi2 ∨ xi3).

xi

T

xi

Figure 6: Branchings in a variable gadget.

xi2xi1 xi3

T

Figure 7: Branchings in a clause gadget.

Now, let B1,B2 be two edge-disjoint temporal-spanning branchings rooted in R1 = R2,
and denote by Bi the set of temporal edges of Bi. For each variable xi, let xi be true if
and only if (xiT, 2i − 1) ∈ B1. Now, consider a clause ci = (`i1 ∨ `i2 ∨ `i3), and denote
2(n+ i)− 1 by j. Because (T, j) must be spanned by B1 and B2, then at least one of the
edges incoming to (T, j) must be in B1, say (`i1T, j), and at least one must be in B2, say
(`i2T, j). But this means that (`i1T, 2i1 − 1) ∈ B1 (hence `i1 is a true literal), and that
(`i2T, 2i2 − 1) ∈ B2 (hence `i2 is a false literal), as we wanted to show.

Finally, one can see that if we stretch the temporal digraph, we can add delay in any
of the edges in the gadgets. It suffices to make a gadget consist of two snapshots, the
first one containing the vertices related to the variables, and the second one containing
vertex T , and making the edges between the former vertices and the latter have a delay
of one.

The following theorem gives us a situation where the problem becomes easy. Note that
this case includes the permanent temporal digraphs, which are used in [1, 6, 16,20,23].

Theorem 10. Let G = (G, γ, λ) be a temporal digraph, and let R1, · · · , Rk ⊆ VT . If for
every v ∈ V (G), γ(v) is exactly one interval of consecutive integers, then finding k edge-
disjoint temporal-spanning branchings rooted in R1, · · · , Rk can be done in polynomial
time.

Proof. To prove this theorem, we build digraphs F1, . . . , FT (G) and sets Rj
1, · · · , R

j
k for

each j ∈ T (G). Then, we prove that G has the desired branchings if and only if Fj has k
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edge-disjoint branchings rooted in Rj
1, . . . , R

j
k for each j ∈ T (G). This can be checked in

polynomial time, applying Edmonds’ Theorem [10].
For each j ∈ T (G), we build Fj in the following way. Let V (Fj) be initially equal to the

set of vertices that are active in time stamp j, i.e., Fj initially contains only {u ∈ V (G) |
(u, j) ∈ VT}. Then, add to Fj all vertices which are the tail of some edge arriving in time
stamp j, i.e., add the set {u ∈ V (G) | (uv, t, j) ∈ ET for some v, t}. Finally let Fj contain
all edges arriving in time j, i.e., E(Fj) is the set {e ∈ E(G) | (e, t, j) ∈ ET for some t}.
For each j ∈ T (G) and each i ∈ {1, · · · , k}, let Rj

i be the set of roots at time stamp j
from the set Ri together with any vertex of V (Fj) active in a previous time stamp, i.e.,
Rj
i = {u ∈ V (Fj) | (u, j) ∈ Ri or {1, . . . , j − 1} ∩ γ(u) 6= ∅}.

We now prove that G has the desired branchings if and only if Fj has k edge-disjoint
branchings rooted in Rj

1, . . . , R
j
k for each j ∈ T (G). First, let B1, . . . ,Bk be edge-disjoint

temporal-spanning branchings rooted in R1, · · · , Rk. Consider j ∈ T (G), and for each
i ∈ {1, · · · , k}, let Bj

i be the spanning subgraph of Fj with edge set being the edges
of Bi that has a copy ending at time stamp j, i.e., E(Bj

i ) = {e ∈ E(Fj) | (e, t, j) ∈
ET (Bi) for some e ∈ E(G), t ∈ T (G)}. Since B1, . . . ,Bk are edge-disjoint, we get that
Bj

1, . . . , B
j
k are also edge-disjoint. It remains to prove that each Bj

i is a branching of
Fj rooted in Rj

i . To do so, we prove that if u ∈ V (Fj) is a source in Bj
i , then u ∈ Rj

i .
Indeed, this is the case since, if u is not the head of any edge in Bj

i and (u, j) /∈ Ri, then
either j ∈ γ(u) and (u, j) is spanned in Bi just by waiting or j /∈ γ(u) and u is added to
Fj through an edge arriving at time j. In either case we have {1, . . . , j − 1} ∩ γ(u) 6= ∅.

Now, for each j ∈ T (G), let Bj
1, . . . , B

j
k be k edge-disjoint spanning branchings of Fj.

For each i ∈ {1, . . . , k}, let Bi =
⋃T (G)
j=1 B

j
i , and Bi = (Bi, γ, λ

i) be a spanning temporal

subdigraph of G where λi is the restriction of λ to the domain E(Bi). Observe that
B1, . . . , Bk are edge disjoint. Indeed, consider an edge e ∈ E(G) with head v and let
j ∈ T (G) be minimum such that e ∈ Bj

i for some i ∈ {1, · · · , k}. Since Bj
i ∩ B

j
i′ = ∅

for every i′ 6= i, and by the choice of j, we get that e /∈ Bj′

i′ for every j′ 6 j and every
i′ 6= i. Furthermore, since j ∈ γ(v), we have that v ∈ V (Fj′) implies v is in the root of

every subsequent branching, and hence v has no incoming edges in Bj′

i′ for every j′ > j
and every i′ ∈ {1, . . . , k}. It thus follows that B1, · · · ,Bk are edge-disjoint, so it remains
to prove that each Bi is a temporal-spanning branching rooted in Ri. Let u ∈ V (G) and
let j be the smallest value in γ(u). Note that we just need to prove that if (u, j) /∈ Ri,
then there exists a temporal edge in Bi arriving in (u, j) since the other temporal copies
can be spanned simply by waiting in the interval γ(u). Thus, suppose (u, j) /∈ Ri. Now,
we get that u /∈ Rj

i as {1, . . . , j− 1}∩ γ(u) = ∅ by the choice of j. Since Bj
i is a spanning

branching of Fj rooted at Rj
i , we get that Bj

i contains an edge into u. This implies that
there exists a temporal edge in Bi arriving in (u, j).

The only missing cases of Item 2 of Theorem 1 are the ones concerning linearity for
permanent temporal digraphs where all edges have a delay, or where each snapshot is a
DAG. Observe that the proof of the above theorem tells us that, in order to solve the
problem on a permanent temporal digraph G, it suffices to solve T (G) instances of the k
edge-disjoint branchings problems. By Lemma 7, we know that each such instance can
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be solved in linear time, and since the size of G is the sum of the sizes of the snapshots,
Item 2 of Theorem 1 follows.

4 Vertex-spanning Branchings

In this section, we provide an NP-completeness proof for both Item 3 and Item 4 of
Theorem 1. Again, we make a reduction from NAE-3-SAT.

Let φ be a CNF formula on variables {x1, . . . , xn} and clauses {c1, . . . , cm}. A variable
gadget related to xi is formed by the set of vertices Vi = {xi, Fi, Ti, ai} and the set of
edges Ei = {xiTi, xiFi, Tiai, Fiai} (see Figure 8).

ai

xi

Ti Fi

Figure 8: Gadged related to variable xi.

Now, consider a clause ci = {`i1 , `i2 , `i3}, and for each i ∈ {1, 2, 3} let xij be the variable
related to literal `ij . Add vertex ci to the constructed graph. Then, for each i ∈ {1, 2, 3},
if xij appears positively in ci, then add edge Tijci to the clause gadget related to ci;
otherwise, add edge Fijci. Denote by Ci the set of vertices in the clause gadget of ci, and
by E ′i, the set of edges. Now, let Gφ be the digraph formed by the union of all variable
and clause gadgets, i.e., V (G) =

⋃n
i=1 Vi∪

⋃m
i=1Ci and E(G) =

⋃n
i=1Ei∪

⋃m
i=1E

′
i. Add to

Gφ two new vertices, g, r, and add edges {gxi, rxi} for every i ∈ {1, · · · , n}. Finally, let
G′ be the digraph having A∪{g, r} as vertex set, where A = {Ti, Fi | i ∈ {1, · · · , n}}, and
having every edge going from {g, r} to A. Let G be the temporal digraph with lifetime 2,
having Gφ as first snapshot and G′ as second snapshot (therefore, the base digraph of G is
given by (V,E(Gφ)∪E(G′)), where V = V (Gφ) ⊃ V (G′)). See Figure 9 for the temporal
digraph related to φ = (x1 ∨ x2 ∨ x3).

Theorem 11. For each k > 2, given a temporal digraph G = (G, γ, λ) and subsets
R1, · · · , Rk ⊆ VT , it is NP-complete to decide whether G has k (t-edge-disjoint or edge-
disjoint) vertex-spanning branchings rooted in R1, · · · , Rk, even if G is a DAG, vertices
are permanent, and either T (G) = 2 and all edges are instantaneous, or T (G) = 5 and
all edges have a delay. Furthermore, letting n = |V (G)| and m = |E(G)|, no algorithm
running in time O∗(2o(n+m)) can exist for the problem, unless ETH fails.

Proof. We first consider the case that no edges have delay, and at the end we see that the
digraph can be stretched in order to add delay to all edges. We prove the theorem for
k = 2, and NP-completeness for bigger values of k follows by Proposition 5. Let φ be an
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g r

a1 a2 a3

x1

T1 F1

x2

T2 F2

x3

T3 F3

c1

g r

T1 F1 T2 F2 T3 F3

Gφ G′

Figure 9: Temporal digraph related to φ = (x1 ∨ x2 ∨ x3).

instance of NAE-3-SAT on variables {x1, · · · , xn} and clauses {c1, · · · , cm}, and let G be
the temporal digraph constructed as before; denote by G the base digraph. The second
part follows easily since the reduction gives rise to a temporal digraph of size O(n+m).
In what follows, we prove that φ is a “yes” instance of NAE-3-SAT if and only if G has
k edge-disjoint vertex-spanning branchings rooted in {(g, 1), (r, 1)}. Observe that, since
there is no edge occurring in both timestamps, the proof also holds for t-edge-disjoint
branchings.

First, suppose that φ is a “yes” instance of NAE-3-SAT. We construct edge-disjoint
vertex-spanning branchings B1 and B2 rooted in {(g, 1), (r, 1)}. For each true variable
xi, add to B1 the following edges of snapshot 1: {gxi, xiTi, Tiai}, together with edge
Ticj for each clause cj containing xi that is not reached by B1 yet; also add to B2 edges
{rxi, xiFi, Fiai}, together with edge Ficj for each clause cj containing xi that is not reached
by B2 yet. Do something similar to the false variables, but switching the branchings.
Figure 10 gives the branchings related to the assignment (T, T, F, F ) to (x1, x2, x3, x4),
respectively (they are represented by the black and dotted edges). Observe that every
u ∈ V (G) is spanned by both branchings, with the exception of vertices in B = {Ti, Fi |
i ∈ {1, · · · , n}} since each u ∈ B is spanned by exactly one between B1 and B2. However,
these can easily be spanned in the second snapshot since {g, r} is complete to B.

Now, let B1,B2 be two edge-disjoint vertex-spanning branchings. Since each ai can only
be reached at the first snapshot, it is reached by exactly two paths from {(g, 1), (r, 1)}, one
of them going through (xi, 1)(Ti, 1) and the other through (xi, 1)(Fi, 1). We then put xi as
true if and only if (xi, 1)(Ti, 1) is in branching B1. Now, consider clause ci = (`i1∨`i2∨`i3).
Since ci is spanned by B1 and B2, we get that at least one of the edges in E ′i is in B1, and
at least one in B2, which implies that at least one of `i1 , `i2 , `i3 is true, and at least one is
false, as desired.

Finally, observe Figure 9 to see that, if we stretch these paths along the snapshots
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a1 a2 a3 a4

x1

T1 F1

x2

T2 F2

x3

T3 F3

x4

T4 F4

c1 c2

Figure 10: Snapshot 1 related to formula φ = (x1∨x2∨x3)∧(x2∨x3∨x4), and branchings
related to the assignment (T, T, F, F ) to (x1, x2, x3, x4).

we can add delay to every edge. More formally, we consider the temporal digraph with
lifetime 5 and put all the edges of type {gxi, rxi} between timestamp 1 and 2, all edges of
type {xiTi, xiFi} between timestamp 2 and 3, all edges of type {Tiai, Fiai, Tjci, Fjci} be-
tween timestamps 3 and 4, and all edges of type {gTi, gFi, rTi, rFi} between timestamps 4
and 5.

5 Discussing natural extensions of Edmonds’ Condition

As said before, Edmonds’ Theorem is the characterization behind the polynomial algo-
rithm for finding k edge-disjoint spanning branchings in digraphs [10]. It actually can
be stated in many forms. Below, for simplicity, we present the possible statements when
only one root is considered.

Theorem 12 (Edmonds [11], as stated by Schrijver [25]). Given a digraph G, a vertex
r ∈ V (G), and a positive integer k, the following are equivalent.

1. G has k edge-disjoint spanning branchings rooted in r;

2. There are k edge-disjoint paths from r to v, for every v ∈ V (G) \ {r};

3. There are k edge-disjoint spanning trees in the underlying undirected graph such
that, for each v 6= r there are exactly k edges entering v covered by these trees;

4. d−(U) > k for every U ⊆ V (G) \ {r}.

In order to investigate the validity of Edmonds’ Theorem on the temporal context,
again we need to consider the various types of edge-disjoint branchings in this context.
For simplicity, we consider only branchings rooted at a single vertex. We have seen in
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Section 2 that this has no impact in the complexity of the problem. Also, because the
connectivity problems that appear in the literature are mostly concerned about temporal
digraphs with permanent vertices, and also usually consider only t-edge-disjoint paths
between vertices of G, in the following we discuss only the t-edge-disjoint vertex-spanning
case on permanent temporal digraphs.

Let G = (G, γ, λ) be a temporal digraph, (r, 1) be a temporal vertex of G, and k be a
positive integer, k > 2. Below, we discuss, for Items 2-3 of Theorem 12, the possibility of
a temporal formulation that would be equivalent to the t-edge-disjoint vertex-spanning
version of Item 1. We state this version of Item 1 for facility of reference.

(*) (G, γ, λ) has k t-edge-disjoint vertex-spanning branchings rooted in (r, 1).

In [2], the author proved that, given a pair of vertices u, v ∈ V (G), deciding whether
there exist k t-edge-disjoint temporal walks between u and v can be done in polynomial
time. Therefore, by Theorem 1, we get that (*) cannot be equivalent to a temporal
version of Item 2 of Theorem 12, unless P = NP. We mention that in [2], the author also
proved that, given vertices u, v, deciding whether there are 2 edge-disjoint temporal walks
between u and v is NP-complete. This gives us that the edge-disjoint vertex-spanning
variation could still hold on permanent temporal digraphs.

As for Item 3, the natural adaptation of the concept of vertex-spanning trees would
be that of a temporal subgraph of the underlying temporal graph (the temporal graph
obtained simply by ignoring directions of G) such that, for each v ∈ V (G) \ {r}, there
exists a temporal walk between (r, 1) and (v, i) for some i ∈ T (G). Also, note that
the number of “edges entering v” should consider temporal edges, as these are the edges
being used in the vertex-spanning trees. However, as we have seen in Figure 3 in Section 2,
we may need to visit the same vertex of G more than once in a same vertex-spanning
branching, implying that the number of temporal edges entering v can be larger than k.
Therefore, again a temporal version of Item 3 cannot be equivalent to the fact that G has
k t-edge-disjoint vertex-spanning branchings rooted in (r, 1). We mention that this kind
of situation also occurs in the other variations of the problem. Therefore, if we consider
general temporal digraphs, this version of Edmonds’ Theorem does not seem to hold in
all of the cases. As for permanent temporal digraphs, this could be a possible formulation
since a temporal walk in these digraphs can always be truncated in order to yield temporal
paths.

Now, observe that Item 4 (that we call Edmonds’ Condition) does not necessarily imply
a polynomial algorithm. However, Lovász’s proof [18] provides an algorithm that runs in
time O(k2m2), where m = |E(G)|. This means that a temporal version of Item 4 could
still hold, even if, because of our NP-completeness results, such a condition would not be
verifiable in polynomial time unless P = NP. Nevertheless, we believe that a characterizing
condition that depends only on the (temporal) indegree of subsets of (temporal) vertices
is indeed not possible, as we discuss next.

There are two main ingredients in Edmonds’ Condition: which sets are of interest,
and what should be the indegree of a set. A first attempt could be to consider every
subset X of vertices of G. Clearly the indegree considered cannot be the indegree of X
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in G since it could happen, for instance, that Edmonds’ Condition holds on G, but that
(r, 1) is isolated in the first snapshot. So alternatively, we could define the indegree of X
as the number of temporal edges arriving in any temporal vertex (x, i) such that x ∈ X.
But this is not sufficient, since it could happen again that (r, 1) is isolated in the first
snapshot, while X receives enough edges to satisfy the condition, and no more edges later
on.

So, let us consider subsets of temporal vertices instead. In this case, the indegree
must take into account only temporal edges arriving at X, since it would make no sense
to count on edges that are not active at the same time as X. But in this case, the related
condition is not necessary as it could happen, for instance, that V (G) can be spanned
on the first snapshot, therefore no indegree of a subset X ⊆ VT contained in the second
snapshot is needed. This however gives us a clue to yet another possibility, which is to
consider temporal edges entering X that occur earlier than X. This is a good guess since
it is possible to wait on the vertices as they are permanent. For this, we say that a subset
X ⊆ VT is a prefix set if whenever (u, i) ∈ X, we get that {(u, j) | j 6 i} ⊆ X. The
temporal indegree of X in G is then defined as the number of temporal edges arriving at
X; more formally, d−G (X) = |{(uv, i, j)|(u, i) /∈ X and (v, j) ∈ X}|. A last detail is that
we also require that a prefix set contains at least one temporal vertex of the last snapshot.
This is because otherwise, it could happen that (r, 1) is isolated throughout the lifetime of
G, except that Edmonds’ Condition holds on the last snapshot, i.e., the condition would
be false for every prefix subset X not intersecting the last snapshot, but the temporal
digraph still contains the desired branchings. One can verify that the following condition
is necessary, however we will see that it is not sufficient.

d−G (X) > |{i | (r, 1) /∈ X = ∅}|, for every prefix set X ⊆ VT . (1)

Consider the example in Figure 11 (we omit the copies of vertices that have indegree
0 in the second snapshot). One can verify that every prefix set X not containing (r, 1)
has at least two incoming temporal edges, i.e., Equation 1 holds. Nevertheless, it is not
possible to obtain two t-edge-disjoint vertex-spanning branchings. In fact, this example
was constructed by a slight modification of the gadget presented in Section 4 applied to
the formula (x1 ∨ x2)∨ (x1 ∨ x2), which does not have a NAE satisfying assignment. One
can verify that either (c1, 1) or (c2, 1) is not spanned by one of the branchings. Up to our
knowledge, there are no conditions that ensure the satisfiability of a formula that depend
only on the degree of the variables in the clauses, especially without considering global
structures (e.g., a subset of variables that covers the clauses). This is why we believe that
there is no version of Edmonds’ Condition that work on temporal digraphs. We mention
that our reductions are also from NAE-3-SAT in the other cases, which means that this
version of Edmonds’ Theorem also does not seem to hold in the other cases.

6 Conclusions and open problems

In this paper we have investigated temporal versions of the classical Edmonds’ Theorem
about the problem of finding k edge-disjoint spanning branchings of a digraph G rooted in
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(a1, 1)

(a2, 1)

(r, 1)

(x1, 1) (x2, 1)

(T1, 1) (F1, 1) (T1, 2) (F1, 2)(T2, 1) (F2, 1)

(T2, 2) (F2, 2)

(c1, 1) (c2, 1)

Figure 11: Temporal digraph satisfying Equation 1 but not having disjoint branchings
rooted in (r, 1).

given R1, · · · , Rk. We have introduced different definitions of spanning branchings and of
edge-disjointness in temporal digraphs. We have proved that, unlike the static case, only
one of the these can be computed in polynomial time, namely the temporal-edge-disjoint
temporal-spanning branchings problem, while the other versions are NP-complete under
very strict constraints. Also, if the temporal vertices appear for a continuous window
of time, then finding temporal-spanning branchings is polynomial-time solvable, while
finding vertex-spanning branchings is NP-complete. This includes temporal digraphs of
lifetime two, as well as the more popular model where the vertices are permanent.

Given a temporal digraph G = (G, γ, λ), in the particular case of edge-disjoint
temporal-spanning branchings, we give separate NP-complete results, one for fixed lifetime
and another one for when G is an in-star. We then pose the following question. Given a
temporal digraph G and subsets R1, · · · , Rk, k > 2, does there exist an FPT algorithm,
parameterized by the lifetime of G and the treewidth of G, that decides whether G has k
edge-disjoint temporal-spanning branchings rooted in R1, · · · , Rk?

Observe also that almost all of our NP-completeness results hold when G is a DAG,
but only if the lifetime of G is O(|V (G)| + |E(G)|). Therefore, we also ask whether
these problems become polynomial-time solvable when G is a DAG if the lifetime of G
is either constant or a logarithmic function on the size of G. And as we have provided
computational lower bounds under ETH in Theorem 9 and in Theorem 11, we also ask
whether there exist algorithms matching these lower bounds.

Concerning Edmonds’ Theorem on digraphs, we showed that two of the possible state-
ments of the theorem do not have an equivalent version on the temporal context. Besides,
we discussed about possible temporal versions of a characterization that depends on the
(temporal) indegrees of subsets of (temporal) vertices, giving reasons why we do not be-
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lieve that such a characterization exists. We ask whether there exists a characterization
that depends on more than the indegrees of temporal subsets.
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