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Abstract
A well-known conjecture of Richard Stanley posits that the h-vector of the in-

dependence complex of a matroid is a pure O-sequence. The conjecture has been
established for various classes but is open for graphic matroids. A biconed graph is
a graph with two specified ‘coning vertices’, such that every vertex of the graph is
connected to at least one coning vertex. The class of biconed graphs includes coned
graphs, Ferrers graphs, and complete multipartite graphs. We study the h-vectors
of graphic matroids arising from biconed graphs, providing a combinatorial inter-
pretation of their entries in terms of ‘2-weighted forests’ of the underlying graph.
This generalizes constructions of Kook and Lee who studied the Möbius coinvariant
(the last nonzero entry of the h-vector) of graphic matroids of complete bipartite
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graphs. We show that allowing for partially 2-weighted forests gives rise to a pure
multicomplex whose face count recovers the h-vector, establishing Stanley’s conjec-
ture for this class of matroids. We also discuss how our constructions relate to a
combinatorial strengthening of Stanley’s Conjecture (due to Klee and Samper) for
this class of matroids.
Mathematics Subject Classifications: 05E45, 05B35, 13F55

1 Introduction

A matroid is a combinatorial structure that generalizes various notions of independence
that arise in linear algebra, field extensions, graph theory, matching theory, and other
areas. A graphic matroid M(G) has its ground set given by the edge set of some finite
connected graph G, with independent sets given by the sets of edges that do contain a
cycle. Given a matroid M, of particular interest is the number of independent sets of M
of a certain size. The h-vector of M encodes this information in a convenient format. The
h-vector of a matroid provides topological information regarding its underlying simplicial
complex and also relates to the notion of activity of bases.

In his work surrounding the Upper Bound Conjecture [25], Stanley proved that if a
simplicial complex is Cohen-Macaulay (an algebraic condition on its associated face ring)
then its h-vector is necessarily an O-sequence: the entries hi are given by the number of
degree i monomials in some order ideal (see Section 2 for details). Motivated by these
results and the orderly structure of matroids (a type of Cohen-Macaulay simplicial com-
plex), Stanley conjectured [25] that the h-vectors of matroids satisfy a stronger condition.

Conjecture 1. The h-vector of a matroid is a pure O-sequence.

Here an O-sequence is pure if the maximal elements of the underlying order ideal
can be chosen to all have the same degree; again we refer to Section 2 for details. De-
spite receiving considerable attention for over four decades, Stanley’s conjecture remains
mostly wide open today. It has been established for some specific classes of matroids,
in particular for cographic matroids by Merino in [19], lattice-path matroids by Schweig
in [24], cotransversal matroids by Oh in [22] (see also work of Sarmiento [23]), paving
matroids by Merino, Noble, Ramirez-Ibanez, and Villarroel-Flores [20], and internally
perfect matroids by Dall in [5]. The conjecture has also been shown to hold for small rank
and corank, in particular rank 3 matroids by Há, Stokes, and Zanello in [9], rank 3 and
corank 2 matroids by DeLoera, Kemper, and Klee in [6], rank 4 matroids by Klee and
Samper in [12], and rank d matroids with hd 6 5 by Constantinescu, Kahle, and Varbaro
in [3]. Stronger forms of the conjecture have been established for some specific classes of
matroids, in particular for rank 3 matroids in [11] by Klee and Nugent, and for rank 3
and 4 matroids in [12].

In [16] Kook established Stanley’s conjecture for the graphic matroid of a coned graph,
by definition a graph Ĝ = G ∗ {v} obtained from connecting a vertex v to every vertex
of an arbitrary finite graph G. Kook proved the conjecture by explicitly constructing a
multicomplex of ‘partially edge-rooted forests’ in G. A spanning tree T of Ĝ corresponds
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to a partially edge-rooted forest of G in such a way that the number of internally passive
edges in T is given by the cardinality of edges and edge roots in its corresponding partially
edge-rooted forest.

In [17] Kook and Lee studied the h-vectors of complete bipartite graphs Km+1,n+1
and provided a combinatorial interpretation for their Möbius coinvariant µ⊥(Km+1,n+1),
which can be seen to coincide with the last nonzero entry of the h-vector of the underlying
matroid. They showed that the set of such trees correspond to certain edge-rooted forests
of the subgraph Km,n. These constructions provide bijective combinatorial proofs for the
formulas for µ⊥(Km+1) and µ⊥(Km+1,n+1) previously established by Novik, Postnikov,
and Sturmfels in [21].

In this paper we study h-vectors of biconed graphs. By definition a biconed graph GA,B

has a pair of vertices 0 and 0 such that every vertex in GA,B is adjacent to one of 0 or
0 (or both). Loops and some, but not all, parallel edges are admissible (see Definition 6
for a precise statement, and in particular the meaning of A and B). The class of biconed
graphs includes coned graphs, complete multipartite graphs, and Ferrers graphs.

In the concluding section of [17] the authors suggest biconed graphs as a class of graphs
for which their ‘edge-rooted forests’ may naturally generalize. In this paper we confirm
this, showing that the set of completely passive spanning trees of a biconed graph GA,B is
in correspondence with the collection of maximal ‘2-weighted forests’ of GA,B

red , a certain
‘reduced’ subgraph of GA,B.

Furthermore, we show that by allowing for partially weighted forests, this construction
gives rise to a notion of ‘degree’ (in terms of the number of edge roots) in such a way
that that the number of internally passive edges in a spanning tree of GA,B is given by
the degree in the corresponding partially 2-weighted forest. Our main results can be
summarized as follows. We refer to later sections for technical definitions.

Theorem 2 (Corollary 15, Lemma 17). Suppose GA,B is a biconed graph with h-vector
(h0, h1, . . . , hd). Then hi is given by the number of partially 2-weighted forests in GA,B

red of
degree i.

We let F(GA,B
red ) denote the set of partially 2-weighted forests in G = A ∪ B. The set

F(GA,B
red ) has a pleasing combinatorial structure, as our next result indicates.

Theorem 3 (Lemma 18, Lemma 19). For any biconed graph GA,B the set F(GA,B
red ) is a

pure multicomplex on the set of edges of GA,B
red .

From these we obtain our main result.

Theorem 4 (Corollary 20). Stanley’s conjecture holds for graphic matroids of biconed
graphs.

In [12] Klee and Samper introduce a combinatorial strengthening of Stanley’s con-
jecture, based on lexicographic shellability and the notion of a based matroid. Their
conjecture involves the construction of a rule for assigning a pure multicomplex to any
based matroids, satisfying a list of five properties. In Theorem 23 we show that our con-
structions satisfy four of these properties for based matroids arising from biconed graphs.

the electronic journal of combinatorics 28(4) (2021), #P4.31 3



This in turn connects the multicomplex F(GA,B
red ) to the internal poset of the matroid of

a biconed graph GA,B.
The rest of the paper is organized as follows. In Section 2 we recall some basic notions

from matroid theory and the study of pure O-sequences, and establish some notation. In
Section 3 we describe our main objects of study and establish bijections between three
sets: spanning trees of a biconed graph GA,B, birooted forests in GA,B

red , and 2-weighted
forests in GA,B

red . In Section 4, we prove that the set of partially 2-weighted forests is
a pure multicomplex. Here we also prove that the pure O-sequence arising from this
multicomplex is the h-vector of the (graphic matroid of the) underlying biconed graph,
thus establishing Stanley’s conjecture. In Section 5 we provide a detailed example to
demonstrate our various constructions. In Section 6 we discuss how our results relate
to the stronger conditions of the Klee-Samper conjecture for this class of matroids. In
Section 7, we suggest some further applications of 2-weighted forests and also discuss
some open questions.

2 Preliminaries

2.1 Matroids

We first review some basic notions of matroid theory, referring to [2] for more details. For
the purposes of this paper, a matroid M = (E, I) on a finite ground set E is a nonempty
collection I of subsets of E satisfying the following properties:

1. If A ∈ I and B ⊂ A then B ∈ I;

2. If A,B ∈ I and |A| > |B| then there exists some e ∈ A \B such that B ∪ e ∈ I.

Here, we suppress (and will continue to suppress) the brackets of singleton sets. The
collection I is called the set of independent sets of the matroid. We let B = B(M) denote
the set of bases of the matroid, by definition the set of maximal independent sets (under
inclusion). The number of elements in any (and hence every) basis of M is called the rank
of the matroid. Given a matroid M = (E, I) the dual matroid M∗ has ground set E and
bases given by the complements of the bases of M, so that B(M∗) = {E\B : B ∈ B(M)}.

An important example of a matroid, particularly relevant for us, comes from graph
theory. If G is a finite connected graph with vertex set V (G) and edge set E(G) (possibly
with loops and multiple edges) one defines the graphic matroid M(G) with ground set
E = E(G) and independent sets given by acyclic collections of edges. The bases are then
spanning trees of G, and hence the rank of M(G) is given by |V (G)| − 1.

2.2 Activity and h-vectors

The collection of independent sets of a matroid form a simplicial complex called the
independence complex of M. Associated to a simplicial complex of dimension d− 1, and
therefore to a matroid of rank d, is its f-vector f = (f−1, f0, . . . , fd−1), where fi−1 is the
number of simplices of cardinality i. The h-vector of the independence complex of M
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(which we will simply refer to as the h-vector of M) encodes the same information as f
in a form that is more convenient, especially in algebraic contexts.

We can define the entries of h = (h0, . . . , hd) according to the linear relation
d∑

i=0
fi−1(t− 1)d−i =

d∑
k=0

hkt
d−k.

The h-vector of a simplicial complex is related to a presentation of the Hilbert function
of its Stanley-Reisner (face) ring, and in the case of matroids encodes combinatorial data
regarding any shelling of its independence complex.

In the case of a matroid M the h-vector is also related to a certain expression for
the Tutte polynomial of M, expressed in terms of activity of elements in the collection
of bases. For this we fix a linear ordering < on the ground set E of of the matroid M.
Now suppose B is a basis for M. For any element e ∈ B we say that e is internally
passive in B if it can be replaced by a smaller element to obtain another basis; that is, if
(B \ e) ∪ e′ is a basis of M for some e′ < e. We say that e ∈ B is internally active if it
is not internally passive, that is, if it cannot be replaced by any smaller element from the
ground set to get another basis. An edge e /∈ B is said to be externally active (passive) if
it is (is not) the smallest element in the unique circuit containing B ∪ e.

In the case of a graphic matroid M = M(G) these constructions can be more explicitly
described. Suppose G is a connected graph with ordered edge set E, and let T be a
spanning tree of G. Removing an edge e ∈ T creates a forest with two components.
The fundamental bond BG(T, e) with respect to e ∈ T consists of all edges in G that
have an endpoint in each of the two components. Then e is internally active if it is the
smallest element (with respect to the fixed ordering <) in its fundamental bond BG(T, e).
Dually, if e /∈ T , then the addition of e creates a fundamental circuit C(T, e) which is the
minimum dependent set containing e and edges from T . Then e is externally active if it
is the smallest in this set of edges. From [1] we have the following.
Lemma 5. [1, Section 7.3] Suppose M is a matroid of rank d with an arbitrary fixed
ordering of the ground set, and let h = (h0, h1, . . . , hd) denote its h-vector. Then hi equals
the number of bases with i internally passive elements with respect to the ordering of the
ground set. The value of hi is independent of the choice of the ordering.

For a matroid M its Tutte polynomial is given by

TM(x, y) =
∑

τi,jx
iyj,

where τi,j is the number of bases of M with i internally active elements and j externally
active elements. Hence evaluating the Tutte polynomial at y = 1 gives a polynomial
TM(x, 1) in one variable x where the coefficient of xi is given by hd−i. We refer to [2] for
more details regarding the Tutte polynomial and external activity.

2.3 Multicomplexes and (pure) O-sequences

We next review the notion of O-sequences and purity involved in the statement of Stanley’s
conjecture. Recall that a multicomplex ∆ on a ground set E = {e1, e2, . . . , ej} is a
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collection of multisets of elements from E that is closed under taking subsets: if σ ∈ ∆
and τ ⊂ σ, then τ ∈ ∆.

Equivalently, a multicomplex ∆ may be thought of as a set of monomials ea1
1 e

a2
2 · · · e

aj

j

satisfying the property that if p ∈ ∆ and q divides p, then q ∈ ∆. In this context, a
collection of monomials satisfying this condition will be referred to as an order ideal. The
multisets in ∆ which are maximal under inclusion are the facets of ∆. The size of the
largest set in ∆ is called the degree of ∆. A multicomplex is pure if all its facets have the
same cardinality.

A sequence of positive integers (f−1, f0, . . . , fd−1) is said to be an O-sequence if there
exists a multicomplex ∆ with the property that fi is the number of sets in ∆ with
cardinality i+ 1, with d the degree of ∆. The sequence is a pure O-sequence if ∆ can be
chosen to be a pure multicomplex.

3 Biconed graphs and rooted forests

We next turn to our main objects of study. Here we consider graphs that are finite
and undirected but possibly with loops and parallel edges. For a graph G with vertices
u, v ∈ V (G), we use uv to denote the edge {u, v}. The following construction is similar
to what is suggested by Kook and Lee in [17].

Definition 6. Suppose G is a graph with vertex set V (G) and suppose A and B are (not
necessarily disjoint) subsets of V (G) satisfying V (G) = A ∪ B. The biconing of G with
respect to A and B is the addition of two additional vertices 0 and 0 and edges

• 00,

• 0a for all a ∈ A,

• 0b for all b ∈ B.

We use GA,B to denote the resulting graph. A biconed graph is any graph that is obtained
from a biconing.

See Figures 1A and 1B for an example of a graph and its biconing. Examples of
biconed graphs include coned graphs, complete multipartite graphs, and Ferrers graphs
(see Section 7). The path graph P5 on 5 vertices is an example of a connected graph that
is not biconed.

For a biconed graph GA,B define A := B \ A, so that V (G) is the disjoint union of A
and A. The complete bipartite graphs Km,n investigated in [17] are examples of biconed
graphs with A ∩ B = ∅, or equivalently satisfying B = A. We emphasize that our
generalization allows for some vertices of G to be connected to both coning vertices.

We will be interested in the activity of elements in the spanning trees of biconed
graphs, and for this we define a total order on the edge set inspired by conventions in
[17]. Let m = |A| and n =

∣∣∣A∣∣∣, and without loss of generality assume that the elements
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of A and A are labeled such that A = [m] = {1, . . . ,m} and A = [n] = {1, . . . , n}. We
then order the vertices in the following manner:

0 < 0 < 1 < 2 < · · · < m < 1 < · · · < n.

For the rest of this paper, we assume that the vertices of GA,B are ordered according
to this convention. For a biconed graph GA,B we let T0 ∈ T (GA,B) denote the spanning
tree that contains the edge 00, all edges of form 0u for u ∈ A and edges 0v for v ∈ A.

We now order the edges of GA,B so that the edges of T0 represent the first |T0| smallest
elements. In particular we first order the edges of T0 lexicographically according to the
order on the vertices described above: 00, 01, 02, . . . 0m, 01, 02, . . . 0n; and then order the
edges of G\T0 (including any parallel edges) arbitrarily. We use this ordering to define
the activity of edges in any spanning tree of GA,B. Note that T0 is the lexicographically
smallest spanning tree of GA,B and has the property that all edges are internally active.

In our work we will primarily be interested in subgraphs obtained by removing the
edges of T0. We let GA,B

red denote the graph obtained from GA,B by removing the edges of
T0 and also removing the vertex 0. See Figure 1C for an illustration.

1 2 3 4

1 2 3 4

5 6

5

0

0

Fig. 1A: The graph G with
V (G) = A ∪B, where A = {1, . . . , 6}
and B = {1, 2, 1, . . . , 5}.

1 2 3 4

1 2 3 4

5 6

5

0

0

Fig. 1B: The resulting biconed graph
GA,B .

1 2 3 4

1 2 3 4

5 6

5

0

0

Fig. 1C: The subgraph GA,B
red , obtained

by removing the edges of T0 and the
vertex 0.

3.1 Birooted forests

For a biconed graph GA,B we let T (GA,B) denote its set of spanning trees. We wish to
encode the elements in T (GA,B) in terms of more convenient combinatorial structures.
For this we’ll need the following notions.

Definition 7. Suppose T ∈ T (GA,B) is a spanning tree of a biconed graph GA,B. A
vertex v ∈ T is a connecting vertex if v ∈ A and is adjacent to 0 or v ∈ A and is adjacent
to 0. A connecting edge in T is an edge of the form 0u or 0v for u ∈ A or v ∈ A.

See Figure 2B for an example of these concepts. We will see that connecting edges
and vertices encode activity of edges in any spanning tree of a biconed graph. In what
follows we think of a tree as a collection of edges, so that if S and T are trees we use T\S
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to denote the difference of edge sets E(T )\E(S). We then have the following observation,
which motivates many of our constructions.

Lemma 8. Suppose T ∈ T (GA,B) is a spanning tree of a biconed graph GA,B. Then the
internally passive edges of T are given by all edges in T \ T0, as well as all connecting
edges involving a connecting vertex v where

• v is not the smallest vertex in its component Cv within T \ T0, or

• there exists a connecting vertex w ∈ Cv with w 6= v.

Example 9. Before proving Lemma 8, we illustrate these concepts with the graph and
spanning tree depicted in Figures 2A and 2B. Here the edges of T \ T0 consist of edges
01, 21, 44, 54, 65, 12, and 34, which are all passive since they can be replaced with
smaller connecting edges to obtain another spanning tree. The connecting edges are 02,
03, 06, 02, and 04. Among these, 04 is passive according to the first criterion (4 is not the
smallest in its component after deleting T0). We see that 02 and 02 are passive according
to the second criterion, since there are two connecting vertices in the component. Finally,
03 and 06 are not passive as the respective connecting vertices are the smallest in their
components.

1 2 3 4

1 2 3 4

5 6

5

0

0

Fig. 2A: Our running example of a biconed graph
GA,B , with edges of T0 in bold.

1 2 3 4

1 2 3 4

5 6

5

0

0

Fig. 2B: A spanning tree T of GA,B , with its
connecting edges and vertices in bold.

Proof of Lemma 8. First suppose that e is an edge in T \ T0. By the matroid exchange
property there exists an edge f in T0 such that (T\e)∪f is a spanning tree of GA,B. Note
that f < e since all elements of T0 are smaller than e. We conclude that e is passive.

Next suppose that xv is a connecting edge with x = 0 or x = 0, that v is the only
connecting vertex in its component, and that u is a vertex in Cv which is smaller than
u. If u ∈ A, we may replace xv with 0u; if u ∈ A, we may replace xv with 0u; lastly, if
u = 0, we may replace xv with 00 (in this last case, v must be in A). In all cases, xv is
internally passive.

Now suppose xv is a connecting edge, again with x = 0 or x = 0, such that the
component Cv ⊂ T \ T0 contains a distinct connecting vertex w 6= v. We must have that
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00 /∈ T and also that Cv is the only component in T \ T0 that contains two connecting
vertices (since otherwise T would contain a cycle). We can then replace xv with the
smaller 00 to obtain a spanning tree.

To see that these are the only internally passive elements, first note that 00 is always
internally active if present as it’s the smallest edge in the underlying graph. Suppose that
xv is a connecting edge in T (with x = 0 or x = 0) where v the smallest vertex in Cv

and also the only connecting vertex in Cv. We must then have 0 /∈ Cv. If we remove xv,
to replace it with a smaller edge, we would need to replace it with an edge from T0 that
connects a vertex in Cv to 0 or 0. But since v is the smallest vertex in Cv it is not possible
to do this with an edge that is smaller that xv. We conclude that xv is internally active.
The result follows.

For a biconed graph GA,B, recall that GA,B
red is the graph obtained from GA,B by re-

moving the edges of T0 and also removing the vertex 0. Notice that for any spanning tree
T of GA,B, the graph T \ T0 in provides a subforest of GA,B

red . This process of course loses
information, but we will attach just enough auxiliary data to such a subforest to encode
all the activity information of the original spanning tree T . See Figure 3B for a preview
of the construction.

To make this precise we extend some notions from Kook and Lee [17], where the
case of complete bipartite graphs was studied. Suppose F is a (not necessarily maximal)
spanning forest of GA,B

red . We emphasize that F must contain all the vertices of GA,B
red , but

need not be a maximal acyclic subgraph of GA,B
red , and should be thought of as an acyclic

collection of edges of GA,B
red in which all vertices are included. A rooted component of F

is a component in the forest which has exactly one vertex marked as a root vertex. A
birooted component of F is a component which has 2 vertex roots, with one root in A and
the other in A ∪ 0.

Definition 10. Given a biconed graph GA,B, a birooted forest (of GA,B
red ) is a spanning

forest F of GA,B
red such that 0 is a root vertex, at most one component is birooted, and

every other component of F is rooted.

See Figure 3B for an example of birooted forest. Recall that T (GA,B) denotes the set
of all spanning trees of a biconed graph GA,B. We let R(GA,B

red ) denote the set of birooted
forests of GA,B

red . Our next result relates these two sets.

Lemma 11. For any biconed graph GA,B there exists a bijection φ1 : T (GA,B)→ R(GA,B
red ).

Proof. Suppose T ∈ T (GA,B) is a spanning tree. The edges that get deleted from T as
we move to the forest T \ T0 are edges 00, edges of the form 0a for a ∈ A and 0b for
b ∈ A (here, a and b are connecting vertices of T ). To define φ1(T ) as a spanning forest
of GA,B

red , we simply root all the connecting vertices. Every component in this forest must
have a rooted vertex since T is connected and spanning. Additionally, there is at most
one birooted component in φ1(T ) since T is acyclic. After all of this is done, root the
vertex 0 to obtain φ1(T ).
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The inverse can also easily be described. Given a birooted forest F , simply convert
the rooted vertices to connecting vertices and add the connecting edges accordingly (con-
necting vertices from A go to 0 and those from A to 0). Finally, in the case that there
is no birooted component we add back the edge 00. The resulting graph T is a spanning
tree of GA,B with the property that φ1(T ) = F .

We refer to Figures 3A and 3B for an illustration of the map φ1. At this point the
activity information we need from a spanning tree T of GA,B is stored in a spanning forest
of GA,B

red with the help of auxiliary information stored in the rooted vertices. To construct
a multicomplex, we move this information to the edges. We describe this process in the
next subsection.

3.2 2-weighted-forests

Here we describe our method of encoding activity of a spanning tree of a biconed graph
in terms of weighted edges in our auxiliary construction. Let GA,B be a biconed graph
and suppose F is any set of edges of GA,B

red . Let ωF : F → N>1 denote a positive integer
weighting on these set of edges. We will use ω if the context is clear and refer to the
pair (F, ω) as a weighted collection of edges. An edge e ∈ F is said to have weight n if
ωF (e) = n.

For a weighted collection of edges (F, ωF ), a weighted component, or just component
if clear from context, is a (maximal) connected component S ⊂ F along with a weighting
ωS which is equal to ωF restricted to S. The excess weight of a weighted component S is
given by

δ0∈S +
∑
e∈S

(ω(e)− 1),

where δ0∈S equals 1 if 0 ∈ S and equals 0 otherwise. We assign weight to 0 in this way
because it acts in some ways like an additional weighted edge. A component S is said to
be k-excess weighted if its excess weight is k. Finally, an edge in GA,B

red is crossing if it
connects a vertex in A to a vertex in A ∪ 0.

Definition 12. For a biconed graph GA,B, a 2-weighted forest is a weighted set of edges
(F, ω) with F ⊂ E(GA,B

red ) satisfying:

(C0) F induces a forest in GA,B
red .

(C1) (F, ω) has at most one component with excess weight 2.

(C2) Every other component of (F, ω) has excess weight 0 or 1.

(C3) In a component of (F, ω) of excess weight 2 that does not contain 0, the number of
crossing edges in the (unique) shortest path containing the weighted edges is odd.
In a component of (F, ω) of excess weight 2 that does contain 0, the number of
crossing edges in the shortest path containing both the weighted edge and 0 is odd.
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We refer to Figure 3C for an example of a 2-weighted forest. It will be useful to talk
about the subgraph of GA,B

red induced by the edges of a 2-weighted forest. For the rest of
the paper we will use the convention that this associated graph has the edges of F and
all vertices of of GA,B

red , whether or not they are an endpoint of an edge in F , hence giving
a spanning forest.
Remark 13. The notion of a 2-weighted forest is a generalization of the edge-rooted forests
from [17], where now multiple edge roots are allowed. In an earlier version of our paper we
referred to these objects as 2-edge-rooted forests but we found the weighting terminology
to be less cumbersome. The main new idea here is the parity condition (C3), which
ensures that in components of excess weight 2, the edges carrying this excess weight are,
in some sense, on opposite sides of the graph. We will see that this condition ensures that
the associated multicomplex is pure.

For a biconed graph GA,B we let F(GA,B
red ) denote the set of all 2-weighted forests

of GA,B
red . In Lemma 11 we saw that spanning trees can be encoded as birooted forests.

Next we observe that birooted forests are encoded in 2-weighted forests. Later we will
see how the activity of a given spanning tree can be naturally read off in terms of the
corresponding 2-weighted forest.

Lemma 14. For any biconed graph GA,B there is a bijection φ2 : R(GA,B
red )→ F(GA,B

red ).

Proof. Let R be a birooted forest of GA,B, with underlying edge set F . To define φ2(R), we
show how to convert the information of rooted vertices of R into a weighting ω : F → N>1
on the edges. For each rooted (but not birooted) component of R, let vs denote the
smallest vertex in that component. If vs is the rooted vertex then all edges in that
component get weight one. If the rooted vertex is not vs, then assign ω(e) = 2 where e is
the first edge of the (unique) path from the rooted vertex to vs.

Next, if there is a birooted component of R containing 0 then we assign ω(f) = 2,
where f is the first edge in the path from the other root vertex to 0. For any other
birooted component, we assign a weight of 2 to the first and last edges of the path from
one rooted vertex to the other. If this path consists of exactly one edge, we assign a
weight of 3 to that edge. Finally, any edge not yet assigned weight is given weight 1.

We check that the resulting weighted collection of edges is a 2-weighted forest. Con-
dition (C0) is automatically met as F consists of the same underlying edge set as R.
Condition (C1) and (C2) are met since there is at most one birooted component in R.
Condition (C3) is met since in a birooted component, one vertex root lies in A and the
other lies in A∪ 0, so the path between the root vertices must cross between A and A∪ 0
an odd number of times in total.

To see that the above process is reversible, notice that by checking the excess weight
of a component one can determine if it was rooted or birooted in the birooted forest. If
the component has no excess weight, we give vs the root. If there is a single weighted edge
e we root the vertex of e that is furthest from vs in that component. If the component
has excess weight 2 we recover the desired vertex roots by considering the unique shortest
path that connects the two weighted edges (or 0 and the single weighted edge). Finally if
v is a vertex in GA,B not used in any edge in F we root that isolated vertex.
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Fig. 3A: A spanning tree T of
GA,B , with its connecting edges
and vertices in bold.
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Fig. 3B: The associated birooted
forest.
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Fig. 3C: The associated 2-weighted
forest.

By composing the two maps we created in this section we get a bijection φ = φ2 ◦ φ1
from T (GA,B) to F(GA,B

red ):

Corollary 15. For any biconed graph GA,B the function φ : T (GA,B)→ F(GA,B
red ) defined

above is a bijection from the set of spanning trees of GA,B to the collection of 2-weighted
forests of GA,B

red .

See Figure 3 for an illustration of the correspondence. In the next section we will show
that the collection of 2-weighted forests gives rise to a pure multicomplex, leading to a
proof of Stanley’s conjecture for matroids arising from biconed graphs.

4 A multicomplex of 2-weighted forests

In this section, we show that the collection F(GA,B
red ) of 2-weighted forests associated to

a biconed graph GA,B provides a pure multicomplex that encodes the h-vector of GA,B.
In this context, it will be convenient to think of elements of F(GA,B

red ) as monomials.
For this, we associate a variable to each edge of GA,B

red and construct a monomial from a
weighed set (F, ω) with F ⊂ F(GA,B

red ) by simply raising all elements to the corresponding
weighting. For example the weighted set {c, e, f} with ω(e) = ω(f) = 1 and ω(c) = 3
is labeled c3ef (see Figure 4A). Via this correspondence, we will refer to the degree of
an element of F(GA,B

red ), by which we mean the degree of the corresponding monomial.
Under this viewpoint, we prove that F(GA,B

red ) is a pure multicomplex and the resulting
pure O-sequence is the h-vector of GA,B. The first step is to show how the degree of a
monomial encodes passivity of the underlying spanning tree.

Example 16. Let G be K4 with the vertices partitioned by A = {1, 2}, B = A = {1, 2},
and E(G) = {a, b, c, d, e, f}. The 2-weighted forest in Figure 4B can be thought of as
the monomial a2df 2. In Figure 4C we have the monomial af 2, obtained by removing an
edge and lowering the weight of another edge from Figure 4B. Note that this results in a
monomial that divides the original.
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Fig. 4A: A 2-weighted forest giving
rise to the monomial c3ef .
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1 2

d

f2

a2

Fig. 4B: A 2-weighted forest
corresponding to the monomial a2df2.

1 2

1 2

f2

a

Fig. 4C: A 2-weighted forest with
monomial af2.

Lemma 17. The function φ : T (GA,B) → F(GA,B
red ) described in Corollary 15 maps a

spanning tree of GA,B with i internally passive edges to a monomial of degree i.

Proof. Suppose T is a spanning tree of GA,B. We use Lemma 8 to identify the internally
passive edges of T and analyze how this information is transferred to the edge weights
of φ(T ), resulting in a monomial with the desired degree. It suffices to show that each
passive edge of T increases the degree of the monomial by 1.

From Lemma 8, recall that 00, if present, must be internally active, and all edges
of T \ T0 are internally passive. These internally passive edges are the variables of our
monomial, corresponding to a subset of the edges of GA,B

red . The remaining edges of T
connect 0 or 0 to connecting vertices of T , and we will encode any internal passivity
amongst these edges via the extra weighting on the edges of T \ T0.

Let xv be a connecting edge in T (so that x = 0 or x = 0) and let Cv denote its
component in T \T0. We now have two cases to consider. First suppose that v is the only
connecting vertex in Cv. By Lemma 8, the edge xv is passive if and only if v is not the
smallest vertex in Cv. In a component with one connecting vertex (this corresponds to a
rooted component which does not contain 0 or a birooted component which does contain
0), φ assigns an edge in the component an extra weight exactly when v is not the smallest
vertex in Cv, thus increasing the degree of the monomial by 1 if and only if xv is passive.

Next suppose that Cv has two connecting vertices. Again, Lemma 8 tells us that xv
is passive. The component Cv receives an extra weight inside φ(T ), by weighting the first
edge in the path from v to the other root inside Cv, thus increasing the degree of the
monomial by 1 (the component thus ends up with excess weight 2, with a contribution of
1 from each of its two connecting vertices). Components with no connecting vertices must
contain 0 and must be rooted, but not birooted, and receive no extra weighting under φ.

We have seen that each passive edge of T \ T0 contributes an extra weight to some
edge of φ(T ), and hence an extra degree to the desired monomial. These are the only
situations under which φ assigns excess weight to an edges, so this proves the claim.

Note that a 2-weighted forest F can naturally be thought of as a multiset on the
underlying set of edges of GA,B

red , where the number of occurrences of any edge is given by
its weighting. Our next two lemmas show that this collection forms a pure multicomplex.
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Lemma 18. For any biconed graph GA,B, the multiset F(GA,B
red ) is a multicomplex on the

edges of GA,B
red .

Proof. We must show that the set of 2-weighted forests is closed under taking subsets.
To this end, let (F, ω) ∈ F(GA,B

red ) be a 2-weighted forest, and let e ∈ F be any edge. We
define a new multiset (F ′, ω′) obtained by removing one occurrence of e, and want to show
that it produces a valid 2-weighted forest. We have two cases to consider, depending on
the weight ω(e).

First suppose ω(e) > 2. We then define (F ′, ω′) as F ′ = F and ω′(e) = ω(e) − 1
(with the weights equal everywhere else). We check the conditions given in Definition
12. Condition (C0) is clearly satisfied since we have the same underlying set F of edges.
Similarly, conditions (C1) and (C2) are satisfied since ω′(x) 6 ω(x) for all edges x ∈ F .
For (C3), we assume that (F, ω) has a component C with excess weight 2 (since otherwise
there is nothing to check). If e ∈ C then (F ′, ω′) now has no component with excess
weight 2. If e /∈ C we see that C is not affected and hence still satisfies the condition.

Next we suppose ω(e) = 1. We define (F ′, ω′) as F ′ = F\e and ω′ = ω|F ′ . In this
case, (C0) is satisfied since F ′ ⊂ F still cannot have any cycles. Conditions (C1) and
(C2) are again satisfied since ω′(x) 6 ω(x) for all edges x ∈ F ′. For condition (C3) we
again can assume that (F, ω) has a component C with excess weight 2. If e is one of the
edges in the unique path containing the weighted edges of C, then removing e results in
an (F ′, ω′) with no component with excess weight 2. Otherwise, the path between the
weighted edges is unaltered. Either way, condition (C3) is satisfied. We conclude that
(F ′, ω′) ∈ F(GA,B

red ), and the result follows.

Lemma 19. For any biconed graph GA,B, the multicomplex F(GA,B
red ) is pure.

Proof. We must show that all maximal elements (under inclusion) of F(GA,B
red ) have the

same degree. Recall from Lemma 17 that the degree of a maximal element (F, ω) is
given by the number of internally passive edges in the spanning tree T where φ(T ) =
(F, ω). We start by identifying which edges are always active. Any bridge (an edge whose
removal increases the number of connected components) in GA,B must be contained in
every spanning tree and furthermore must be internally active. Bridges in GA,B must have
either 0 or 0 as an endpoint (and 00 is a bridge if and only if GA,B

red has no crossing edges).
Any spanning forest of GA,B

red will contain a singular component (a component consisting
of a single vertex) for each bridge of GA,B that is not 00.

Now let d be the largest degree of any monomial in F(GA,B
red ). Note that a 2-weighted

forest of degree d corresponds via φ to a spanning tree of GA,B with the property that
every non-bridge edge is passive. Translating the description of passive edges to F(GA,B

red )
via Lemma 8, we see that (F, ω) ∈ F(GA,B

red ) has degree d if and only if

• all nonsingular components of (F, ω) have excess weight at least 1,

• if GA,B
red has at least one crossing edge then (F, ω) has exactly one nonsingular com-

ponent with excess weight 2, and

• singular components are endpoints of bridges in GA,B.
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To prove the lemma, it suffices to show that for any (F, ω) ∈ F(GA,B
red ) that does not satisfy

these properties, there is some (F ′, ω′) ∈ F(GA,B
red ) of higher degree such that F ⊆ F ′ and

ω(e) 6 ω′(e) for any e where ω′(e) is defined. To find such a 2-weighted forest (F ′, ω′),
we identify an edge which may be added to F or have its weight increased to get another
valid 2-weighted forest. We break it down into several cases. For each case the conditions
(C0), (C1), and (C2) of Definition 12 will be clearly satisfied by (F ′, ω′), and only (C3)
will need some explanation.

First note that if (F, ω) contains any non-singular component which is of excess weight
0, we may increase the weight of any edge in the component to get our desired (F ′, ω′).
If F contains a singular component v that is not 0 and is not the endpoint of a bridge in
GA,B, we may add any edge of GA,B

red having v as an endpoint to F . This does not create
a cycle as v was isolated.

The remaining case is when all non-singular components of (F, ω) have excess weight
1, but (F, ω) does not have a component with excess weight 2. In this case, GA,B

red must
contain a crossing edge, or else (F, ω) would already be of highest degree. If (F, ω) itself
does not contain any crossing edges, we simply add any crossing edge of GA,B

red to get
(F ′, ω′). This creates a component with excess weight 2 which has the new edge as the
only crossing edge in the path between the weighted edges, hence satisfying (C3). If (F, ω)
contains a crossing edge that has weight 2, we increase its weight to 3 to get (F ′, ω′). This
edge is then the only edge in the path containing all weighted edges in the component,
and (F ′, ω′) satisfies (C3).

The last subcase to consider is if (F, ω) contains at least one crossing edge, and all such
crossing edges are of weight 1. Here we must take care to ensure that the parity condition
in (C3) is satisfied. We pick any component with a crossing edge and find the nearest
(shortest path length) crossing edge to the component’s edge of weight 2 (or to 0 if there
is no edge of weight 2), picking arbitrarily if there is a tie. We weight this edge to get
(F ′, ω′). This ensures that there is exactly one crossing edge in the path containing both
weighted edges (or containing the weighted edge and 0) in the component with excess
weight 2. Indeed, if there was another crossing edge in the path, it would have been closer
than the edge selected. This exhausts all cases and the result follows.

For a biconed graph GA,B, we let hi denote the ith entry of the h-vector of its un-
derlying graphic matroid. By Lemma 5 and Lemma 17, we have that hi is given by the
number of monomials in F(GA,B

red ) of degree i. From Lemma 18 and Lemma 19, we that
F(GA,B

red ) is a pure multicomplex. This proves our main result:

Corollary 20. Stanley’s h-vector conjecture holds for graphic matroids of biconed graphs.

5 Worked Example

Consider the graph GA,B depicted in Figure 5B, obtained by biconing the graph G in
Figure 5A. The spanning tree T0 and the graph GA,B

red are depicted in Figures 5C and
5D. We see that GA,B has 11 spanning trees (see Figure 6A) and has h-vector given by
(1, 2, 3, 3, 2). The collection of birooted forests is depicted in Figure 6B, and the complex
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of 2-weighted forests of GA,B
red is seen in Figure 6C. Note that the degree sequence of this

multicomplex agrees with the h-vector. The poset structure in these figures is determined
by the divisibility of monomials in Figure 6C, although one can check that the poset in
Figure 6A recovers the internal order on trees (see Section 6 for more discussion).
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Fig. 5A: A graph G 1 2

1

0

0

Fig. 5B: GA,B with
A = {1, 2} and B = {1, 1}
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Fig. 5C: The lex-first
spanning tree T0
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Fig. 5D: The ‘reduced ’
graph GA,B
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Fig. 6A: Spanning trees of GA,B
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Fig. 6B: Bi-rooted forests of GA,B
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Fig. 6C: Multicomplex of 2-weighted forests of GA,B
red
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6 Klee-Samper’s strengthening of Stanley’s conjecture

Our approach to proving Stanley’s conjecture for the graphic matroid of a biconed graph
G involved choosing an ordering on the edges of G and singling out a ‘smallest’ spanning
tree T0. We then used the remaining edges E(G)\T0 as the variables for the multicomplex
that realized the h-vector of G. In [12] Klee and Samper propose a similar approach to
proving Stanley’s conjecture for all matroids, based on lexicographic shellability of their
independence complexes. For this we recall some definitions.

Definition 21 ([12], Definition 3.9). A based matroid is a triple (∆, B,<), where ∆ is a
matroid, B is a basis of ∆ and < is a total order of E(∆)−B. For an independent set I
such that I ∩ B = ∅, let ΓI be the matroid whose elements are the subsets U of B such
that U ∪ I ∈ ∆. Two based matroids (∆, B,<) and (∆′, B′, <′) are isomorphic if there
is a matroid isomorphism f : ∆→ ∆′ such that f(B) = B′ and f is order preserving on
E(∆)−B.

The notion of a based matroid is inspired by the fact that any ordering of a the ground
set of a matroid ∆ provides a lexicographic shelling of its independence complex. This
leads to a decomposition of the h-vector of a matroid that suggests an inductive procedure
to construct a pure multicomplex. Based on these notions, Klee and Samper formulate
the following.

Conjecture 22 ([12], Conjecture 3.10). Let d be a fixed integer and let Ad be the family
of based matroids of rank d. Then there exists a map O from Ad to the family of pure
order ideals such that the following conditions hold for every based matroid (∆, B,<).

1. The variables of O(∆, B,<) are {xi|i ∈ E(∆)−B}.

2. Every monomial in O(∆, B,<) is supported on a set of the form {xi|i ∈ I} for some
independent set I of ∆ with I ∩B = ∅.

3. For each independent set I that is disjoint from B, there are exactly hj(ΓI) mono-
mials in O(∆, B,<) with degree |I|+ j and support {xi|i ∈ I}.

4. For each independent set I that is disjoint from B, the restriction of O(∆, B,<) to
the variables {xi|i ∈ I} is O(∆|B∪I , B,<).

5. If (∆′, B′, <′) is a based matroid and f : (∆, B,<)→ (∆′, B′, <′) is an isomorphism,
then O(∆, B,<) is naturally isomorphic to O(∆′, B′, <′) by relabeling the index of
each variable in (∆, B,<) with its image under f .

The authors of [12] show that Conjecture 22 implies Stanley’s Conjecture for all ma-
troids. We will describe how our constructions lead to a proof of all parts of Conjecture
22 aside from Condition (5), for the class of graphic matroids of biconed graphs.

First recall that in our construction of biconed graphs, we have specified an order <
on the edge set and a lexicographically first spanning tree T0. Hence the graphic matroids
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coming from such graphs are naturally based matroids. In Corollary 15, we defined a
map φ from the spanning trees of a biconed graph GA,B to the set F(GA,B

red ) of 2-weighted
forests of GA,B

red , and in Lemma 19 we saw that F(GA,B
red ) is a pure ordeal ideal. Hence

we can think of φ as a map from the set of based graphic matroids coming from biconed
graphs to the set of pure order ideals. With this in place we can prove the following.

Theorem 23. Let B denote the set of based matroids arising from biconed graphs as
described above. Then φ, thought of as a map from B to the family of pure ordeal ideals,
satisfies conditions (1)− (4) listed in Conjecture 22.

Proof. Let (∆, T0, <) be the based graphic matroid associated to a biconed graph GA,B.
By construction, the variables of φ(∆, T0, <) are the edges of GA,B that are not included in
the lex-first tree T0. In addition, every monomial in φ(∆, T0, <) corresponds to a multiset
of T\T0, where T is the set of edges of some spanning tree of GA,B. Hence the first two
items of Conjecture 22 are satisfied.

For item (3), suppose I is an independent set in GA,B that is disjoint from T0. Then
ΓI is the graphic matroid of the graph obtained by restricting to the edges T0 ∪ I and
then contracting the edges of I. This correspondence provides a bijection between 1) the
spanning trees of GA,B which contain I and which are contained in T0 ∪ I, and 2) the
spanning trees of ΓI . It remains to show that this map decreases passivity by |I|, since
hj(ΓI) is the number of spanning trees of ΓI with passivity j. Since I is disjoint from T0,
we have from Lemma 8 that each edge contracted under the map is internally passive in
GA,B. The remaining edges are passive exactly when they can be replaced by a smaller
edge to again obtain a spanning tree. However all edges in I are larger than all edges of
T0, so contracting or deleting edges which are not contained in T0 does not affect passivity
of the edges contained in T0. Thus, the number of passive edges drops by |I| under this
map.

For item (4), we want to show that for an independent set I disjoint from T0, the
multicomplex obtained from F(GA,B

red ) by restricting to the variables xi for i ∈ I is the
same as the multicomplex obtained by applying φ to the graph GA,B|T0∪I , the restriction
of GA,B to T0 ∪ I. In other words, deleting edges of GA,B not contained in T0 ∪ I doesn’t
affect the monomials whose support is contained in I. This follows since the monomial
associated with a spanning tree in GA,B can be computed using only knowledge of T0 and
the spanning tree in question. In particular it does not depend on any edges in E(∆)\B,
so deleting these edges in the underlying matroid still gives the same monomial for each
independent set common to both matroids.

We have thus far been unable to establish Condition (5) of Conjecture 22 for our class
of matroids, as it seems difficult to determine conditions under which two based matroids
coming from different biconed graphs are isomorphic. On the other hand, it is not clear if a
weaker statement is sufficient in order to apply the constructions to Stanley’s Conjecture.

As is explained in [10], if graphic matroids of biconed graphs did indeed satisfy all
conditions of Conjecture 22 then this would imply that the poset of divisibility of the
pure order ideal associated to a biconed graph GA,B is an extension of a certain partial
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order on bases defined by Las Vergnas in [18]. To recall this notion, suppose < is an
ordering of the ground set of a matroid M. We define a partial order on the bases of M
given by inclusion of its internally passive elements, and call this the internal order of the
(ordered) matroid M. One can check that the poset depcited in Figure 6A is in fact the
internal order of the matroid with the given ordering on the edges of the graph.

For the case of K4 (which is an example of a biconed graph), it is known that the
internal order of the underlying graphic matroid is not the face poset of any multicomplex
(see for instance [5]). Hence the poset of divisibility corresponding to the multicomplex
F(GA,B

red ) that we create for K4 will strictly contain the poset associated to the internal
order.

7 Open questions and future directions

In this section, we discuss questions that arise from our study of biconed graphs which
are possible directions for future research.

Question 24. What is the Möbius coinvariant µ⊥(Kn1,n2,...,n`
) of a complete multipartite

graph?

Recall that the Möbius conivariant µ⊥(G) of a graph G is defined to be |µL(M(G))∗|, the
Möbius invariant of the lattice of flats of the matroid dual to the graphic matroid of G.
It is known that µ⊥(G) is equal to the rank of the reduced homology of the independence
complex of M(G) and also equal to the Tutte evaluation TG(0, 1), and hence equal to
the last nonzero entry in the h-vector of the underlying matroid (counting the number of
spanning trees with zero internal activity). In [17], the authors found closed formulas for
the Möbius coinvariants of complete bipartite graphs by counting certain edge and vertex
rooted forests using Hermite polynomials. From our results, we see that determining the
Möbius coinvariant of a biconed graph is equivalent to counting its maximal 2-weighted
forests, those which have in every non-singular component at least 1-edge root and exactly
one component with excess weight 2. A careful count of such structures would then lead
to a combinatorial formula the Möbius coinvariants of these graphs. A potential method
is to take an approach similar to that in [17], creating a structure with a blend of edge
weighting and vertex rooting, in order to count the number of maximal 2-weighted forests.

Question 25. Can we use our characterization of the h-vectors of biconed graphs to get
a nice formula for the case of Ferrers graphs?

Recall from [8] that a Ferrers graph is a bipartite graph with vertex set partition
U = {u0, . . . , un} and V = {v0, . . . , vm} satisfying

• If (ui, vj) is an edge then so is (up, vq) for all 0 6 p 6 i and 0 6 q 6 j,

• (u0, vm) and (un, v0) are both edges.
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In particular such a graph is biconed. For a Ferrers graph G we have the associated
partition λ = (λ0, λ1, . . . , λn), where λi is the degree of the vertex ui. The associated
Ferrers diagram (also called Young diagram) is the diagram of boxes where we have a box
in position (i, j) if and only if (ui, vj) is an edge in G. Ehrenborg and van Willigenburg
studied enumerative aspects of Ferrers graphs in [8]. In [7] the authors studied (minimal)
recurrent configurations of Ferrers graphs using decorated EW-tableaux. As explained
for example in [4], recurrent configurations of any graph G are in a simple duality with
superstable configurations ofG, which by results of Merino [19] form a multicomplex whose
f -vector recovers the h-vector of the dual matroid M(G)∗. In particular the number of
recurrent configurations of G of a particular degree are given by the h-vector of M(G)∗.
Recurrent and superstable configurations are objects of chip-firing, for more details we
refer to [4]. Our work provide an interpretation for the h-vector of the primal matroid
M(G), is there a relationship between our constructions and chip-firing? Also, Ferrers
graphs can be obtained by taking the biconing of other Ferrers graphs, so is there any
recursive structure that can be taken advantage of when investigating h-vectors?

Question 26. Does the set of 2-edge rooted forests in a biconed graph lead to a basis for
the homology of the matroid independence complex?

For any graph G the independence complex of its graphic matroid I(M(G)) is a
wedge of spheres of dimension n− 2 (where n is the number of vertices). The number of
spheres in this wedge is given by the Möbius coninvariant µ⊥(G). In the case of biconed
graphs, we have seen that this number is given by the number of maximal 2-edge rooted
forests. Hence a natural question to ask if one can associate a 2-edge rooted forest with a
fundamental cycle in H̃(I(M(G)),R), to obtain a basis for this vector space. Furthermore,
the automorphism group Aut(G) of the graph G acts on this vector space, and one can
perhaps use such a basis to study this representation. This was worked out for the case
of coned graphs in [15] and for complete bipartite graphs in [17].

Question 27. Can we generalize our constructions to n-coned graphs?

Generalizing the construction of biconed graphs we can construct n-coned graphs
GU1,U2,...Un = (V (G), E(G)) by taking a graph and connecting each of its vertices to
at least one of n coning points. The internal activity of edges in n-coned graphs seems to
parallel that of biconed graphs, so k-weighted forests or another weighted forest structure
may lead to pure multicomplexes. Does our multicomplex structure extend in a natural
way to more cone vertices? What requirements do we need on the edges between the
coning points so that we obtain a pure multicomplex?

Question 28. Does Stanley’s Conjecture hold in the case of matroids of radius 2 graphs?

The eccentricity of a vertex v in a connected graph G is the number of edges between
it and the vertex farthest (with respect to edges) from it. The radius of G is the minimum
eccentricity of its vertices. Biconed graphs are special cases of radius 2 graphs since the
eccentricity of both coning vertices is at most 2. This generalizes the class of coned graphs,
which are exactly the graphs of radius 1. Stanley’s Conjecture has been easiest to prove

the electronic journal of combinatorics 28(4) (2021), #P4.31 21



for graphs which are well-connected – roughly speaking, graphs whose ratio of cardinality
of edges to cardinality of vertices is high – so radius 2 graphs may be a reasonable next
step.
Question 29. Can we bound the number of spanning trees of a biconed bipartite graph?

Let G be a bipartite graph with m vertices on one side and n vertices on the other
side, with vertex degrees d1, d2, . . . , dm and e1, e2, . . . , en. Is it true that the number of
spanning trees of G is at most

m−1n−1
m∏

i=1
di

n∏
j=1

ej?

Ehrenborg and van Willigenburg proved this for Ferrers graphs, where in fact equality is
achieved [8]. Klee and Stamps give a linear algebraic approach for weighted graphs using
the Weighted Matrix-Tree Theorem [13]. They use a similar linear algebraic approach for
unweighted graphs using Lapacian matrices and Kirchhoff’s Matrix-Tree Theorem in [14].
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