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Abstract

We count the ordered sum-free triplets of subsets in the group Z/pZ, i.e., the
triplets (A,B,C) of sets A,B,C ⊂ Z/pZ for which the equation a + b = c has no
solution with a ∈ A, b ∈ B and c ∈ C. Our main theorem improves on a recent result
by Semchankau, Shabanov, and Shkredov using a different and simpler method. Our
proof relates previous results on the number of independent sets of regular graphs by
Kahn; Perarnau and Perkins; and Csikvári to produce explicit estimates on smaller
order terms. We also obtain estimates for the number of sum-free triplets of subsets
in a general abelian group.

Mathematics Subject Classifications: 05A16, 11B75

1 Introduction

Let p be a prime number and Z/pZ the abelian (additive) group of integers modulo p.
We estimate the number of ordered triplets A,B,C ⊆ Z/pZ such that there is no triplet
a ∈ A, b ∈ B and c ∈ C with a+b = c. We call such (A,B,C) a sum-free triplet. Consider
the auxiliary 3-uniform 3-partite hypergraph H with vertex set X∪Y ∪Z, each of X, Y, Z
being disjoint and a copy of Z/pZ. We have an edge {x, y, z} for x ∈ X, y ∈ Y , z ∈ Z
when x+ y = z. The number of ordered triplets A,B,C ⊆ Z/pZ as above is the number
of independent sets A ∪ B ∪ C in H, where A ⊂ X, B ⊂ Y , and C ⊂ Z. For simplicity,
we denote by i(H) the number of independent sets in the (hyper)graph H.
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As suggested by Semchankau, Shabanov, and Shkredov in Remark 19 of [9], we try to
obtain a bound of the form

i(H) = 3 · 4p + 3p · 3p +Q2(p)λ
p
2 +Q3(p)λ

p
3 + · · ·+O((λ` − c∗)p), (1)

where Q2(p), . . . , Q`−1(p) are some polynomials in p. The motivation for (1) comes from
considering the separate cases when min{|A|, |B|, |C|} = k. For this, we fix A with |A| = k
and count the ways of completing the sum-free triplet (A,B,C). However, we do not give
precise estimates for all possible choices of A when k > 3. Therefore, we only obtain the
upper and lower bounds below.

Theorem 1. The number of sum-free triplets A,B,C ⊆ Z/pZ is at most

3·4p+3p·3p+3

(
p

2

)(
1 +
√

5

2

)2p

+Q3,1(p)·(1+
√

2)p+Q3,2(p)·458p/7+3

(
p

4

)
(1+o(1))·31p/4,

and at least

3 · 4p + 3p · 3p + 3

(
p

2

)(
1 +
√

5

2

)2p

+Q3,1(p) · (1 +
√

2)p +Q3,2(p) · 2.38898p,

where Q3,1(p) = 3 · 3
p−2 ·

(
p
3

)
= 3 ·

(
p
2

)
, and Q3,2(p) = 3 · p−5

p−2 ·
(
p
3

)
.

Remark 2. The bases of the exponential terms on Theorem 1 are 4 > 3 >
(

1+
√
5

2

)2
≈

2.6180 > 1 +
√

2 ≈ 2.4142 > 4581/7 ≈ 2.3995 > 2.38898 > 311/4 ≈ 2.3596.

Remark 3. The constant 2.38998 in Theorem 1 is a lower bound on the value α+α−1−2,
where α is the unique real root of α(1−α)2 = (1−2α)3. See Theorem 14 for more details.

Remark 4. One could believe that, for each i, there is one λi as in (1) corresponding to
the case min{|A|, |B|, |C|} = i. The proof of Theorem 1 below contradicts this idea, by
showing that when min{|A|, |B|, |C|} = 3 we have at least two distinct exponential terms,
all of them greater than the possible exponential terms for min{|A|, |B|, |C|} > 4.

Remark 5. The proof of Theorem 1 uses the structure of Z/pZ. In Section 7, we obtain
similar estimates for a general abelian group G, see Theorems 6 and 28.

Let (G,+) be an additive abelian group of order N . Using the same methods as in
the case G = Z/pZ, we get the following result.

Theorem 6. Fix ε ∈ (0, 1). Then for sufficiently large N the following holds. Let (G,+)
be an additive abelian group of order N . The number of ordered triplets A,B,C ⊆ G such
that there is no triplet a ∈ A, b ∈ B and c ∈ C with a+ b = c is at most

3 · 4N + 3N · 3N + 2(3/2+3ε)N .
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Remark 7. In contrast with Theorem 1, in the proof of Theorem 6 we will see that we
have more triplets corresponding to the case k > εN than from the case k = 2. Indeed,
the number of triplets from the case k = 2 is bounded by 3

(
N
2

)
7N/2 � 23N/2, since

71/2 ≈ 2.64575 < 23/2 ≈ 2.8284.

Remark 8. Theorem 6 is sharp for G = (Z/2Z)n, when we have at least

3 · 4N + 3N · 3N + 3

(
N

2

)
7N/2 + (log2N) · 23N/2 −O((log2N)2 · 23N/4)

triplets, where N = 2n. The first three terms come from the cases of min(|A|, |B|, |C|) =
0, 1, 2, respectively. The last terms come from, as in Remark 24, the n different groups of
index 2 in (Z/2Z)n and taking overcounting into consideration.

Remark 9. In [9], Semchankau, Shabanov, and Shkredov proved that the number of sum-
free triplets is

3 · 4N + 3N · 3N +O((3− c∗)N),

for some absolute constant c∗ > 0. Theorems 1 and 6 is an improvement on that estimates,
as we can explicit compute the constant c∗ and the base of the next exponential term.

2 Overview of the paper

We will prove Theorem 1 by considering the separate cases when min{|A|, |B|, |C|} = k.
For this, for various values of k, we fix A with |A| = k and count the ways of completing
the sum-free triplet (A,B,C). The link graph of A, denoted by HA, is the bipartite graph
with vertex set V1 ∪ V2 and edge set the pairs {y, z} where x+ y = z for some x ∈ A. For
each fixed small A, we will count the independent sets i(HA) in the link graph of A. After
taking overcounting into consideration, we conclude that the number of sum-free triplets
(A,B,C) with min{|A|, |B|, |C|} = k is Qk(p)i(HA) +O(p2k · 2p) for some polynomial Qk

in p.
The first cases, when k = 0 or 1, were dealt with in [9], and we include them here for

completeness. In Section 3, we precisely (up to the first-order term) count the independent
sets for each of the cases k 6 3. From the cases k 6 2, the number of sum-free triplets is

3 · 4p + 3p · 3p + 3

(
p

2

)
·

(
1 +
√

5

2

)2p

+O(p42p). (2)

For k = 3, we will see that the main term is Q3,1(p) · (1 +
√

2)p for some polynomial
Q3,1(p), and it comes from choices of A for which the link graph HA contains cycles C4 as
a subgraph. To show that, we apply a general result (namely, Theorem 12) for 3-regular
graphs with girth at least 5 by Perarnau and Perkins [6] to upper bound the number
of independent sets in the case the link graph does not contain C4 as a subgraph. We
obtain a lower bound on the number of independent sets by using a general result (namely,
Theorem 14) for regular graphs by Csikvári [3].
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In Section 4, we deal with the cases 4 6 k 6 εp for any fixed ε < 1/103. We make use
of an upper bound for general regular graphs (see Theorem 17), by Kahn [5], to conclude
that the number of sum-free triplets, in this case, is at most 3

(
p
4

)
(1 + o(1)) · 31p/4, lower

than the number of sum-free triplets for k = 3.
In Section 5, we use the method of hypergraph containers to give an upper bound

on the number of independent sets in the remaining case k > εp. The idea is to use a
supersaturation result for the number of sums x + y = z with x ∈ A, y ∈ B, and z ∈ C
when A,B,C are large, together with the Hypergraph Container Lemma (Theorem 22) to
obtain an upper bound on the number of independent sets of H with a large intersection
with each of the parts V0, V1 and V2. Our method generalizes for other groups as well.
Thus, we show the estimates for general abelian groups G in Section 5, and we briefly
discuss the case when G = Z/pZ in the beginning of Section 6, where we conclude the
proof of Theorem 1.

Finally, in Section 7, we prove Theorem 6 and discuss the differences for the estimates
for general abelian groups. We highlight that if one knows the number of elements of
each order in G, a careful look at our method can lead us to precise estimates in the case
k = 2. Subsequently, we examine the behavior of the estimates we obtain for different
groups G, depending on the prime factorization of its order.

3 Smaller cases: k 6 3

When |A| = 0, every choice of B and C works. In this case, i(HA) = 4p. In total, we
have 3 · 4p − 3 · 2p + 1 triplets with at least one of the sets empty.

When |A| = 1, the link graphHA is a matching of size p, which has 3p independent sets.
In total, we have 3p·(3p−1)−3p2 ·(2p−1−1)+p2(p−1) triplets with min{|A|, |B|, |C|} = 1.

Note that, for each fixed k, we need to subtract a factor of O(p2k ·2p) from the counting
of triplets (A,B,C) to avoid overcounting the cases when at least two of the sets A, B or
C have at most k elements. For the sake of simplicity, from now on, we will focus only on
counting i(HA). Hence, we will obtain a bound of the form Qk(p)i(HA) + O(p2k · 2p) for
some polynomial Qk in p. In what follows, k = |A|, and we count the independent sets
i(HA) in the link graph of A.

When |A| = 2, the link graph HA is a Hamiltonian cycle. We need the following easy
claim.

Claim 10. The number of independent sets in a cycle of length 2n is φ2n + φ−2n, where
φ = 1+

√
5

2
.

Proof. Denote by Fm+2 the number of independents sets in an m-vertex path. We break
the counting into cases according to whether a fixed vertex is in the independent set
or not. The number of independent sets in the cycle is then F2n+1 + F2n−1. To count
the independent sets in a path we repeat the procedure, breaking into cases of when an
endpoint of the path is in the independent set or not. We obtain Fm+2 = Fm+1 + Fm,
F2 = 1, and F3 = 2. Therefore, Fm is the m-th Fibonacci number.
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In this case, i(HA) = φ2n+1+φ−2n−1
√
5

+ φ2n−1+φ−2n+1
√
5

= φ2n+φ−2n, where we used φ+φ−1 =√
5 for the last equality.

In total, we have 3
(
p
2

)
·
(

1+
√
5

2

)2p
+ O(p42p) triplets with min{|A|, |B|, |C|} = 2. This

implies that Q2(p) = 3p(p−1)
2

and λ2 =
(

1+
√
5

2

)2
≈ 2.6180 on (1) above.

3.1 Case k = 3

When |A| = 3, we assume without loss of generality that A = {0, 1, x} and break into
cases depending on whether HA contains a C4 or not. For this, let us first prove the
following.

Claim 11. Let A = {0, 1, x}. The link graph HA contains C4 as a subgraph if and only
if x ∈ {−1, 2, p+1

2
}.

Proof. We write (Y, t) for the vertex corresponding to t ∈ Z/pZ in B and, similarly,
(Z, t) for t ∈ Z/pZ in C. Since the graph HA is vertex transitive, it is enough to check
when (Y, 1) is in a C4. The neighborhood of (Y, 1) is (Z, 1), (Z, 2), (Z, x+ 1). The second
neighborhood of (Y, 1) is (Y, 0), (Y, 1− x), (Y, 2), (Y, 2− x), (Y, x), (Y, x + 1). A vertex is
contained in a C4 if and only if two distinct neighbors have one extra common neighbor.
Therefore, (Y, 1) is contained in a C4 if and only if two of the above second neighbors
coincide. This is equivalent to one of the following equations to hold (we include trivial
equations here only for the sake of completeness of the proof)

0 = 2 1− x = 2 2 =x

0 = 2− x 1− x = 2− x 2 =x+ 1

0 =x 1− x =x 2− x =x

0 =x+ 1 1− x =x+ 1 2− x =x+ 1

Removing the trivial cases x = 0 and x = 1, the only solutions are x ∈ {−1, 2, p+1
2
}.

Therefore, when x 6∈ {−1, 2, p+1
2
} we make use of the following result.

Theorem 12 (Perarnau-Perkins, Corollary 6 in [6]). Let H3,6 be the point-line incidence
graph of the Fano plane, also called the Heawood graph. For any cubic n-vertex graph H
of girth at least 5,

i(H)1/n 6 i(H3,6)
1/14 = 4581/14,

with equality if and only if H is a union of copies of H3,6.

By combining the previous two results, we obtain the following when HA is bipartite
and C4-free.

Corollary 13. If A = {0, 1, x} and x 6∈ {−1, 2, p+1
2
}, then

i(HA) 6 458p/7 ≈ 2.3995p.
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The Heawood graph, the point-line incidence graph of the Fano plane, is the link graph
HA when p = 7 and x = 3, which means we have equality in one case above. For larger
values of p, the next result tells us we are not giving away too much by using this upper
bound, as it implies i(HA) > (2.38898 . . . )p.

Theorem 14 below follows from Theorem 8.1 of [3], which follows from a result in [7].
Theorem 8.1 of [3] is more general as it states that the infinite regular tree minimizes
the normalized independence polynomial over all regular graphs. Here, we only state its
immediate consequence for the total number of independent sets.

Theorem 14. Let α be the unique solution of

α

1− α
=

(
1− 2α

1− α

)d
in the interval [0, 1/2]. Let H be a d-regular bipartite graph on n vertices. Then

i(H) >

(
(1− α)d−1

α

)n/2
.

Notice we make use of this result for the 3-regular graph HA. When d = 3, the
unique real solution of x(1 − x)2 = (1 − 2x)3 is α ≈ 0.24109 . . . , which implies i(HA) >
(2.38898 . . . )n.

Now, we restrict ourselves to the case A = {0, 1, x} with x ∈ {−1, 2, p+1
2
}. We will

use the same notation as in Claim 11, i.e., we write (Y, t) for the vertex corresponding to
t ∈ Z/pZ in B and, similarly, (Z, t) for t ∈ Z/pZ in C. In the next claims, we will see
that the link graphs HA are isomorphic for x ∈ {−1, 2, p+1

2
} and then we may assume,

without loss of generality, that we have A = {−1, 0, 1} and count the independent sets
i(HA) of the link graph HA.

Claim 15. The three graphs HA are isomorphic when A = {0, 1, x} and x ∈ {−1, 2, p+1
2
}.

Proof. Consider the function ϕ given by

ϕ((X, j)) =


(
Y, j(p+1)

2

)
if X = Y(

Z, (j+1)(p+1)
2

)
if X = Z

with the second coordinate taken modulo p.
The function ϕ is a graph isomorphism between the graph obtained for x = −1

and the one from x = (p + 1)/2, since it sends (Y, j) to (Y, j · p+1
2

) and the neighbors

(Z, j−1), (Z, j), (Z, j+1) of (Y, j) for x = −1 to (Z, j · p+1
2

), (Z, j · p+1
2

+ p+1
2

), (Z, j · p+1
2

+1),

neighbors of (Y, j · p+1
2

) for x = p+1
2

.
Consider the function θ given by

θ((X, j)) =

{
(Y, j) if X = Y

(Z, j + 1) if X = Z

with the second coordinate taken modulo p. Similarly, θ is a graph isomorphism between
the graph obtained for x = −1 and the one from x = 2.
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Similarly to Claim 10, we can use recursion to count the independent sets in the
graph HA when A = {−1, 0, 1}. We obtain the following Claim, which we prove, using
generating function, in the Appendix.

Claim 16. Let A = {−1, 0, 1}. For p > 3, the link graph HA has

i(HA) = (1 +
√

2)p + (1−
√

2)p + 1.

For the polynomial terms Q3,1(p) and Q3,2(p) in Theorem 1, note that if we choose 2
elements in A we have 3 possible options for the third element to form a graph isomorphic
to the one with A = {−1, 0, 1}. We count each triplet 3 times this way, so we get
Q3,1(p) = 3

(
p
2

)
= 3 · 3

p−2 ·
(
p
3

)
possible sets corresponding to link graphs isomorphic to

HA with A = {−1, 0, 1}. The number of remaining 3-sets is Q3,2(p) = 3
(
p
3

)
− Q3,1(p) =

3 · p−5
p−2 ·

(
p
3

)
.

In total, the number of triplets with min{|A|, |B|, |C|} = 3 is bounded from above by

Q3,1(p) · (
√

2 + 1)p +Q3,2(p) · 458p/7 +O(p62p), (3)

and from below by

Q3,1(p) · (
√

2 + 1)p +Q3,2(p) · (2.38898 . . . )p +O(p62p). (4)

4 Small case: 4 6 k 6 εp

To estimate the triplets with min{|A|, |B|, |C|} = k for k > 4 we use the following result.

Theorem 17 (Kahn, [5]). If H is a bipartite d-regular graph on n vertices, then

i(H) 6 i(Kd,d)
n/2d = (2d+1 − 1)n/2d.

Hence, the number of independent sets in a 4-regular bipartite graph on 2p vertices is
at most 31p/4, and in a k-regular bipartite graph on 2p vertices for k > 5 is at most 63p/5.

Therefore, the number of triplets for which 4 6 k 6 εp is at most

3

(
p

4

)
31p/4 +

∑
56k6εp

3

(
p

k

)
· 63p/5 6 3

(
p

4

)
31p/4 + 3 · 63p/5 ·

∑
k6εp

(
p

k

)
.

For the sum
∑
k6εp

(
p
k

)
, we use the standard binomial estimates

(
n
k

)
6 (en/k)k to obtain

∑
k6εp

(
p

k

)
6 2 ·

(
eε(1+log(1/ε))

)p
.

We conclude that, for ε < 1/103, the number of triplets with 4 6 min{|A|, |B|, |C|} 6 εp
is at most (

3

(
p

4

)
+ o(1)

)
31p/4. (5)
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5 Big case: k > εp

To count the triplets (A,B,C) with |A|, |B|, |C| > εp, we use the method of hypergraph
containers developed by Balogh, Morris, and Samotij [2], and, independently, by Saxton
and Thomasson [8]. Since its development, the method has found several applications, in
particular for counting sum-free sets [1]. We highlight that a container theorem for sum-
free subsets of abelian groups was found earlier by Green and Ruzsa (see Proposition 2.1
of [4]) using Fourier analysis. Here, we need a 3-partite variant of their result, hence we
make use of the container lemma for general hypergraphs.

Throughout this section, we will state and prove the results for a general abelian group
G and at the end of the section, we discuss the differences when G = Z/pZ.

5.1 Supersaturation

To use the container method, we need the supersaturation result (Proposition 20) below.
We highlight that Propositions 20 and 25 are very similar in essence to Remark 20 of [9].

Definition 18. Given A,B ⊆ G with G an abelian group and given ε ∈ (0, 1), we write
A+ε B for the set of x ∈ G having at least ε|G| representations as a sum a+ b = x with
a ∈ A and b ∈ B.

As in [9], we obtain a supersaturation result as a corollary of the following Lemma.

Lemma 19 (Theorem 6 in [9]). Let G be an abelian group, and A,B ⊂ G be sets. Let
ε ∈ (0, 1) be such that

√
ε|G| < |A|, |B|. Let H be a maximal proper subgroup of G. Then

|A+ε B| > min{|G|, |A|+ |B| − |H|} − 3
√
ε|G|.

Proposition 20. Fix ε ∈ (0, 1). Then for sufficiently large N the following holds. Let G
be an abelian group of order N and let A,B,C ⊂ G be sets. There exists σ > 0 such that
if |A|, |B|, |C| > εN and |A| + |B| + |C| >

(
3
2

+ ε
)
N then there are at least σN2 sums

x+ y = z with x ∈ A, y ∈ B, and z ∈ C.

Proof. We know that |A|, |B| > εN > (ε/4)N . By Lemma 19, we get

|A+ε2/16 B| > |A|+ |B| − |H| −
(

3ε

4

)
N.

Since H is a proper subgroup, we have |H| 6 N/2 and then

|A+ε2/16 B| > |A|+ |B| −
N

2
−
(

3ε

4

)
N.

We obtain

|C ∩ (A+ε2/16 B)| > |C|+ |(A+ε2/16 B)| −N >((
3

2
+ ε

)
N − |A| − |B|

)
+

(
|A|+ |B| − N

2
−
(

3ε

4

)
N

)
−N =

(ε
4

)
N.

Then there are at least (ε3/64)N2 sums of the form x + y = z with x ∈ A, y ∈ B and
z ∈ C. This concludes the proof of the proposition with σ = ε3/64.
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5.2 Containers

Now, we state the Hypergraph Container Lemma (Theorem 22) and obtain the upper
bound on the number of triplets (A,B,C) with |A|, |B|, |C| > εp. First, we need some
definitions.

Definition 21. Fix a r-regular hypergraph G with average degree d; fix v ∈ V (G); fix
2 6 j 6 |V (G)| and τ > 0. Define

d(j)(v) := max{|S| : v ∈ A ⊆ V (G), |S| = j}.

Define δj with the equation

δjτ
j−1d|V (G)| =

∑
v

d(j)(v).

Finally, define the co-degree function δ(G, τ) with

δ(G, τ) := 2(r
2)−1

r∑
j=2

2−(j−1
2 )δj.

If d = 0 define δ(G, τ) = 0.

Theorem 22 (Corollary 3.6 in [8]). Let G be an r-uniform hypergraph with vertex set
[N ]. Let 0 < ε, τ < 1/2. Suppose that τ < 1/(200 · r · r!2) and δ(G, τ) 6 ε/(12r!). Then
there exists c = c(r) 6 1000 · r · r!3 and a collection C of vertex subsets such that

(i) every independent set in G is a subset of some D ∈ C;

(ii) for every D ∈ C, e(G[D]) 6 εe(G);

(iii) log |C| 6 cNτ · log(1/ε) · log(1/τ).

Claim 23. Fix ε ∈ (0, 1). Then for sufficiently large N , the number of triplets A,B,C ⊂
G with min{|A|, |B|, |C|} > εN is at most 2( 3

2
+2ε)N .

Proof. Fix ε ∈ (0, 1). Using Proposition 20, we obtain a σ > 0. We choose ε0 > 0
sufficiently small, in particular with ε0 < σ. We apply Theorem 22 to the 3-uniform
hypergraph H. First, realize that every vertex in H has degree N , hence the average
degree of H is N . For any v ∈ V (H), we have d(2)(v) = d(3)(v) = 1. Therefore,

δ2τ
1 · 3N2 =

∑
v

d(2)(v) = 3N ⇒ δ2 = 1/Nτ,

δ3τ
2 · 3N2 =

∑
v

d(3)(v) = 3N ⇒ δ3 = 1/Nτ 2.

We obtain that
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δ(H, τ) =
4

Nτ
+

2

Nτ 2
.

Take τ = 400ε−10 N−1/2, so that δ(H, τ) = 4
Nτ

+ 2
Nτ2

6 ε0
72

. We can use Theorem 22
with the given τ and ε0 to get a collection of containers C with size

log |C| 6 c · ε−10 N1/2 · log(1/ε0) · log(1/τ) 6 Cε0N
1/2 log(N),

with Cε0 some positive constant depending on ε0.
Now, suppose we fix a container D ∈ C with D∩X = A∗, D∩Y = B∗ and D∩Z = C∗.

Note that the independent sets contained in containers with min{|A∗|, |B∗|, |C∗|} < ε|G|
are not included in the count for this claim, we already counted them in the previous
sections. Assume, then, that |A∗|, |B∗|, |C∗| > εN .

If |A∗|+ |B∗|+ |C∗| > (3/2+ε)N , then by Proposition 20, we get a contradiction with
e(H[D]) > σN2 and e(H[D]) 6 ε0e(H) < σN2. Then |A∗|+ |B∗|+ |C∗| 6

(
3
2

+ ε
)
N , and

the number of independent sets contained in D is at most the number of subsets in it,
2(3/2+ε)N . Therefore, for sufficiently small ε0, we have at most

2(3/2+ε)N+Cε0N
1/2 log(N) < 2(3/2+2ε)N

independent sets.

Remark 24. As mentioned in Remark 22 of [9], the exponent 3/2 in Claim 23 is best
possible. If H is a subgroup of index 2, A,B ⊂ H and C ⊂ G\H, then (A,B,C) is a
sum-free triple. Therefore, in the case G has a subgroup of index 2, there are at least
23N/2 triplets.

6 Proof of Theorem 1

When G = Z/pZ, there is only one proper subgroup H for which |H| = 1. Hence,
adapting the proof of Proposition 20 we obtain the following.

Proposition 25. Fix ε ∈ (0, 1). Then for sufficiently large p the following holds. Let
A,B,C ⊂ Z/pZ be sets. There exists σ > 0 such that if εp < |A|, |B|, |C| and |A|+ |B|+
|C| > (1 + ε) p then there are at least σp2 sums x+ y = z with x ∈ A, y ∈ B, and z ∈ C.

An alternative way to prove Proposition 25 directly is by using the following Lemma.

Lemma 26 (Theorem 5 in [9]). Let A,B ⊂ Z/pZ be sets and ε ∈ (0, 1) be a real number,
such that

√
εp < |A|, |B|. Then

|A+ε B| > min{p, |A|+ |B|} − 2p
√
ε.

Similarly to the proof of Claim 23, but now using Proposition 25, we obtain the following.
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Claim 27. Fix ε ∈ (0, 1). Then for sufficiently large p, the number of sum-free triplets
A,B,C ⊂ Z/pZ with min{|A|, |B|, |C|} > εp is at most

2(1+2ε)p. (6)

Now that we covered all the possible cases for k, we can proceed to prove Theorem 1.

Proof of Theorem 1. Using the same setting described in the introduction, we count the
ordered sum-free triplets (A,B,C) such that min{|A|, |B|, |C|} = k. We have an upper
bound for the number of triplets in the cases k = 0, 1, 2 on (2); for k = 3 on (3); for
4 6 k 6 εN on (5) and finally for k > εN on (6). Summing up the upper bounds, for
ε < 1/103, we obtain that there are at most

3·4p+3p·3p+3

(
p

2

)(
1 +
√

5

2

)2p

+Q3,1(p)·(1+
√

2)p+Q3,2(p)·458p/7+3

(
p

4

)
(1+o(1))·31p/4

many triplets, where we add the missing terms 2(1+2ε)p and O(p62p) to the o(31p/4) term.
Now, for the lower bound, the triplets for the cases k = 0, 1, 2 are counted on (2). For

the triplets in the case k = 3, we obtained a lower bound on (4). The amount of triplets

that are overcounted in both calculations is upper bounded by 9
(
p
3

)2
2p. This error term

is omitted in the final result, since we truncate the value of (1−α)2/α and write 2.38898
instead. The sum of the two lower bounds shows there are at least

3 · 4p + 3p · 3p + 3

(
p

2

)(
1 +
√

5

2

)2p

+Q3,1(p) · (1 +
√

2)p +Q3,2(p) · 2.38898p

many triplets.

7 General abelian groups

Let (G,+) be an additive abelian group of order N . Using the same methods as in the
case G = Z/pZ, we now prove the following similar result.

Theorem 6. Fix ε ∈ (0, 1). Then for sufficiently large N the following holds. Let
(G,+) be an additive abelian group of order N . The number of ordered triplets A,B,C ⊆
G such that there is no triplet a ∈ A, b ∈ B and c ∈ C with a+ b = c is at most

3 · 4N + 3N · 3N + 2(3/2+3ε)N .

Proof. Assume that for a fixed integer k we have min{|A|, |B|, |C|} = k and |A| = k.
When k = 0 and k = 1 we obtain the same number of triplets A,B,C as in G = Z/pZ.
We get exactly

3 · 4N − 3 · 2N + 1 (7)
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triplets for k = 0 and

3N · (3N − 1)− 3N2 · (2N−1 − 1) +N2(N − 1) (8)

triplets for k = 1.
As in Section 4, we use Theorem 17 to upper bound the triplets with 2 6 k 6 εN . The

number of independent sets in a 2-regular bipartite graph on 2N vertices is at most 7N/2,
and in a k-regular bipartite graph on 2N vertices for k > 3 is at most 15N/3. Therefore,
for sufficiently small ε, the number of triplets with 2 6 min{|A|, |B|, |C|} 6 εN is at most(

3

(
N

2

)
+ o(1)

)
7N/2. (9)

For k > εN , by Claim 23, we obtain that the number of triplets is at most

2(3/2+2ε)N . (10)

The upper bounds in (7), (8), (9) and (10) give together the desired upper bound for the
total number of triplets. Note that even that we obtained the bound (9) only for small ε,
the final result for all ε ∈ (0, 1) follows from it.

7.1 More precise computations in the general case

Write N = pα1
1 · . . . · pαt

t where p1 < · · · < pt are prime numbers and αi > 1. Then, we can
write G = G1 × · · · ×Gt, where |Gi| = pαi

i . Given p1, we can get better estimates for the
upper and lower bounds in the number of ordered triplets (A,B,C). We highlight that
the following Theorem implies Theorem 6.

Theorem 28. Fix ε ∈ (0, 1). Then for sufficiently large N the following holds. Let (G,+)
be an additive abelian group of order N = pα1

1 · . . . · pαt
t . Let ε ∈ (0, 1). The number of

ordered triplets A,B,C ⊆ G such that there is no triplet a ∈ A, b ∈ B and c ∈ C with
a+ b = c is at most

3 · 4N + 3N · 3N + 2(1+1/p1+2ε)N + 3

(
N

2

)
(φ2p1 + φ−2p1)N/p1 + 3

(
N

3

)
(1 + o(1))15N/3,

and at least

3 · 4N + 3N · 3N + 2(1+1/p1)N +
3N

2
(φ2p1 + φ−2p1)N/p1 .

Proof. We proceed as in the proof of Theorem 6 and obtain the same bounds when
k = 0, 1. When k = 2, we write A = {x, y}. In this case, we have that HA is the disjoint
union of cycles of length 2 ·o(x−y), where o(x−y) denotes the order of the element x−y
in G. We count the independent sets in HA using Claim 10.

We conclude that there are

N∑
t=2

at
N − 1

· 3
(
N

2

)
(φ2t + φ−2t)N/t =

3N

2
φ2N

N∑
t=2

at · (1 + φ−4t)N/t (11)
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triplets with min{|A|, |B|, |C|} = 2, where at is the number of elements of order t in G.
As (1 + φ−4x)N/x is a decreasing function in x and at = 0 for 1 < t < p1, the maximum
value of the sum in (11) is obtained when ap1 = N − 1. Thus, for k = 2, the number of
triplets is at most

3

(
N

2

)
(φ2p1 + φ−2p1)N/p1 . (12)

Moreover, as p1 divides |G|, there is at least one element of order p1 in G. Hence, we have
at least

3N

2
(φ2p1 + φ−2p1)N/p1 (13)

many triplets.
When 3 6 k 6 εN and ε is small, we follow the same method as in Section 4, which

gives that there are at most (
3

(
N

3

)
+ o(1)

)
15N/3 (14)

many triplets.
For the case k > εN , we note that the maximum order of a proper subgroup is N/p1.

Similarly to the proof of Claim 23, by Lemma 19 with H of order |H| = N/p1, we obtain
that there are at most

2(1+1/p1+2ε)N (15)

many triplets.
For a lower bound, notice that if H is a subgroup of index p1, A,B ⊂ H and C ⊂ G\H,

then (A,B,C) is a sum-free triple. Therefore there are at least

2(1+1/p1)N (16)

many triplets.
Similarly to the proof of Theorem 6, we conclude by adding the bounds for all possible

k. From (7), (8), (12), (14) and (15), we obtain that for small enough ε there are at most

3 · 4N + 3N · 3N + 2(1+1/p1+2ε)N + 3

(
N

2

)
(φ2p1 + φ−2p1)N/p1 + 3

(
N

3

)
(1 + o(1))15N/3

triplets, and from (7), (8), (13) and (16), we obtain that there are at least

3 · 4N + 3N · 3N + 2(1+1/p1)N +
3N

2
(φ2p1 + φ−2p1)N/p1

many triplets. Finally, note that the upper bound for all ε ∈ (0, 1) follows from the upper
bound for small ε.

At last, we discuss the estimates we obtain from Theorem 28 for small values of p1.
For p1 = 2, we have more triplets coming from the k > εN case, since

21+1/2 = 81/2 > 71/2 = (φ4 + φ−4)1/2 ≈ 2.64575 > 151/3 ≈ 2.466.
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For p1 = 3, we have more triplets coming from k = 2 case, then k > εN , then k = 3,
since

(φ6 + φ−6)1/3 = 181/3 > 161/3 = 21+1/3 > 151/3.

For p1 = 5, we have more triplets coming from k = 2 case, then k = 3, then k > εN ,
since

(φ10 + φ−10)1/5 = 1231/5 ≈ 2.618 > 151/3 ≈ 2.466 > 21+1/5 ≈ 2.297.
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A Proof of Claim 16

Claim 16. Let A = {−1, 0, 1}. For p > 3, the link graph HA has

i(HA) = (1 +
√

2)p + (1−
√

2)p + 1.

Proof. We count the independent sets in HA recursively. First, assume (Y, 0) is part of
the independent set. So (Z,−1), (Z, 0) and (Z, 1) are not in the independent set I. Let
Gp denote the graph obtained by removing (Y, 0) and N((Y, 0)) from the original graph
HA. Let ap denote the number of independent sets on Gp.

(Z, p− 2)

(Y, p− 1)(Y, 1) (Y, 2)
. . .

(Z, 2) (Z, 3) . . .

Figure 1: The graph Gp.

From here we will calculate ap using recurrence. Assume (Y, 1) is in the independent
set. The graph obtained by erasing (Y, 1) and N((Y, 1)) from Gp is isomorphic to Gp−1.
If neither (Y, 1) and (Z, 2) are part of the independent set, erasing them we get again a
graph isomorphic to Gp−1.

The remaining case is when (Z, 2) belongs to the independent set. Let Hp be the
graph obtained after erasing (Z, 2) and its neighbors from Gp, and let bp be the number
of independent sets in Hp.

(Z, p− 2)

(Y, p− 1)

(Z, 3)

(Y, 4)
. . .

(Z, 4) . . .

Figure 2: The graph Hp.

Then we have
ap = 2ap−1 + bp.

Now we proceed with the same recursive method for bp. If (Z, 3) is part of the inde-
pendent set, by erasing it and its neighbors we get a graph isomorphic to Hp−1. If neither
(Z, 3) nor (Y, 4) belong to I, by erasing them we get a graph isomorphic to Hp−1.
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Finally, if (Y, 4) belongs to the independent set we get a graph isomorphic to Gp−4, so

bp = 2bp−1 + ap−4.

We can calculate a3 = 4, a4 = 9 and b4 = 1, b5 = 3, b6 = 8. Define a2 := 2, so the equation
b6 = 2b5 + a2 holds. Let F (x) =

∑
p>2 apx

p and G(x) =
∑

p>4 bpx
p.

The equation bp = 2bp−1 + ap−4 holds for p > 6. The equation ap = 2ap−1 + bp holds
for p > 4.

From the equation bp = 2bp−1 + ap−4 and the first terms, we have F (x) = 2xF (x) +
G(x) + 2x2. So

G(x) = F (x)− 2xF (x)− 2x2.

From the equation bp = 2bp−1 + ap−4 and the first terms, we have

G(x) = 2xG(x) + x4F (x) + x4 + x5.

Substituting, we get

F (x)− 2xF (x)− 2x2 = 2xF (x)− 4x2F (x)− 4x3 + x4F (x) + x4 + x5

F (x)
(
1− 4x+ 4x2 − x4

)
= x4 + x5 − 4x3 + 2x2

F (x) = − x4 + x5 − 4x3 + 2x2

(x− 1)2(x+ 1 +
√

2)(x+ 1−
√

2)
.

F (x) = −x2 x2 + 2x− 2

(x− 1)(x+ 1 +
√

2)(x+ 1−
√

2)
.

From here we can use partial fractions, the fraction is irreducible. We get

ap =
1

4
(
√

2 + 1)p +
1

4
(1−

√
2)p +

1

2
for p > 2.

We return to the initial setting. Assume (Z, 0) is in the independent set. After
erasing (Z, 0) and its neighbors from HA, we get a graph isomorphic to Gp and it has ap
independent sets.

Assume neither (Y, 0) or (Z, 0) belong to the independent set. Let G∗p be the graph
obtained after deleting (Y, 0) and (Z, 0) fromHA. And let cp be the number of independent
sets in G∗p.

(Z, p− 1)

(Y, p− 1)(Y, 1) (Y, 2)
. . .

(Z, 1) (Z, 2) . . .

Figure 3: The graph G∗p.
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If (Y, 1) is on the independent set, we erase it and its two neighbors so we get a graph
and call it H∗p . If (Z, 1) is on the independent set, we erase it we get a graph isomorphic
to H∗p . Call dp the number of independent sets in H∗p .

(Z, p− 1)

(Y, p− 1)(Y, 2) (Y, 3)
. . .

(Z, 3) (Z, 4) . . .

Figure 4: The graph H∗p .

Finally, if neither of (Y, 1) or (Z, 1) is on the independent set, we get a graph isomorphic
to G∗p−1. We obtained the recursion

cp = 2dp + cp−1.

Now, to count how many independent sets there are in H∗p , we have that if (Y, 2) is not
on I then erasing it gives a graph isomorphic to G∗p−2. If (Y, 2) is on I, erasing it and its
neighbor we get a graph isomorphic to H∗p−1. Therefore

dp = cp−2 + dp−1.

We realize c2 = 3, c3 = 7 and d3 = 2, d4 = 5. Let F ∗(x) =
∑

p>2 cpx
p and G∗(x) =∑

p>3 dpx
p. The recursion cp = 2dp + cp−1 works for p > 3. In generating function form,

the first recursion becomes

F ∗(x) = 2G∗(x) + xF ∗(x) + 3x2.

G∗(x) = (F ∗(x)− xF ∗(x)− 3x2)/2.

The recursion dp = cp−2 + dp−1 holds for p > 4 and it becomes

G∗(x) = x2F (x) + xG(x) + 2x3.

After substituting we obtain

F ∗(x) = − x3 + 3x2

−1 + 2x+ x2
.

Again using partial fractions, we get

cp =
1

2
(
√

2 + 1)p +
1

2
(1−

√
2)p for p > 3.

We have that the total number of independent sets is

2ap + cp = (
√

2 + 1)p + (1−
√

2)p + 1.
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