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Abstract

Ryser’s conjecture says that for every r-partite hypergraph H with matching
number ν(H), the vertex cover number is at most (r − 1)ν(H). This far-reaching
generalization of König’s theorem is only known to be true for r 6 3, or when
ν(H) = 1 and r 6 5. An equivalent formulation of Ryser’s conjecture is that in
every r-edge coloring of a graph G with independence number α(G), there exists at
most (r − 1)α(G) monochromatic connected subgraphs which cover the vertex set
of G.

We make the case that this latter formulation of Ryser’s conjecture naturally
leads to a variety of stronger conjectures and generalizations to hypergraphs and
multipartite graphs. Regarding these generalizations and strengthenings, we survey
the known results, improving upon some, and we introduce a collection of new
problems and results.
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1 Introduction

Let H be a hypergraph. We say that H is k-uniform if every edge of H contains exactly k
vertices. We say thatH is r-partite if there exists a partition of V (H) into sets {V1, . . . , Vr}
such that for every edge e of H, |e ∩ Vi| 6 1 for all i ∈ [r]; we use bipartite to mean 2-
partite. Note that throughout the paper we won’t assume that an r-partite hypergraph is
necessarily r-uniform. A matching in H is a set of pairwise disjoint edges. A vertex cover
of H is a set of vertices T such that each edge of H contains a vertex from T . We denote
the size of a largest matching in H by ν(H) and we denote the size of a minimum vertex
cover of H by τ(H). Note that for every hypergraph H we have ν(H) 6 τ(H), since a
minimum vertex cover must contain at least one vertex from each edge in a maximum
matching.

The following theorem of König from 1931, is one of the cornerstone results in graph
theory.

Theorem 1 (König [41]). For every bipartite graph H, τ(H) 6 ν(H).

In the 1970’s, Ryser made the following conjecture which would generalize König’s
theorem to r-partite hypergraphs.

Conjecture 2 (Ryser (see [38])). For every r-partite hypergraph H, τ(H) 6 (r−1)ν(H).

A hypergraph H is intersecting if every pair of edges has non-empty intersection;
equivalently H is intersecting if ν(H) = 1. The most well-studied special case of Ryser’s
conjecture is that for every r-partite intersecting hypergraph H, τ(H) 6 r − 1.

Aside from the case r = 2 which is König’s theorem, Ryser’s conjecture has only been
verified in the following cases: r = 3 by Aharoni [4], r = 4 and ν = 1 by Tuza [57], r = 5
and ν = 1 by Tuza [57].

Finally, we note that in [38], Ryser’s conjecture was not orginally formulated in the
way we have stated above. The original, equivalent, formulation is as follows: Let r > 2
and let A be a r-dimensional 0, 1-matrix. The term rank of A, denoted ν(A), is the
maximum number of 1’s, such that no pair is in the same (r−1)-dimensional hyperplane.
The covering number of A, denoted τ(A), is the minimum number of (r− 1)-dimensional
hyperplanes which contain all of the 1’s of A. In this language, Ryser’s conjecture says
that if A is an r-dimensional 0, 1-matrix, then τ(A) 6 (r − 1)ν(A).

1.1 Fractional versions of Ryser’s conjecture

Given a hypergraph H = (V,E), a fractional matching is a function m : E → [0, 1] such
that for all v ∈ V ,

∑
e3vm(e) 6 1, and a fractional vertex cover is a function t : V → [0, 1]

such that for all e ∈ E,
∑

v∈e t(v) > 1. We let

ν∗(H) = max

{∑
e∈E

m(e) : m is a fractional matching on H

}
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and

τ ∗(H) = min

{∑
v∈V

t(v) : t is a fractional vertex cover on H

}
.

All three fractional versions of Ryser’s conjecture are known to be true (that is, re-
placing at least one of τ or ν with τ ∗ or ν∗ respectively):

First, it is well-known consequence of the duality theorem in linear programming that
τ ∗(H) = ν∗(H) for all hypergraphs H. For all r-partite hypergraphs H, Lovász [45]
proved τ(H) 6 r

2
ν∗(H) and Füredi [26] proved τ ∗(H) 6 (r − 1)ν(H).

1.2 Duality

We say that a hypergraph H is connected if for all u, v ∈ V (H) there exists e1, . . . , ek ∈
E(H) such that u ∈ e1, v ∈ ek and ei ∩ ei+1 6= ∅ for all i ∈ [k − 1]. A component of a
hypergraph H is a maximal connected subgraph of H. Given a set of vertices A ⊆ V (H),
let H[A] denote the subhypergraph of H induced by A, and if H[A] has no edges, we
say that A is an independent set. The size of a maximum independent set of vertices
in H is denoted by α(H). An r-coloring of the edges of a hypergraph H is a function
c : E(H)→ [r]; equivalently, a partition of E(H) into (possibly empty) sets {E1, . . . , Er}.
We say an edge e ∈ E(G) is color i if c(e) = i; equivalently, e ∈ Ei. In an r-colored
hypergraph H, a monochromatic cover of H is a set T of monochromatic connected
subgraphs of H such that V (H) = ∪T∈T V (T ). For a positive integer t, a monochromatic
t-cover of H is a monochromatic cover of order at most t. Let tcr(H) be the minimum
integer t such that in every r-coloring of the edges of H, there exists a monochromatic
t-cover of H. Note that since every connected subgraph contains a spanning tree, we can
think of the connected subgraphs in a monochromatic cover as trees; this explains the
notation “tc” which stands for “tree cover.”

In this language, the well known remark of Erdős and Rado that a graph or its com-
plement is connected (see [11]), can be formulated as tc2(Kn) = 1.

Gyárfás [29] noted that Ryser’s conjecture is equivalent to the following statement
about edge colored graphs.

Conjecture 3 (Ryser). For every graph G and every integer r > 2, tcr(G) 6 (r−1)α(G).

So in particular, König’s theorem can be reformulated as follows.

Theorem 4 (König). For any graph G, tc2(G) 6 α(G).

To see why this equivalence holds, given an r-colored graph G, we let H be a hyper-
graph where the vertex set is the set of monochromatic components in G which is naturally
partitioned into r parts depending on the color of the component, and a set of vertices
in H forms an edge if the corresponding set of components has non-empty intersection in
G and is maximal with respect to this property. One can see that an independent set of
order m in G will correspond to a matching of order m in H, and a monochromatic cover
of G will correspond to a vertex cover of H.
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On the other hand, given an r-partite hypergraph H with vertex partition {V1, . . . , Vr},
we let G be a graph with V (G) = E(H) and we put an edge of color i between e, f ∈ V (G)
if and only if e∩f ∩Vi 6= ∅. Since edges from H can intersect in more than one set, G will
be an r-colored multigraph (or a r-multicolored graph) in which every monochromatic
component is a clique. Note that a matching of order m in H will correspond to an inde-
pendent set of order m in G, and a vertex cover of H will correspond to a monochromatic
cover of G (in which all of the monochromatic components are cliques).

We have now seen that there are at least three equivalent ways of stating Ryser’s
conjecture. For the remainder of the paper we focus on these two.

(R1) For every r-partite hypergraph H, τ(H) 6 (r − 1)ν(H).

(R2) For every graph G, tcr(G) 6 (r − 1)α(G).

Now suppose we have two r-colored graphs G and G′ on the same vertex set V such
that for all i ∈ [r], the components of color i in G and the components of color i in G′

give the same partition of V . In the above discussion, we see that from G and G′, we
will derive the exact same r-partite hypergraph H. On the other hand, given an r-partite
hypergraph H, we will only derive a single r-colored graph G.

This brings us to one of the main themes of this paper. It is certainly true that (R1)
feels most natural in that it directly generalizes the well known König’s theorem. However,
by stating Ryser’s conjecture in terms of (R2), we can access a whole host of interesting
strengthenings and generalizations which have no analogue in the r-partite hypergraph
setting. For instance we can ask if there is a monochromatic cover T in which every
subgraph in T has small diameter, or whether T can be chosen so that subgraphs in T
are pairwise disjoint (i.e. T forms a partition rather than just a cover). Furthermore, we
can generalize the problem to settings like complete multipartite graphs and hypergraphs.
In Section 8 we give many more such examples.

Finally, we make note of the following trivial upper bound on tcr(G) in the (R2)
language.

Fact 5. Let r > 2. For all graphs G, tcr(G) 6 rα(G).

1.3 Lower bounds

A projective plane of order q is a (q + 1)-uniform hypergraph on q2 + q + 1 vertices and
q2+q+1 edges such that each pair of vertices is contained in exactly one edge. A truncated
projective plane of order q is a (q+ 1)-uniform hypergraph on q2 + q vertices and q2 edges
obtained by deleting one vertex v from a projective plane of order q and removing the
q + 1 edges which contained v. An affine plane of order q is a q-uniform hypergraph on
q2 vertices and q2 + q edges obtained by deleting one edge e from a projective plane of
order q and removing the q + 1 vertices which are contained in e. Note that truncated
projective planes and affine planes are duals of each other in the geometric sense where
the roles of lines and points are switched.

It is well known that a projective plane of order q exists whenever q is a prime power
(and it is unknown whether there exists a projective plane of non-prime power order).
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Also it is clear that a truncated projective plane of order q and an affine plane of order q
exist if and only if a projective plane of order q exists.

A truncated projective plane H of order r− 1 is an intersecting r-uniform hypergraph
with vertex cover number r − 1 and if we take ν vertex disjoint copies of H, we have an
r-uniform hypergraph with matching number ν and vertex cover number (r − 1)ν. Thus
Ryser’s conjecture is tight for a given value of r whenever a truncated projective plane H
of order r − 1 exists.

An affine plane H of order r−1 is an (r−1)-uniform hypergraph with edge chromatic
number r and edge cover number r−1. From α vertex disjoint affine planes of order r−1,
we can create an r-colored graph G with independence number α such that tcr(G) =
(r − 1)α.

So we have the following fact.

Fact 6. Let r > 2 and α > 1 be integers. If there exists an affine plane of order r − 1,
then for all n > (r − 1)2α there exists a graph G on n vertices with α(G) = α such that
tcr(G) > (r − 1)α.

Finding matching lower bounds when affine plane of order r − 1 does not exist is an
active area of research with some interesting recent results ([3], [2], [5], [37]); however, it
is still unknown whether for all r > 2 and α > 1, there exists a graph G with α(G) = α
such that tcr(G) > (r − 1)α. The best general result is due to Haxell and Scott [37] who
show that for all r > 5, there exists a graph G such that tcr(G) > (r − 4)α(G).

Finally, we note that most efforts to improve the lower bound have focused on the
case α(G) = 1 because if one can prove that tcr(K) > r− 1 for a complete graph K, then
by taking α disjoint copies of K, we obtain a graph G such that tcr(G) > (r − 1)α(G).
It was shown in [36] that for r = 3, this is essentially the only such example. However, it
was shown in [1] that for r = 4, there is an example which is different than two disjoint
4-colored complete graphs and a more general example was given in [13].

1.4 Large monochromatic components

We now briefly discuss the related problem of finding large monochromatic components
in r-colored graphs.

Theorem 7 (Füredi [26] (see Gyárfás [31])). In every r-coloring of the edges of a graph
G with n vertices, there exists a monochromatic component of order at least n

(r−1)α(G)
.

In the dual language, in every r-partite hypergraph H with n edges, there exists a vertex
of degree at least n

(r−1)ν(H)
.

Note that if true, Ryser’s conjecture implies Theorem 7.

1.5 Notation

Given a positive integer k, we let [k] = {1, 2, . . . , k}.
Let G be a graph. For sets A,B ⊆ V (G), an A,B-edge is an edge with one endpoint

in A and the other in B. If A = {v}, we write v,B-edge instead of {v}, B-edge. We
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write δ(A,B) for min{|N(v) ∩ B| : v ∈ A}. If A and B are disjoint, we let [A,B] be the
bipartite graph induced by the sets A and B. Given k > 2, we let Kk be the family of all
complete k-partite graphs.

Given a set S we say that G is S-colored if the edges of G are colored from the set S.
Given an integer r, we say that G is r-colored if the edges of G are colored with r colors
(unless otherwise stated, the set of colors will be [r]). Given an r-coloring of G, say
c : E(G) → [r], and a set S ⊆ [r], we let GS be the S-colored graph on V (G) with
E(G) = {e ∈ E(G) : c(e) ∈ S}. If S = {i} or S = {i, j}, we simply write Gi or Gi,j

respectively.

2 Overview of the paper

In this section we give a detailed overview of the results in the paper. In addition,
we discuss a variety of other generalizations and strengthenings of Ryser’s conjecture in
Section 8 and we collect some observations about a hypothetical minimal counterexample
to Ryser’s conjecture in Appendix A.

2.1 Monochromatic covers with restrictions on the colors

We begin with a few conjectures which can be stated both in terms of intersecting r-partite
hypergraphs (R1) and in terms of r-colored complete graphs (R2).

The results mentioned here are proved in Section 3 and Section 5.

Conjecture 8. For all integers r > 2, all S ⊆ [r], and all r-colorings of a complete graph
K, there exists a monochromatic (r − 1)-cover consisting entirely of subgraphs having a
color in S or consisting entirely of subgraphs having a color in [r] \ S.

In the dual (R1) language, Conjecture 8 says that for every r-partite intersecting
hypergraph with vertex partition {V1, . . . , Vr} and every S ⊆ [r], there is a vertex cover
of order r − 1 which is contained in {Vi : i ∈ S} or contained in {Vi : i ∈ [r] \ S}.

We prove Conjecture 8 for r 6 4. In the process of doing so, we formulate three other
conjectures (all of which imply the α = 1 case of Ryser’s conjecture).

Conjecture 9. For all integers r > 2 and all K ∈ Kr, tcr−1(K) 6 r − 1. In particular,
this implies that for every r-coloring of a complete graph K and every color i ∈ [r],
either there is a monochromatic (r − 1)-cover consisting entirely of subgraphs of color i,
or entirely of subgraphs which don’t have color i.

In the dual (R1) language, Conjecture 9 says that for every r-partite intersecting
hypergraph, if some part Vi has at least r vertices, then there is a vertex cover of order
at most r − 1 which uses no vertices from Vi.

Note that Conjecture 9 implies the α = 1 case of Ryser’s conjecture, but we will
actually prove the following stronger conjecture for r 6 4.
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Conjecture 10. For all integers r > 3 and all K ∈ Kr−1, tcr−1(K) 6 r−1. In particular,
this implies that for every r-coloring of a complete graph K and every color i ∈ [r], either
there is a monochromatic (r − 2)-cover consisting entirely of subgraphs of color i, or a
monochromatic (r − 1)-cover consisting entirely of subgraphs which don’t have color i.

A special case of Conjecture 8 obtained by setting |S| = dr/2e is the following.

Conjecture 11. For all integers r > 2, in every r-coloring of a complete graph K there
exists a monochromatic (r − 1)-cover such that the monochromatic subgraphs have at
most dr/2e different colors.

In the dual (R1) language, in every r-partite intersecting hypergraph, there is a vertex
cover of order at most r − 1 which is made up of vertices from at most dr/2e parts.

We give an example to show that dr/2e cannot be reduced in Conjecture 11.

Example 12. For all r > 3 and n > r
(

r
br/2c+1

)
, there exists an r-coloring of Kn, such that

every monochromatic cover of Kn with at most r− 1 components consists of components
of at least dr/2e different colors.

Proof. Let A =
(

[r]
br/2c+1

)
(that is the family of subsets of [r] with just over half the

elements). Now let V be a set of at least r
(

r
br/2c+1

)
vertices and let {VX : X ∈ A} be a

partition of V into sets of order at least r which are indexed by the elements in A. For
all u ∈ VX , v ∈ VY , let uv be an edge of some arbitrarily chosen color i ∈ X ∩ Y (which
is possible since X ∩ Y 6= ∅ for all X, Y ∈ A). We now have an r-colored complete graph
K on vertex set V .

V123 V124

V134 V234

1

1 2

3

1 2

1 1

1 2

Figure 1: Example 12 in the case r = 4.

Suppose for contradiction that there exists S ⊆ [r] with |S| = dr/2e − 1 and that K
has a monochromatic (r − 1)-cover T such that all of the subgraphs in T have a color in
S. Since r − (dr/2e − 1) = br/2c + 1, there exists X ∈ A such that X = [r] \ S. This
means that there are no edges having a color from S which are incident with a vertex in
VX . Since there are at most r−1 components in T all having colors from S and there are
at least r vertices in VX , this contradicts the fact that T was the desired monochromatic
cover.
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2.2 Monochromatic covers with subgraphs of bounded diameter

Now we move on to some results which can only be stated in terms of r-colored graphs
(R2).

The results mentioned here are proved in Section 4.
Let G be a graph. For vertices u, v ∈ V (G), let d(u, v) denote the length of the

shortest u, v-path in G. If there is no u, v-path, we write d(u, v) = ∞. The diameter of
G, denoted diam(G), is the smallest integer d such that d(u, v) 6 d for all u, v ∈ V (G).
If G is disconnected, we say diam(G) = ∞. The radius of G, denoted rad(G), is the
smallest integer r such that there exists u ∈ V (G) such that d(u, v) 6 r for all v ∈ V (G).

It is well known that a graph or its complement has diameter at most 3; in other
words, in every 2-coloring of a complete graph K, there is a spanning monochromatic
subgraph of diameter at most 3.

Milićević conjectured an extension of this to r-colors which strengthens the α = 1 case
of Ryser’s conjecture.

Conjecture 13 (Milićević [48]). For all r > 2, there exists d = d(r) such that in every
r-coloring of a complete graph K, there exists a monochromatic (r − 1)-cover consisting
of subgraphs of diameter at most d.

Milićević proved that in every 3-coloring of a complete graph K, there is a monochro-
matic 2-cover consisting of subgraphs of diameter at most 8 [47], and in every 4-coloring of
a complete graph K, there is a monochromatic 3-cover consisting of subgraphs of diameter
at most 80 [48].

For the case r = 3, we improve the upper bound on the diameter from 8 to 4. In the
case r = 4, we improve the upper bound on the diameter from 80 to 6 while at the same
time giving a significantly simpler proof.

Theorem 14.
(i) In every 3-coloring of a complete graph K, there is a monochromatic 2-cover con-

sisting of trees of diameter at most 4.

(ii) In every 4-coloring of a complete graph K, there is a monochromatic 3-cover con-
sisting of subgraphs of diameter at most 6.

We also conjecture a generalization of Ryser’s conjecture for graphs with arbitrary
independence number.

Conjecture 15. For all α > 1, there exists d = d(α) such that for all r > 2, if G is
a graph with α(G) = α, then in every r-coloring of G, there exists a monochromatic
(r − 1)α-cover consisting of subgraphs of diameter at most d.

Note that in Conjecture 13, it is conjectured that d depends on r. We speculate that
it is even possible to choose a d which is independent of both r and α, but we have no
concrete evidence to support this.

We prove Conjecture 15 for α = 2 = r.
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Theorem 16. Let G be a graph with α(G) = 2. In every 2-coloring of G there is a
monochromatic 2-cover consisting of subgraphs of diameter at most 6.

Gyárfás raised the following problem which would strengthen Theorem 7 in the case
α = 1.

Problem 17 (Gyárfás [31]). In every r-coloring of the edges of Kn, there exists a
monochromatic subgraph of diameter at most 3 on at least n

r−1
vertices. Perhaps the

subgraph can even be chosen to be a tree of diameter at most 3 (which is necessarily a
double star).

Improving on earlier results of Mubayi [49] and Ruszinkó [52], Letzter almost solved
Problem 17.

Theorem 18 (Letzter [44]). In every r-coloring of the edges of Kn, there exists a mono-
chromatic tree of diameter at most 4 (in fact, the tree can be chosen to be a triple star)
on at least n

r−1
vertices.

Note that Theorem 14(i) implies Letzter’s result in the case r = 3 (except we can’t
guarantee that both of the trees are triple stars).

2.3 Monochromatic covers of complete multipartite graphs

The results mentioned here are proved in Section 4 and Section 5.
Gyárfás and Lehel made the following conjecture which would be tight if true.

Conjecture 19 (Gyárfás, Lehel [29]). For all K ∈ K2, tcr(K) 6 2r − 2.

Chen, Fujita, Gyárfás, Lehel, and Tóth [16] proved this for r 6 5. Also note that for
all K ∈ K2, a trivial upper bound is tcr(K) 6 2r − 1 (by considering a pair of vertices
u, v on opposite sides of the bipartition and the union of the monochromatic components
containing u and v).

We now mention the following generalization of Conjecture 19 for which we don’t even
have a conjecture. The first interesting test case (outside the scope of Conjectures 9 and
10) is k = 3 and r = 4.

Problem 20. Let k and r be integers with k, r > 2. Determine an upper bound on
tcr(K) which holds for all K ∈ Kk.

We also make the following strengthening of Conjecture 19 and prove it for r = 2 and
r = 3 (the r = 2 case is an improvement of a result of Milićević [47]).

Conjecture 21. There exists d such that for all r > 2, if K ∈ K2, then in every r-coloring
of K, there exists a monochromatic (2r− 2)-cover consisting of subgraphs of diameter at
most d.

Theorem 22. Let K ∈ K2.
(i) In every 2-coloring of K, there is a monochromatic 2-cover consisting of trees of

diameter at most 4.

(ii) In every 3-coloring of K, there is a monochromatic 4-cover consisting of subgraphs
of diameter at most 6.
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2.4 Partitioning into monochromatic connected subgraphs

The results mentioned here are proved in Section 6.
For positive integers t and r, a monochromatic t-partition of an r-colored hypergraph

H is a monochromatic t-cover T of H such that V (T ) ∩ V (T ′) = ∅ for all T, T ′ ∈ T . Let
tpr(H) be the minimum integer t such that in every r-coloring of the edges of H, there
exists a monochromatic t-partition of H.

Erdős, Gyárfás, and Pyber made the following conjecture and proved it for r = 3.

Conjecture 23 (Erdős, Gyárfás, Pyber [23]). For all r > 2 and all finite complete graphs
K, tpr(K) 6 r − 1.

Later Fujita, Furuya, Gyárfás, and Tóth made the following conjecture and proved it
for r = 2. Note that this is a significant strenghtening of Ryser’s conjecture.

Conjecture 24 (Fujita, Furuya, Gyárfás, Tóth [25]). For all r > 2 and all finite graphs
G, tpr(G) 6 (r − 1)α(G).

Haxell and Kohayakawa [35] proved tpr(Kn) 6 r for sufficiently large n (in fact, they
proved that there is a monochromatic r-partition consisting of trees of radius at most
2). The bound on n was improved in [8]. In Section 6, we discuss why the bound on n
essentially cannot be improved any further using this approach, and in the process find
an interesting connection to a different problem.

We also raised the question of determining an upper bound on tpr(K) for K ∈ Kk.
Surprisingly we found that in contrast to the cover version of the problem, no such upper
bound (which depends only on k) is possible.

Theorem 25. For all k > 2 and all functions f : Z+ → R there exists K ∈ Kk such that
tp2(K) > f(k).

2.5 Monochromatic covers of hypergraphs

The results mentioned here are proved in Section 7.
Denote the complete r-uniform hypergraph on n vertices by Kr

n. Again, the well
known remark of Erdős and Rado, which says tc2(K2

n) = 1, was generalized by Gyárfás
[29] who proved that for all r > 2, tcr(K

r
n) = 1.

Király [41] proved that for all k > 3, tcr(K
k
n) = dr/ke. In the dual (R1) language,

this means that for k > 3 if we have an r-partite hypergraph H in which every set of k
edges has a common non-empty intersection, then τ(H) 6 dr/ke.

We begin the study of a much more general setting in which we allow for different
notions of connectivity in hypergraphs. Given an k-uniform hypergraph H, say that H is
tightly connected if for every pair of vertices u, v ∈ V (H), there exists edges e1, . . . , ep ∈
E(H) such that u ∈ e1, v ∈ ep, and |ei ∩ ei+1| = k − 1 for all i ∈ [p − 1]. We prove a
generalization of Király’s theorem, but we delay the statement until Section 7.

One of our main (and easiest to state) conjectures in this setting is the following
strengthening of Gyárfás’ result, which we prove for r = 3.
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Conjecture 26. For all r > 3, in every r-coloring of Kr
n, there exists a monochromatic

tightly connected subgraph which covers V (K).

Problem 27. Let r, k > 2 be integers. Given an arbitary r-coloring of Kk
n, determine

an upper bound on the number of monochromatic tightly connected subgraphs needed to
cover V (Kk

n).

The following tables given in Table 1 recap what is known about the various general-
izations and strengthenings of Ryser’s conjecture discussed so far, using green to indicate
previously known results and yellow to indicate new or improved results that we will show
in the following sections.

3 Tuza’s proofs/Monochromatic covers with restrictions on the
colors

Let G be a graph with α = α(G). Tuza proved that tcr(G) 6 (r − 1)α in the cases when

(r, α) ∈ {(3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (5, 1)}.

The proof for (r, α) ∈ {(3, 1), (3, 2), (3, 3), (3, 4)} can be found in [57] and [58]. The proof
for (r, α) = (4, 1) can be found in [57] and [59]. The proof for (r, α) = (5, 1) can be found in
[57]. Finally, the case (r, α) = (4, 2) is claimed in [57] and [58], but no proof is given. Note
that the cases (r, α) ∈ {(3, 1), (3, 2), (3, 3), (3, 4)} are superseded by Aharoni’s theorem [4],
but Tuza’s proof may still be of some interest because of its elementary nature.

In all cases, Tuza’s proofs are given in the dual (R1) language of vertex covers of
r-partite hypergraphs. The objective of this section is to both reprove all of these results
in the language of monochromatic covers of edge colored graphs and do so in such a way
that we can use these results to prove Conjecture 11 for r 6 5 which in turn, together
with the results in Section 5, allow us to prove Conjecture 8 for r 6 4. Also, since the
r = 5 case is unpublished, we feel that this may be of some benefit to others who would
like to understand Tuza’s proof of this case. One of the original goals of this project was
to explore the possibility of extending Tuza’s methods to prove the case (r, α) = (6, 1).
While we were unsuccessful in this goal, we were able to classify the (many) special cases
which would need to be dealt with in order to prove such a result. More specifically,
when (r, α) = (5, 1), Tuza’s proof goes by making some general observations which, out
of 37 possible cases, leaves two special cases each of which can be dealt with in an ad-
hoc manner. In trying to extend this to the case (r, α) = (6, 1), we make analogous
observations which, out of 560 possible cases, leaves 173 special cases (most of which do
not seem to have an analogously easy ad-hoc proof).

We will prove the following.

Theorem 28. Let r ∈ {3, 4, 5} and S ⊆ [r] with S = |2|. In every r-coloring of a complete
graph K, there exists a monochromatic (r− 1)-cover H in which every subgraph in H has
a color in S or every subgraph in H has a color in [r] \ S. In particular, tcr(K) 6 r − 1.
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α
r

2 3 4 5 6

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 ↓ ↓ 15 20 25

(a) Conjecture 3

r 2 3 4 5 6

(b) Conjecture 8

r 2 3 4 5 6

(c) Conjecture 10

r 2 3 4 5 6

(d) Conjecture 11

α
r

2 3 4 5 6

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 ↓ 10 15 20 25

(e) Conjecture 24

α
r

2 3 4 5 6

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 ↓ 10 15 20 25

(f) Conjecture 15

k
r

2 3 4 5 6

2 2 4 6 8 10
3 2 3
4 2 3
5 ↓ ↓

(g) Conjecture 19, Problem 20

k
r

2 3 4 5 6

2 2 4 6 8 10
3 2 3
4 2 3
5 ↓ ↓

(h) Conjecture 21

k
r

2 3 4 5 6

2 1 2 3 4 5
3 1 1
4 1 1 1
5 ↓ ↓ 1

(i) Conjecture 26, Problem 27

Table 1: A recap of the results discussed above. Results known before this paper are
highlighted in green. New or improved results from this paper are highlighted in yellow.

We begin with some general observations. The closure of a graph G with respect to
a given coloring is a multigraph Ĝ on V (G) with edge set defined as follows: there is an
edge of color i between u and v in Ĝ if and only if there is a path of color i between u
and v in G.

Let the edges of a graph G be r-colored. Take the closure of G with respect to
this coloring. Note that tcr(G) = tcr(Ĝ), since given a monochromatic cover of Ĝ, the
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corresponding monochromatic components of G form a monochromatic cover.

Observation 29. To prove an upper bound on tcr(G) we instead prove an upper bound
on tcr(Ĝ); that is, we assume that every monochromatic component in the r-edge (multi-)
coloring of G is a clique.

Let Gi,j be the subgraph of G induced by the edges of colors i and j. By Theorem 4,

tcr(G) 6 tc2(Gi,j) 6 α(Gi,j). (1)

Thus we have the following useful observation.

Observation 30. If there exist distinct colors i, j ∈ [r] such that α(Gi,j) 6 (r − 1)α(G),
then tcr(G) 6 (r − 1)α(G).

3.1 r = 3, α = 1

Proof of Theorem 28 when r = 3. Let S ⊆ [3] with |S| = 2 and without loss of generality,
suppose S = {2, 3}. If α(G2,3) 6 2, then we are done by Observation 30; so suppose
α(G2,3) > 3 and let X = {x1, x2, x3} be an independent set in G2,3. This means every
edge in X has color 1. Also since X is independent in G2,3, then by Observation 29, every
vertex sends at most one edge of color 2 and at most one edge of color 3 to X. Thus every
vertex sends an edge of color 1 to X and thus there is monochromatic cover consisting of
a single component of color 1.

3.2 r = 4, α = 1

Proof of Theorem 28 when r = 4. Let S ⊆ [4] with |S| = 2 and without loss of generality,
suppose S = {3, 4}. If α(G3,4) 6 3, then we are done by Observation 30; so suppose
α(G3,4) > 4 and let X = {x1, x2, x3, x4} be an independent set in G3,4. Note that X
induces a [2]-colored K4. Therefore (by Theorem 4 for instance) there exists a monochro-
matic component A1, say of color 1, which covers X. Let B1 and B2 be components of
color 2 which have the largest intersection with X and without loss of generality, suppose
|B1 ∩X| > |B2 ∩X| and note that B2 ∩X is empty if |B1 ∩X| = 4.

We now claim that {A1, B1, B2} is the desired monochromatic 3-cover. If v 6∈ A1, then
v sends no edges of color 1 to X, at most one edge of color 3, at most one edge of color
4, and consequently at least two edges of color 2. Thus v must be in either B1 or B2.

3.3 r = 5, α = 1

Let G be an r-colored graph and let X ⊆ V (G). For all i ∈ [r], the i-signature of X,
denoted σi[X], is the integer partition (ni1, . . . , n

i
ti

) of |X| such that the graph Gi[X]
induced by edges of color i in the set X has components of order ni1 > ni2 > . . . > nit
(where |X| =

∑t
j=1 n

i
j). For all S ⊆ [r], the S-signature of X, denoted σS(X), is the set

{σi[X] : i ∈ [S]}.

the electronic journal of combinatorics 28(4) (2021), #P4.37 13



Now let n and p be positive integers and let σ = {σ1, . . . , σp} be a set of integer
partitions of n. We say that σ is a valid signature, if there exists a p-coloring of a graph
F on n vertices such that the [p]-signature of V (F ) is σ (note that a valid signature may
be realized by non-isomorphic colored graphs). For example, {(4, 1), (3, 1, 1), (2, 2, 1)} is
not a valid signature since there is no way to 3-color a K5 so that there are components
of order 4 and 1 in color 1, components of order 3, 1, and 1 in color 2, and components
of order 2, 2, and 1 in color 3.

While we don’t have a characterization of all valid signatures, the following is a useful
necessary condition (and the above example shows that it is not sufficient), which follows
simply by counting the number of possible edges.

Observation 31. Let n and p be positive integers and let σ = {σ1, . . . , σp} be a set of

integer partitions of n. If
∑p

i=1

∑
j∈[ti]

(ni
j

2

)
<
(
n
2

)
, then σ is not a valid signature.

Proof of Theorem 28 when r = 5. Let S ⊆ [5] with |S| = 2 and without loss of generality,
suppose S = {4, 5}. If α(G4,5) 6 4, then we are done by Observation 30; so suppose
α(G4,5) > 5 and let X = {x1, x2, x3, x4, x5} be an independent set in G4,5. Note that X
induces a [3]-colored K5.

We now split into cases depending on the [3]-signature of X. There are 84 possible
signatures and 37 of them are valid. The following lemma deals with 35 of the 37 cases.

Lemma 32. Let {σ1, σ2, σ3} = {(n1
1, . . . , n

1
t1

), (n2
1, . . . , n

2
t2

), (n3
1, . . . , n

3
t3

)} be the
[3]-signature of X. If i, j, k ∈ [3] are distinct and

(i) ti + tj + |{nk` : nk` > 3}| 6 4, or

(ii) ti + |{nj` : nj` > 2}|+ |{nk` : nk` > 2}| 6 4,
then there exists a monochromatic 4-cover in which all of the subgraphs have colors from
[3].

Since the conditions in Lemma 32 are a bit hard to parse at first sight, note that (i)
says that the number of components of color i or j plus the number of components of
order at least 3 of color k in the graph induced by X is at most 4, and (ii) says that the
number of components of color i plus the number of components of order at least 2 of
color j or k in the graph induced by X is at most 4. For example, {(5), (3, 2), (3, 2)} and
{(4, 1), (3, 1, 1), (3, 1, 1)} are valid signatures to which Lemma 32(i) and Lemma 32(ii),
respectively, apply.

Proof. Let T denote the set of at most four monochromatic components which intersect X
as described in one of the two cases. Suppose for contradiction that T is not a monochro-
matic 4-cover and let v be an uncovered vertex. In either case, this implies v 6∈ X. First
note that since G4,5[X] is an independent set, v sends at most one edge of color 4 and at
most one edge of color 5 to X. Thus v sends at least three edges of color 1, 2, or 3 to X
(?).

(i) Without loss of generality we can assume T contains all components of colors 2 and
3 which intersect X and all components of of color 1 which intersect X in at least
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3 vertices. Then v sends no edges of color 2 or 3 to X, and at most 2 edges of color
1 to X; a contradiction to (?).

(ii) Without loss of generality we can assume T contains all components of color 3
which intersect X and all components of colors 1 or 2 which intersect X in at least
2 vertices. Then v sends no edges of color 3 to X, at most one edge of color 1, and
at most one edge of color 2; a contradiction to (?).

By direct inspection, one can see that there are only two valid signatures which do
not meet the conditions of Lemma 32: {(3, 2), (3, 2), (3, 2)} and {(4, 1), (3, 2), (3, 2)}. In
both cases there are two components of each color which intersect X. Let A1, A2 be the
components of color 1 which intersect X, let B1, B2 be the components of color 2 which
intersect X, and let C1, C2 be the components of color 3 which intersect X. Suppose that
|A1 ∩X| > |A2 ∩X|, |B1 ∩X| > |B2 ∩X|, and |C1 ∩X| > |C2 ∩X|.

We now deal with these two cases separately.
Case 1. {(3, 2), (3, 2), (3, 2)}.

Without loss of generality, we must have the following situation:

V (A1) ∩X = {x1, x2, x3}, V (A2) ∩X = {x4, x5},
V (B1) ∩X = {x1, x2, x4}, V (B2) ∩X = {x3, x5},
V (C1) ∩X = {x1, x2, x5}, V (C2) ∩X = {x3, x4}.

x1 x2 x3

x4

x5
A1

A2

B1

C2

B2

C1

(a) Case 1

x1 x2 x3 x4 x5

B1

B2 C1
C2

A1

A2

(b) Case 2

Figure 2: r = 5

Suppose that neither {B1, B2, C1, C2} nor {A1, A2, B1, C1} are monochromatic 4-covers
of K. Note that if u /∈ B1∪B2∪C1∪C2, then u must send one edge of color 4 and one edge
of color 5 to {x4, x5} and three edges of color 1 to {x1, x2, x3}. If v /∈ A1 ∪A2 ∪B1 ∪ C1,
then v must send one edge of color 4 and one edge of color 5 to {x1, x2}, at least one edge
of color 3 to {x3, x4} and at least one edge of color 2 to {x3, x5}. But then no matter
what the color of the edge between u and v we have a contradiction.
Case 2. {(4, 1), (3, 2), (3, 2)}.

Without loss of generality, we must have the following situation:

V (A1) ∩X = {x1, x2, x3, x4}, V (A2) ∩X = {x5},
V (B1) ∩X = {x1, x2, x5}, V (B2) ∩X = {x3, x4},
V (C1) ∩X = {x3, x4, x5}, V (C2) ∩X = {x1, x2}.

the electronic journal of combinatorics 28(4) (2021), #P4.37 15



Suppose that neither {A1, A2, B1, B2} nor {A1, A2, C1, C2} are monochromatic 4-covers
of K. Note that any vertex u which is not in A1 ∪ A2 ∪ B1 ∪ B2 must send one edge of
color 4 and one edge of color 5 to {x1, x2} and three edges of color 3 to {x3, x4, x5} (so
u ∈ C1). Likewise any vertex v which is not in A1 ∪ A2 ∪ C1 ∪ C2 must send one edge
of color 4 and one edge of color 5 to {x3, x4} and must send three edges of color 2 to
{x1, x2, x5} (so v ∈ B1).

The only possible color for the edge uv is color 1. Let A3 be the component of color
1 which contains u and v. We now claim that {A1, A2, A3, B1} is a monochromatic cover.
We establish this claim by showing that if w 6∈ A1 ∪ A2 ∪ B1, then w must send an edge
of color 1 to either u or v. So let w be such that w 6∈ A1 ∪ A2 ∪ B1 and suppose for
contradiction that w does not send an edge of color 1 to {u, v}. If w sends an edge of
color 3 to {x1, x2}, then w must send an edge of color 2 to {x3, x4} which further implies
that w must send an edge of color 4 or 5, say color 5, to {x5}. Now w can only send edges
of color 4 to {u, v}, but then this causes u and v to be in the same component of color 4,
a contradiction. So suppose w does not send an edge of color 3 to {x1, x2}, which means
w must send an edge of color 4 to {x1, x2} and an edge of color 5 to {x1, x2}, consequently
w must send an edge of color 3 to {x3, x4, x5} (so w ∈ C1). Now w is forced to send an
edge of color 1 to v. This completes the case.

3.4 What we know for r = 6, α = 1

Let S ⊆ [6] with |S| = 2 and without loss of generality, suppose S = {5, 6}. If
α(G5,6) 6 5, then we are done by Observation 30; so suppose α(G5,6) > 6 and let
X = {x1, x2, x3, x4, x5, x6} be an independent set in G5,6. Note that X induces a [4]-
colored K6.

We now split into cases depending on the [4]-signature of X. There are 1001 possible
signatures, 560 of which are valid. The following two lemmas deal with 387 of the 560
cases1.

Lemma 33. Let

{σ1, σ2, σ3, σ4} = {(n1
1, . . . , n

1
t1

), (n2
1, . . . , n

2
t2

), (n3
1, . . . , n

3
t3

), (n4
1, . . . , n

4
t4

)}

be the [4]-signature of X. If there exists distinct i, j, k, ` ∈ [4] such that
(i) ti + |{njm : njm > 2|+ |{nkm : nkm > 2|+ |{n`m : n`m > 2| 6 5, or

(ii) ti + tj + |{nkm : nkm > 2}|+ |{n`m : n`m > 3}| 6 5, or

(iii) ti + tj + tk + |{n`m : n`m > 4}| 6 5,
then there exists a monochromatic 5-cover in which all of the subgraphs have colors from
[4].

1We wrote a computer program which first determined all valid [4]-signatures of X (the program goes
beyond Observation 31 by doing a search to see whether each potential signature can be realized by a
4-coloring of K6), then eliminates all valid signatures for which Lemma 33 or Lemma 34 applies.
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E.g. {(5, 1), (3, 1, 1, 1), (3, 1, 1, 1), (2, 1, 1, 1, 1)}, {(5, 1), (3, 3), (3, 1, 1, 1), (2, 2, 2)}, and
{(6), (4, 2), (4, 2), (3, 3)} are valid signatures to which Lemma 33(i), Lemma 33(ii), and
Lemma 33(iii), respectively, apply.

Proof. Let T denote the set of at most five monochromatic components which intersect X
as described in the three cases. Suppose for contradiction that T is not a monochromatic
5-cover and let v be an uncovered vertex. First note that since G5,6[X] is an independent
set, v sends at most one edge of color 5 and at most one edge of color 6 to X, unless
v ∈ X in which case v sends no edges of color 5 and no edges of color 6 to X. Thus in
any case v sends at least four edges of color 1, 2, 3, or 4 to X (?).

(i) Without loss of generality we can assume T contains all components of color 4 which
intersect X and all components of color 1, 2, or 3 which intersect X in at least 2
vertices. Thus v sends no edges of color 4 to X, and at most one edge of colors 1,2,
or 3; a contradiction to (?).

(ii) Without loss of generality we can assume T contains all components of color 3 and 4
which intersect X, all components of color 2 which intersect X in at least 3 vertices,
and all components of color 1 which intersect X in at least 2 vertices. Thus v sends
no edges of color 3 or 4 to X, at most two edges of color 2 to X, and at most one
edge of color 1 to X; a contradiction to (?).

(iii) Without loss of generality, we can assume T contains all components of colors 2, 3,
and 4 which intersect X, and all components of color 1 which intersect X in at least
4 vertices. Thus v sends no edges of color 2, 3 or 4 to X and at most three edges of
color 1 to X; a contradiction to (?).

Lemma 34. Let W ⊆ X and let

{σ1, σ2, σ3, σ4} = {(n1
1, . . . , n

1
t1

), (n2
1, . . . , n

2
t2

), (n3
1, . . . , n

3
t3

), (n4
1, . . . , n

4
t4

)}

be the [4]-signature of W . If there exists distinct i, j, k, ` ∈ [4] such that
(i) |W | = 3 and t1 + t2 + t3 + t4 6 5, or

(ii) |W | = 4 and ti + tj + tk + |{n`m : n`m > 2}| 6 5, or

(iii) |W | = 5 and ti + tj + |{nkm : nkm > 2}|+ |{n`m : n`m > 2}| 6 5, or

(iv) |W | = 5 and ti + tj + tk + |{n`m : n`m > 3| 6 5,
then there exists a monochromatic 5-cover in which all of the subgraphs have colors from
[4].

Proof. Let T denote the set of at most five monochromatic components which intersect W
as described in the three cases. Suppose for contradiction that T is not a monochromatic
5-cover and let v be an uncovered vertex. First note that since G5,6[X] is an independent
set, v sends at most one edge of color 5 and at most one edge of color 6 to X, unless
v ∈ X in which case v sends no edges of color 5 and no edges of color 6 to X (?).

(i) Note that T contains all components of colors 1, 2, 3, and 4 which intersect W , so
v sends no edges of color 1, 2, 3, or 4 to W which together with (?) and the fact
that |W | = 3 is a contradiction.

the electronic journal of combinatorics 28(4) (2021), #P4.37 17



(ii) Without loss of generality we can assume T contains all components of color 2, 3,
and 4 which intersect W , and all components of color 1 which intersect W in at
least 2 vertices. Thus v sends at most one edge of color 1 to W which together with
(?) and the fact that |W | = 4 is a contradiction.

(iii) Without loss of generality, we can assume T contains all components of colors 3
and 4 which intersect W , and all components of color 1 or 2 which intersect W in
at least 2 vertices. Thus v sends no edges of color 3 or 4 to W , at most one edge of
color 1, and at most one edge of color 2, which together with (?) and the fact that
|W | = 5 is a contradiction.

(iv) Without loss of generality, we can assume T contains all components of colors 2,
3, and 4 which intersect W , and all components of color 1 which intersect W in at
least 3 vertices. Thus v sends no edges of color 2, 3, or 4 to W , at most two edges
of color 1, which together with (?) and the fact that |W | = 5 is a contradiction.

We are left with are 173 valid signatures for which an ad-hoc proof is needed (see
Table 2).

4 Covering with monochromatic subgraphs of bounded diame-
ter

The following is a well-known fact (see [60, Theorem 2.1.11]).

Proposition 35 (Folklore). Let G be a 2-colored complete graph. If diam(G1) > 3, then
diam(G2) 6 3.

Also note that Proposition 35 is best possible. To see this, let {V1, V2, V3, V4} be the
partition of V and color all edges from Vi to Vi+1 with color 1 for all i ∈ [3] and color all
other edges with color 2. Both G1 and G2 have diameter 3.

Let dcδr(G) be the smallest integer t such that in every r-coloring of the edges of G,
there exists a monochromatic t-cover T such that for all T ∈ T , diam(T ) 6 δ. For r > 1
and a graph G, let Dr(G) be the smallest δ such that dcδr(G) 6 tcr(G). For instance,
Proposition 35 implies dc3

2(K) = 1 for all complete graphs K (i.e. D2(K) = 3). Erdős and
Fowler [22] proved that there exists a 2-coloring of Kn such that every monochromatic
subgraph of diameter at most 2 has order at most (3/4 + o(1))n and thus dc2

2(Kn) > 2.
Also by considering the edges incident with any vertex, we clearly have dc2

2(K) = 2 for
all complete graphs K.

In this language, Milićević conjectured the following strengthening of Ryser’s conjec-
ture.

Conjecture 36 (Milićević [48]). For all r > 2, there exists δ = δ(r) such that dcδr(Kn) 6
r − 1.

We make the following more general conjecture which is also stronger in the sense that
δ doesn’t depend on r (we note that perhaps δ doesn’t even depend on α).
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{(6), (4, 2), (4, 2), (4, 2)}
{(6), (4, 2), (3, 2, 1), (3, 2, 1)}
{(6), (4, 2), (2, 2, 2), (2, 2, 2)}
{(6), (4, 1, 1), (3, 3), (3, 3)}
{(6), (4, 1, 1), (3, 2, 1), (3, 2, 1)}
{(6), (4, 1, 1), (2, 2, 1, 1), (2, 2, 1, 1)}
{(6), (3, 3), (3, 2, 1), (3, 2, 1)}
{(6), (3, 3), (2, 2, 2), (2, 2, 2)}
{(6), (3, 2, 1), (3, 2, 1), (3, 2, 1)}
{(6), (3, 2, 1), (3, 2, 1), (3, 1, 1, 1)}
{(6), (3, 2, 1), (3, 2, 1), (2, 2, 2)}
{(6), (3, 2, 1), (3, 2, 1), (2, 2, 1, 1)}
{(6), (3, 2, 1), (3, 2, 1), (2, 1, 1, 1, 1)}
{(6), (3, 2, 1), (2, 2, 2), (2, 2, 2)}
{(6), (3, 2, 1), (2, 2, 2), (2, 2, 1, 1)}
{(6), (3, 2, 1), (2, 2, 1, 1), (2, 2, 1, 1)}
{(6), (3, 1, 1, 1), (3, 1, 1, 1), (2, 2, 2)}
{(6), (3, 1, 1, 1), (2, 2, 1, 1), (2, 2, 1, 1)}
{(6), (2, 2, 2), (2, 2, 2), (2, 2, 2)}
{(6), (2, 2, 2), (2, 2, 2), (2, 2, 1, 1)}
{(6), (2, 2, 2), (2, 2, 1, 1), (2, 2, 1, 1)}
{(6), (2, 2, 1, 1), (2, 2, 1, 1), (2, 2, 1, 1)}
{(6), (2, 2, 1, 1), (2, 2, 1, 1), (2, 1, 1, 1, 1)}
{(5, 1), (5, 1), (4, 2), (4, 2)}
{(5, 1), (5, 1), (4, 2), (3, 3)}
{(5, 1), (5, 1), (4, 1, 1), (3, 2, 1)}
{(5, 1), (5, 1), (3, 2, 1), (3, 2, 1)}
{(5, 1), (5, 1), (3, 2, 1), (3, 1, 1, 1)}
{(5, 1), (5, 1), (3, 2, 1), (2, 2, 2)}
{(5, 1), (5, 1), (3, 2, 1), (2, 2, 1, 1)}
{(5, 1), (5, 1), (2, 2, 2), (2, 2, 2)}
{(5, 1), (5, 1), (2, 2, 2), (2, 2, 1, 1)}
{(5, 1), (4, 2), (4, 2), (4, 2)}
{(5, 1), (4, 2), (4, 2), (4, 1, 1)}
{(5, 1), (4, 2), (4, 2), (3, 3)}
{(5, 1), (4, 2), (4, 2), (3, 2, 1)}
{(5, 1), (4, 2), (4, 2), (3, 1, 1, 1)}
{(5, 1), (4, 2), (4, 1, 1), (3, 3)}
{(5, 1), (4, 2), (4, 1, 1), (3, 2, 1)}
{(5, 1), (4, 2), (3, 3), (3, 3)}
{(5, 1), (4, 2), (3, 3), (3, 2, 1)}
{(5, 1), (4, 2), (3, 2, 1), (3, 2, 1)}
{(5, 1), (4, 2), (3, 2, 1), (3, 1, 1, 1)}
{(5, 1), (4, 2), (3, 2, 1), (2, 2, 2)}
{(5, 1), (4, 2), (3, 2, 1), (2, 2, 1, 1)}
{(5, 1), (4, 2), (3, 2, 1), (2, 1, 1, 1, 1)}
{(5, 1), (4, 2), (2, 2, 2), (2, 2, 2)}
{(5, 1), (4, 2), (2, 2, 2), (2, 2, 1, 1)}
{(5, 1), (4, 1, 1), (4, 1, 1), (3, 2, 1)}
{(5, 1), (4, 1, 1), (4, 1, 1), (2, 2, 2)}
{(5, 1), (4, 1, 1), (4, 1, 1), (2, 2, 1, 1)}
{(5, 1), (4, 1, 1), (3, 3), (3, 3)}
{(5, 1), (4, 1, 1), (3, 3), (3, 2, 1)}
{(5, 1), (4, 1, 1), (3, 2, 1), (3, 2, 1)}
{(5, 1), (4, 1, 1), (3, 2, 1), (3, 1, 1, 1)}
{(5, 1), (4, 1, 1), (3, 2, 1), (2, 2, 2)}
{(5, 1), (4, 1, 1), (3, 2, 1), (2, 2, 1, 1)}
{(5, 1), (4, 1, 1), (3, 2, 1), (2, 1, 1, 1, 1)}

{(5, 1), (4, 1, 1), (3, 1, 1, 1), (2, 2, 2)}
{(5, 1), (4, 1, 1), (3, 1, 1, 1), (2, 2, 1, 1)}
{(5, 1), (4, 1, 1), (2, 2, 2), (2, 2, 2)}
{(5, 1), (4, 1, 1), (2, 2, 2), (2, 2, 1, 1)}
{(5, 1), (4, 1, 1), (2, 2, 1, 1), (2, 2, 1, 1)}
{(5, 1), (3, 3), (3, 3), (3, 3)}
{(5, 1), (3, 3), (3, 3), (3, 2, 1)}
{(5, 1), (3, 3), (3, 2, 1), (3, 2, 1)}
{(5, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1)}
{(5, 1), (3, 3), (3, 2, 1), (2, 2, 2)}
{(5, 1), (3, 3), (3, 2, 1), (2, 2, 1, 1)}
{(5, 1), (3, 2, 1), (3, 2, 1), (3, 2, 1)}
{(5, 1), (3, 2, 1), (3, 2, 1), (3, 1, 1, 1)}
{(5, 1), (3, 2, 1), (3, 2, 1), (2, 2, 2)}
{(5, 1), (3, 2, 1), (3, 2, 1), (2, 2, 1, 1)}
{(5, 1), (3, 2, 1), (3, 2, 1), (2, 1, 1, 1, 1)}
{(5, 1), (3, 2, 1), (3, 1, 1, 1), (3, 1, 1, 1)}
{(5, 1), (3, 2, 1), (3, 1, 1, 1), (2, 2, 2)}
{(5, 1), (3, 2, 1), (3, 1, 1, 1), (2, 2, 1, 1)}
{(5, 1), (3, 1, 1, 1), (3, 1, 1, 1), (2, 2, 2)}
{(5, 1), (3, 1, 1, 1), (3, 1, 1, 1), (2, 2, 1, 1)}
{(4, 2), (4, 2), (4, 2), (4, 2)}
{(4, 2), (4, 2), (4, 2), (4, 1, 1)}
{(4, 2), (4, 2), (4, 2), (3, 3)}
{(4, 2), (4, 2), (4, 2), (3, 2, 1)}
{(4, 2), (4, 2), (4, 2), (3, 1, 1, 1)}
{(4, 2), (4, 2), (4, 2), (2, 2, 2)}
{(4, 2), (4, 2), (4, 2), (2, 2, 1, 1)}
{(4, 2), (4, 2), (4, 1, 1), (4, 1, 1)}
{(4, 2), (4, 2), (4, 1, 1), (3, 3)}
{(4, 2), (4, 2), (4, 1, 1), (3, 2, 1)}
{(4, 2), (4, 2), (4, 1, 1), (3, 1, 1, 1)}
{(4, 2), (4, 2), (3, 3), (3, 3)}
{(4, 2), (4, 2), (3, 3), (3, 2, 1)}
{(4, 2), (4, 2), (3, 3), (3, 1, 1, 1)}
{(4, 2), (4, 2), (3, 3), (2, 2, 2)}
{(4, 2), (4, 2), (3, 3), (2, 2, 1, 1)}
{(4, 2), (4, 2), (3, 2, 1), (3, 2, 1)}
{(4, 2), (4, 2), (3, 2, 1), (3, 1, 1, 1)}
{(4, 2), (4, 2), (3, 2, 1), (2, 2, 2)}
{(4, 2), (4, 2), (3, 2, 1), (2, 2, 1, 1)}
{(4, 2), (4, 2), (3, 2, 1), (2, 1, 1, 1, 1)}
{(4, 2), (4, 2), (3, 1, 1, 1), (3, 1, 1, 1)}
{(4, 2), (4, 2), (2, 2, 2), (2, 2, 2)}
{(4, 2), (4, 2), (2, 2, 2), (2, 2, 1, 1)}
{(4, 2), (4, 2), (2, 2, 1, 1), (2, 2, 1, 1)}
{(4, 2), (4, 1, 1), (4, 1, 1), (3, 3)}
{(4, 2), (4, 1, 1), (4, 1, 1), (3, 2, 1)}
{(4, 2), (4, 1, 1), (4, 1, 1), (2, 2, 2)}
{(4, 2), (4, 1, 1), (4, 1, 1), (2, 2, 1, 1)}
{(4, 2), (4, 1, 1), (3, 3), (3, 3)}
{(4, 2), (4, 1, 1), (3, 3), (3, 2, 1)}
{(4, 2), (4, 1, 1), (3, 3), (3, 1, 1, 1)}
{(4, 2), (4, 1, 1), (3, 2, 1), (3, 2, 1)}
{(4, 2), (4, 1, 1), (3, 2, 1), (3, 1, 1, 1)}
{(4, 2), (4, 1, 1), (3, 2, 1), (2, 2, 2)}
{(4, 2), (4, 1, 1), (3, 2, 1), (2, 2, 1, 1)}
{(4, 2), (4, 1, 1), (2, 2, 2), (2, 2, 2)}

{(4, 2), (4, 1, 1), (2, 2, 2), (2, 2, 1, 1)}
{(4, 2), (4, 1, 1), (2, 2, 1, 1), (2, 2, 1, 1)}
{(4, 2), (3, 3), (3, 3), (3, 3)}
{(4, 2), (3, 3), (3, 3), (3, 2, 1)}
{(4, 2), (3, 3), (3, 3), (3, 1, 1, 1)}
{(4, 2), (3, 3), (3, 3), (2, 2, 2)}
{(4, 2), (3, 3), (3, 3), (2, 2, 1, 1)}
{(4, 2), (3, 3), (3, 3), (2, 1, 1, 1, 1)}
{(4, 2), (3, 3), (3, 2, 1), (3, 2, 1)}
{(4, 2), (3, 3), (3, 2, 1), (3, 1, 1, 1)}
{(4, 2), (3, 3), (3, 2, 1), (2, 2, 2)}
{(4, 2), (3, 3), (3, 2, 1), (2, 2, 1, 1)}
{(4, 2), (3, 3), (3, 1, 1, 1), (3, 1, 1, 1)}
{(4, 2), (3, 3), (2, 2, 2), (2, 2, 2)}
{(4, 2), (3, 3), (2, 2, 2), (2, 2, 1, 1)}
{(4, 2), (3, 3), (2, 2, 1, 1), (2, 2, 1, 1)}
{(4, 2), (3, 2, 1), (3, 2, 1), (3, 2, 1)}
{(4, 2), (3, 2, 1), (3, 2, 1), (3, 1, 1, 1)}
{(4, 2), (3, 2, 1), (3, 2, 1), (2, 2, 2)}
{(4, 2), (3, 2, 1), (3, 2, 1), (2, 2, 1, 1)}
{(4, 1, 1), (4, 1, 1), (4, 1, 1), (4, 1, 1)}
{(4, 1, 1), (4, 1, 1), (4, 1, 1), (3, 2, 1)}
{(4, 1, 1), (4, 1, 1), (4, 1, 1), (3, 1, 1, 1)}
{(4, 1, 1), (4, 1, 1), (4, 1, 1), (2, 2, 2)}
{(4, 1, 1), (4, 1, 1), (4, 1, 1), (2, 2, 1, 1)}
{(4, 1, 1), (4, 1, 1), (4, 1, 1), (2, 1, 1, 1, 1)}
{(4, 1, 1), (4, 1, 1), (3, 3), (3, 3)}
{(4, 1, 1), (4, 1, 1), (3, 3), (3, 2, 1)}
{(4, 1, 1), (4, 1, 1), (3, 3), (2, 2, 2)}
{(4, 1, 1), (4, 1, 1), (3, 3), (2, 2, 1, 1)}
{(4, 1, 1), (4, 1, 1), (3, 2, 1), (3, 2, 1)}
{(4, 1, 1), (4, 1, 1), (3, 2, 1), (3, 1, 1, 1)}
{(4, 1, 1), (4, 1, 1), (3, 2, 1), (2, 2, 2)}
{(4, 1, 1), (4, 1, 1), (3, 2, 1), (2, 2, 1, 1)}
{(4, 1, 1), (4, 1, 1), (3, 1, 1, 1), (3, 1, 1, 1)}
{(4, 1, 1), (4, 1, 1), (2, 2, 2), (2, 2, 2)}
{(4, 1, 1), (4, 1, 1), (2, 2, 2), (2, 2, 1, 1)}
{(4, 1, 1), (4, 1, 1), (2, 2, 1, 1), (2, 2, 1, 1)}
{(4, 1, 1), (3, 3), (3, 3), (3, 3)}
{(4, 1, 1), (3, 3), (3, 3), (3, 2, 1)}
{(4, 1, 1), (3, 3), (3, 2, 1), (3, 2, 1)}
{(4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1)}
{(4, 1, 1), (3, 2, 1), (3, 2, 1), (3, 2, 1)}
{(4, 1, 1), (3, 2, 1), (3, 2, 1), (3, 1, 1, 1)}
{(3, 3), (3, 3), (3, 3), (3, 3)}
{(3, 3), (3, 3), (3, 3), (3, 2, 1)}
{(3, 3), (3, 3), (3, 3), (3, 1, 1, 1)}
{(3, 3), (3, 3), (3, 3), (2, 2, 2)}
{(3, 3), (3, 3), (3, 2, 1), (3, 2, 1)}
{(3, 3), (3, 3), (3, 2, 1), (3, 1, 1, 1)}
{(3, 3), (3, 3), (3, 2, 1), (2, 2, 2)}
{(3, 3), (3, 3), (2, 2, 2), (2, 2, 2)}
{(3, 3), (3, 3), (2, 2, 2), (2, 2, 1, 1)}
{(3, 3), (3, 2, 1), (3, 2, 1), (3, 2, 1)}
{(3, 3), (3, 2, 1), (3, 2, 1), (2, 2, 2)}
{(3, 3), (2, 2, 2), (2, 2, 2), (2, 2, 2)}
{(3, 2, 1), (3, 2, 1), (3, 2, 1), (2, 2, 2)}

Table 2: The 173 valid signatures for the case r = 6 which are not ruled out by Lemma
33 or Lemma 34.

Conjecture 37. For all α > 1, there exists δ = δ(α) such that for all r > 2, if G is a
graph with α(G) = α, then dcδr(G) 6 (r − 1)α.

Sometimes we will make the distinction between whether the subgraphs in our mono-
chromatic cover are trees or not. Let tdcδr(G) be the smallest integer t such that in every
r-coloring of the edges of G, there exists a monochromatic t-cover T such that for all
T ∈ T , T is a tree and diam(T ) 6 δ. For r > 1 and a graph G, let TDr(G) be the
smallest δ such that tdcδr(G) 6 tcr(G). The following fact implies that tdc2δ

r (G) 6 dcδr(G)
(i.e. TDr(G) 6 2Dr(G)).

Fact 38.
(i) Let G be a connected graph. If diam(G) = d, then G has a spanning tree T with
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d 6 diam(T ) 6 2d.

(ii) Let T be a tree. If rad(T ) = d, then d 6 diam(T ) 6 2d.

Note that by considering a random 2-coloring of Kn, there is no monochromatic span-
ning tree of diameter 3, so TD2(K) > 4. It is well-known (see [60, Exercise 2.1.49] and
[11, Theorem 2.1]) that tdc4

2(K) = 1 for all complete graphs K and thus TD2(K) = 4.
The following theorem summarizes the relevant results from [47] and [48].

Theorem 39 (Milićević [47], [48]).
(i) For all complete graphs K, dc8

3(K) 6 2 (i.e. D3(K) 6 8).

(ii) For all G ∈ K2, dc9
2(G) 6 2 (i.e. D2(G) 6 9).

(iii) For all complete graphs K, dc80
4 (K) 6 3 (i.e. D4(K) 6 80).

We improve the bounds in each item of Theorem 39 and give a simpler proof for (iii).

Theorem 40. For all complete graphs K, dc4
3(K) 6 tdc4

3(K) 6 2 and 3 6 D3(K) 6
TD3(K) 6 4.

Theorem 41. For all G ∈ K2, dc4
2(G) 6 tdc4

2(G) 6 2 and 3 6 D2(G) 6 TD2(G) 6 4.

Theorem 42. For all complete graphs K, dc6
4(K) 6 2 and 2 6 D4(K) 6 6.

We also prove analogous results in some new cases.

Theorem 43. For all graphs G with α(G) = 2, dc6
2(G) 6 2 and 3 6 D2(G) 6 6.

Theorem 44. For all G ∈ K2, dc6
3(G) 6 4 (i.e. D3(G) 6 6).

Very interestingly, the reason Milićević proved Theorem 39(i) and then formulated
Conjecture 36 had to do with a generalization of Banach’s fixed point theorem

Theorem 45 (Banach [9]). Every contracting operator on a complete metric space has a
fixed point.

Austin [7] conjectured that every commuting contracting family {f1, f2, . . . , fr} of
operators2 on a complete metric space (M,d) has a common fixed point and proved it for
r = 2. Milićević proved the case r = 3.

Theorem 46 (Milićević [47]). Every commuting contracting family {f1, f2, f3} of opera-
tors on a complete metric space has a common fixed point.

In the course of proving Theorem 46, Milićević requires a lemma which says that
that there exists some δ (δ = 8 suffices) such that dcδ3(K) 6 2 for the countably infinite
complete graph K.

We note that Milićević’s proofs and our proofs apply equally well to finite or infinite
(countable or uncountable) graphs.

2A family of operators (i.e. continuous functions from M to M) {f1, f2, . . . , fr} is contracting if there
exists 0 < λ 6 1 such that for all x, y ∈M , there exists i ∈ [r] such that d(fi(x), fi(y)) < λ · d(x, y).
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4.1 Examples

Given a graph G, a blow-up of G is a graph obtained by replacing each vertex of G with an
independent set and replacing each edge of G with a complete bipartite graph between the
corresponding independent sets. A closed blow-up of G is a graph obtained by replacing
each vertex of G with a clique and each edge of G with a complete bipartite graph between
the corresponding cliques.

Example 47. For all n > 7, D3(Kn) > 3 (i.e. there exists a 3-coloring of Kn such that if
{H1, H2} is a monochromatic 2-cover, then diam(Hi) > 3 for some i ∈ [2]).

Proof. Color K7 with 3 colors so that each color class is a 7-cycle. Then take a closed
blow-up of this example on n vertices coloring the edges between the sets according to
the original coloring and color the edges inside the sets arbitrarily. If {H1, H2} is a
monochromatic 2-cover, then for some i ∈ [2], Hi contains vertices from at least four
different sets which implies diam(Hi) > 3.

Example 48. For all m > 3, n > 4, D2(Km,n) > 3 (i.e. there exists a 2-coloring of Km,n

such that if {H1, H2} is a monochromatic 2-cover, then diam(Hi) > 3 for some i ∈ [2]).

Proof. Take a red P7 and note that its bipartite complement is a blue P7. Now take a
blow-up of this example on n vertices coloring the edges between the sets according to
the original coloring. If {H1, H2} is a monochromatic 2-cover, then for some i ∈ [2], Hi

contains vertices from at least four different sets which implies diam(Hi) > 3.
Another example (provided m > 4) comes from taking a red C8 and noting that its

bipartite complement is a blue C8.

Example 49. For all sufficiently large n, TD3(Kn) > 3 (i.e. there exists a 3-coloring of
Kn so that there is no monochromatic 2-cover consisting of trees each of diameter at most
3).

Proof. Trees of diameter 3 are double-stars. In a random 3-coloring of Kn (for sufficiently
large n), no two monochromatic double stars will cover the vertex set.

Example 50. For all sufficiently large m and n, TD2(Km,n) > 3 (i.e. there exists a 2-
coloring of Km,n so that there is no monochromatic 2-cover consisting of trees each of
diameter at most 3).

Proof. As above, in a random 2-coloring of Km,n (for sufficiently large m, n), no two
monochromatic double stars will cover the vertex set.

4.2 Complete graphs, r = 3

Proof of Theorem 40. Let x ∈ V (G). For i ∈ [3], let Ai be the neighbors of x of color i. If
Ai = ∅ for some i ∈ [3], then for distinct j, k ∈ [3] \ {i} there are trees H1 ⊆ Gj[{x} ∪Aj]
and H2 ⊆ Gk[{x} ∪ Ak] with diam(H1), diam(H2) 6 2 (in this case, stars centered at x)
which form a monochromatic cover. So we assume Ai 6= ∅ for all i ∈ [3].
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A1 A2 A3

B12 B13 B21 B23 B31 B32

x

Figure 3: Set up for the proof of Theorem 40

For distinct i, j ∈ [3], define Bij to be the set of vertices v ∈ Ai such that v sends no
edge of color j to Aj.

First suppose Bij = ∅ for some distinct i, j ∈ [3]. Without loss of generality say
B12 = ∅. This means every vertex in A1 sends an edge of color 2 to A2. Thus there are
trees H1 ⊆ G2[{x}∪A2∪A1] and H2 ⊆ G3[{x}∪A3] with diam(H1) 6 4 and diam(H2) 6 2
which form a monochromatic cover. So suppose Bij 6= ∅ for all distinct i, j ∈ [3]. Note
that for all distinct i, j, k ∈ [3], [Bij, Bji] is a complete bipartite graph of color k.

Next, suppose there exist distinct i, j, k ∈ [3] such that Bij \ Bik 6= ∅. Without
loss of generality say B12 \ B13 6= ∅ and let z ∈ B12 \ B13. Then there is a vertex
u ∈ A3 such that zu is color 3. Since every z, B21-edge is color 3, there are trees H1 ⊆
G3[{x}∪A3∪{z}∪B21] and H2 ⊆ G1[{x}∪A1∪ (A2 \B21)] with diam(H1), diam(H2) 6 4
which form a monochromatic cover.

Finally, suppose Bij \Bik = ∅ for all distinct i, j, k ∈ [3]. Then Bij = Bik =: Bi for all
distinct i, j, k ∈ [3]. If there exists i ∈ [3] such that Ai 6= Bi, say A1 6= B1, then since every
vertex in (A2\B2)∪(A3\B3) sends an edge of color 1 to A1\B1 and since G1[B2∪B3] is a
complete bipartite graph in color 1, there are trees H1 ⊆ G1[{x}∪A1∪(A2\B2)∪(A3\B3)]
and H2 ⊆ G1[B2∪B3] with diam(H1) 6 4 and diam(H2) 6 3 which form a monochromatic
cover. If, on the other hand, Ai = Bi for all i ∈ [3], then since G1[A2 ∪ A3] is a complete
bipartite graph in color 1, there is a tree H1 ⊆ G1[{x} ∪A1] and a tree H2 ⊆ G1[A2 ∪A3]
with diam(H1) 6 2 and diam(H2) 6 3 which form a monochromatic cover.

Note that it may be possible to improve the previous result by covering with two
monochromatic subgraphs of diameter at most 3, but we cannot hope to cover with two
monochromatic trees of diameter at most 3 (see Example 49).

Conjecture 51. Let G be a 3-colored complete graph. There exists a monochromatic
2-cover consisting of subgraphs of diameter at most 3.

4.3 Complete bipartite graphs, r = 2

Lemma 52. Let G be a complete bipartite graph with vertex classes X and Y . In any
2-coloring of G, one of the following properties holds:
(P1) There exists x1, x2 ∈ X such that every edge incident with xi has color i or there

exists y1, y2 ∈ Y such that every edge incident with yi has color i. In this case,
G can be covered by a color i tree of diameter at most 3 and color (3 − i) tree of
diameter at most 2 for all i ∈ [2].
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(P2) There are partitions {X1, X2} of X and {Y1, Y2} of Y such that [X1, Y1]∪ [X2, Y2] =
G1 and [X1, Y2] ∪ [X2, Y1] = G2. In this case, Gi can be covered by two color i trees
of diameter at most 3, for all i ∈ [2].

(P3) There exists i ∈ [2] such that Gi has diameter at most 6 and G has a monochromatic
2-cover consisting of trees of diameter at most 4.

Proof. First suppose there exists x1, x2 ∈ X such that every edge incident with xi has
color i. Let y ∈ Y and note that the tree consisting of all color 1 edges incident with x1

or y has diameter at most 3 and covers Y . The star consisting of all color 2 edges incident
with y covers the remaining vertices in X and has diameter at most 2. So suppose that
every vertex is incident with, say, a color 1 edge. If there exists x ∈ X such that every
edge incident with x has color 1, then since every vertex is incident with an edge of color
1, we have that G contains a spanning tree of color 1 and diameter at most 4 in which
case we are in (P3). Looking ahead to a potential improvement of the upper bound on
the diameter in this result, we note that in this particular case (where there exists x ∈ X
such that every edge incident with x has color 1) we can say more than just that we are
in (P3). For any y ∈ Y , the tree consisting of all color 1 edges incident with x or y has
diameter at most 3 and covers Y and the star consisting of all color 2 edges incident with
y covers the remaining vertices in X and has diameter at most 2. So for the rest of the
proof, suppose every vertex is incident with edges of both colors.

Suppose both G1 and G2 are disconnected. Let {X1, X2} and {Y1, Y2} be partitions
of X and Y respectively such that there are no color 2 edges from X1 to Y2 and no color
2 edges from X2 to Y1. Note that Xi 6= ∅ and Yi 6= ∅ for all i ∈ [2] since every vertex is
incident with a color 2 edge. Thus [X1, Y2] and [X2, Y1] are complete bipartite graphs of
color 1. Since we are assuming G1 is disconnected, both [X1, Y1] and [X2, Y2] are complete
bipartite graphs of color 2 and thus we have (P2).

Finally, suppose that at least one of G1 and G2 is connected and recall that every
vertex is incident with edges of both colors. If diam(Gi) = 2 for some i ∈ [2], then we
have (P3). So suppose diam(Gi) > 3 for all i ∈ [2]. Let x ∈ X (without loss of generality)
be a vertex which witnesses diam(G1). Let Di be the set of vertices of distance i from x.
Note that D0 = {x}, Di ⊆ X if i is even, and Di ⊆ Y if i is odd. Also note that for all
i, j > 0, every edge in [D2i, D2j+1] has color 2 if and only if |2j + 1 − 2i| > 3. Finally,
note that if diam(G1) 6 4, then since every vertex sees an edge of color 2, it must be the
case that every vertex in D2 sends a color 2 edge to D1 ∪D3 (?).

Now, if diam(G1) = 3, then G1[D0 ∪ D1 ∪ D2] is covered by a tree of radius 2 and
G2[D0∪D3] is covered by a tree of radius 1. If diam(G1) = 4, then by (?) G2 is covered by
two trees, each of radius at most 2. If diam(G1) = 5, then since every edge in [D0, D3∪D5],
[D2, D5], and [D1, D4] has color 2, G2 is covered by two trees both of diameter at most 3 (a
double star with central edge in [D0, D5] and a double star with central edge in [D1, D4]).
Finally, if diam(G1) > 6, then G2 is covered by one tree of radius at most 3 (with central
vertex in D3), and for similar reasons as in the case when diam(G1) = 5, two trees each
of diameter at most 3 (a double star with central edge in [D0, D5] and a double star with
central edge in [D1, D4]).

the electronic journal of combinatorics 28(4) (2021), #P4.37 23



Note that in the above proof, the only case in which we are not able to get a monochro-
matic 2-cover consisting of subgraphs of diameter at most 3 is the case where say G1 has
diameter 4 and G2 can be covered by at most two subgraphs (trees), each of diameter at
most 4. So if it were the case that D2(G) > 4 for some G ∈ K2, then the example would
have the property that both G1 and G2 have diameter exactly 4.

Note that Theorem 41 is a direct corollary of Lemma 52.
Later we will want to use a simpler version of Lemma 52 which doesn’t make reference

to the diameter of the subgraphs in the specific cases.

Lemma 53. Let G be a complete bipartite graph with vertex classes X and Y . In any
2-coloring of G, one of the following properties holds:
(P1′) There exists x1, x2 ∈ X such that every edge incident with xi has color i (in which

case we say Y is the double covered side) or there exists y1, y2 ∈ Y such that every
edge incident with yi has color i (in which case we say that X is the double covered
side).

(P2′) There are partitions {X1, X2} of X and {Y1, Y2} of Y such that [X1, Y1]∪ [X2, Y2] =
G1 and [X1, Y2] ∪ [X2, Y1] = G2.

(P3′) There exists i ∈ [2] such that Gi is connected.

X

Y

x1 x2

(a) (P1′) where Y is the double covered side

X1 X2

Y1 Y2

(b) (P2′)

Figure 4: Two cases from Lemma 53

4.4 Graphs with α(G) = 2, r = 2

Proof of Theorem 43. Let {x, y} be an independent set in G. Since α(G) = 2, every
vertex in V (G) \ {x, y} is adjacent to a vertex in {x, y}. So we let Ax = N(x) \ N(y),
Ay = N(y)\N(x), and A = N(x)∩N(y). Let Aij = A∩Ni(x)∩Nj(y) for i, j ∈ [2]. Note
that α(G[Ax∪{x}]) = 1 and α(G[Ay∪{y}]) = 1, otherwise we would have an independent
set of order 3. By Proposition 35, either diam(Gj[Ax ∪ {x}]) = 3 for all j ∈ [2], or
diam(Gj[Ax ∪ {x}]) 6 2 for some j ∈ [2]. Likewise, either diam(Gj[Ay ∪ {y}]) = 3 for all
j ∈ [2], or diam(Gj[Ay ∪ {y}]) 6 2 for some j ∈ [2]. Now we consider three cases.
Case 1. (diam(Gj[Ax∪{x}]) = 3 for all j ∈ [2], or diam(Gj[Ay∪{y}]) = 3 for all j ∈ [2].)

Without loss of generality, suppose that diam(Gj[Ax ∪ {x}]) = 3 for all j ∈ [2].
Also without loss of generality, suppose that diam(G1[Ay ∪ {y}]) 6 3. If A11 6= ∅, then
H1 = G1[{x}∪(A\A22)∪{y}∪Ay] andH2 = G2[Ax∪{x}∪A22] coverG, with diam(H1) 6 6
and diam(H2) 6 4. If A11 = ∅ and A22 6= ∅, then H1 = G2[Ax ∪ {x} ∪ A ∪ {y}] and
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Ax Ay
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A21

A12
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Figure 5: Set-up for the proof of Theorem 43

H2 = G1[Ay ∪ {y}] cover G, with diam(H1) 6 6 and diam(H2) 6 3. If A11 = ∅ and
A22 = ∅, then H1 = G1[Ax ∪ {x} ∪ A12] and H2 = G1[Ay ∪ {y} ∪ A21] cover G, with
diam(H1), diam(H2) 6 4.
Case 2. (diam(Gi[Ax ∪ {x}]) 6 2 for some i ∈ [2] and diam(Gj[Ay ∪ {y}]) 6 2 for some
j ∈ [2].)

Without loss of generality, suppose diam(G1[Ax ∪ {x}]) 6 2.
Case 2.1. (diam(G1[Ax ∪ {x}]) 6 2 and diam(G2[Ay ∪ {y}]) 6 2.)
If Aii 6= ∅ for some i ∈ [2], say A11 6= ∅, then H1 = G1[Ax ∪ {x} ∪ {y} ∪ A \ A22] and

H2 = G2[Ay∪{y}∪A22] coverG with diam(H1) 6 5, and diam(H2) 6 3. So assume Aii = ∅
for all i ∈ [2]. Notice that if any Ax, A21-edge were color 1, then H1 = G1[{x, y}∪Ax∪A21]
and H2 = G2[{y} ∪ A12 ∪ Ay] cover G with diam(H1) 6 5 and diam(H2) 6 3. So assume
that every Ax, A21-edge is color 2. Likewise we can assume that every Ay, A21-edge is color
1. Let Z1 = {v ∈ Ax : v /∈ N(A21)} and Z2 = {v ∈ Ay : v /∈ N(A21)}. If Zi = ∅ for some
i ∈ [2], say Z1 = ∅, then H1 = G2[{x}∪Ax∪A21] and H2 = G2[{y}∪Ay∪A12] cover G with
diam(H1) 6 4 and diam(H2) 6 3. So suppose Zi 6= ∅ for all i ∈ [2]. Since there are no
edges from Z1∪Z2 to A21, we have that [Z1, Z2] is a complete bipartite graph, which implies
G[Z1 ∪ Z2] is a complete graph. By Proposition 35 we have, say diam(G1[Z1 ∪ Z2]) 6 3,
and thus H1 = G1[{x} ∪Ax ∪A12 ∪Z2] and H2 = G1[{y} ∪A21 ∪ (Ay \Z2)] cover G with
diam(H1) 6 6 and diam(H2) 6 4.

Case 2.2 (diam(G1[Ax ∪ {x}]) 6 2 and diam(G1[Ay ∪ {y}]) 6 2.)
If A11 6= ∅, then H1 = G1[{x, y} ∪ Ax ∪ Ay ∪ (A \ A22)] and H2 = G2[{x} ∪ A22]

cover G with diam(H1) 6 6 and diam(H2) 6 2. If A11 = ∅ and A22 = ∅, then H1 =
G1[{x} ∪ Ax ∪ A12] and H2 = G1[{y} ∪ Ay ∪ A21] cover G with diameters at most 3. So
suppose A11 = ∅ and A22 6= ∅. If every vertex in A22 sends a color 1 edge to Ax ∪Ay then
let Ui = {v ∈ A22 : ∃u ∈ Ai, vu ∈ E(G1)} for i ∈ [2]. Then H1 = G1[{x} ∪Ax ∪A12 ∪ U1]
and H2 = G1[{y}∪Ay∪A21∪(U2\U1)] cover G with diameters at most 4. So suppose there
exists a vertex w ∈ A22 such that every w,Ai-edge is color 2 for all i ∈ [2]. Let Z = {v ∈
Ax ∪ Ay : wv /∈ E(G)}. Since α(G) = 2, G[Z] is a complete graph, so there exists i ∈ [2]
for which H1 = Gi[Z] has diameter at most 3. Then H1 and H2 = G2[{x, y} ∪A∪N2(x)]
cover G with diam(H2) 6 4.

4.5 Complete graphs, r = 4

Proof of Theorem 42. Let x ∈ V (K). For i ∈ [4], let Ai be the neighbors of x of color
i. If Ai = ∅ for some i ∈ [4], say i = 4, then letting Hj = Gj[{x} ∪ Aj] satisfies the
theorem with diam(Hj) 6 2. Therefore, assume Ai 6= ∅ for all i ∈ [4]. For all distinct
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i, j ∈ [4], define Bij to be the set of vertices v ∈ Ai such that vu is not color j for all
u ∈ Aj. If Bij = ∅ for some i, j ∈ [4], then H1 = Gj[{x} ∪ Aj ∪ Ai], H2 = Gk[{x} ∪ Ak]
and H3 = Gl[{x} ∪ Al] cover V (K), where diam(H1) 6 4 and diam(H2), diam(H3) 6 2.
So suppose Bij 6= ∅ for all i, j ∈ [4]. Note that [Bij, Bji] is a complete bipartite graph in
colors [4] \ {i, j}.

A1 A2 A3 A4

B12

B13 B14

B21

B23 B24

B31

B32 B34

B41

B42 B43

Figure 6: Set-up for the proof of Theorem 42

We first establish two claims.

Claim 54. We are done unless:
(C1) For all distinct i, j, k, l ∈ [4], Bij ∩Bik ∩Bil 6= ∅, and

(C2) For all distinct i, j, k, l ∈ [4], Bij \ (Bik ∪Bil) = ∅, and

(C3) For all distinct i, j, k, l ∈ [4], (Bik ∪Bil) \Bij = ∅ or (Bki ∪Bkj) \Bkl = ∅.

Proof. (C1) Suppose there exists i ∈ [4] such that Bij ∩ Bik ∩ Bil = ∅. Then H1 =
Gj[{x}∪Aj∪(Ai\Bij)], H2 = Gk[{x}∪Ak∪(Ai\Bik)] andH3 = Gl[{x}∪Al∪(Ai\Bil)]
cover V (K), where diam(H1), diam(H2), diam(H3) 6 4.

(C2) Suppose there exist distinct i, j, k, l ∈ [4] such that Bij \ (Bik ∪Bil) 6= ∅. Then for a
fixed u ∈ Bij \ (Bik ∪Bil), since every edge in [Bij, Bji] is color k or l we have that
Bji ⊆ Nk(u) ∪ Nl(u). Since u sends a color k edge to Ak and a color l edge to Al,
H1 = Gi[{x} ∪Ai ∪ (Aj \Bji)], H2 = Gk[{x} ∪Ak ∪ {u} ∪ (Nk(u) ∩Bji)] and H3 =
Gl[{x}∪Al∪{u}∪(Nl(u)∩Bji)] cover V (K), where diam(H1), diam(H2), diam(H3) 6
4.

(C3) Suppose there exist distinct i, j, k, l ∈ [4] such that (Bik ∪Bil) \Bij 6= ∅ and (Bki ∪
Bkj) \ Bkl 6= ∅. Then by (C2), we have that Bij ⊆ Bik = Bil and Bkl ⊆ Bki = Bkj.
Let ui ∈ Bik \ Bij and uk ∈ Bki \ Bkl. Note that since every edge in [Bik, Bki] has
color j or l, we may suppose without loss of generality that uiuk has color j. Also
every edge from uk to Bik has color j or l. Since uk 6∈ Bkl, uk sends an edge of
color l to Al and since ui 6∈ Bij, ui sends an edge of color j to Aj. Thus letting
H1 = Gk[Ai \ Bik ∪ Ak ∪ {x}], H2 = Gj[{ui, uk} ∪ Aj ∪ {x} ∪ (Nj(uk) ∩ Bik)], and
H3 = Gl[Al∪{x}∪{uk}∪ (Nl(uk)∩Bik)] gives a cover of V (K) with diam(H1) 6 4,
diam(H2) 6 5, diam(H3) 6 4.

Claim 55. If (C1)-(C3) hold, then there exists distinct i, j, k, l ∈ [4] such that Bij = Bik,
Bjk ∪Bjl ⊆ Bji, and Bkj ∪Bkl ⊆ Bki.
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Proof. Using (C3), we have that for every ordering (i, j, k, l) of the elements {1, 2, 3, 4}, we
have Bik∪Bil ⊆ Bij or Bki∪Bkj ⊆ Bkl. From this we can deduce that there exists i, j ∈ [4]
such that Bik ∪ Bil ⊆ Bij and Bjk ∪ Bjl ⊆ Bji. Likewise, since either Bij ∪ Bil ⊆ Bik or
Bji∪Bjk ⊆ Bjl, we may assume that Bij = Bik. We will have the desired property unless
Bki is a proper subset of Bkj ∪Bkl. But this implies Bji ∪Bjk ⊆ Bjl and Bli ∪Blk ⊆ Blj.
So Bji = Bjl and Bik ∪Bil ⊆ Bij and Bli ∪Blk ⊆ Blj giving us the desired property.

We have one final case remaining from Claim 55. We use Lemma 52 to show that we
are done in this final case.

Without loss of generality, suppose B14 ⊆ B12 = B13 and B23 ∪ B24 ⊆ B21 and
B32 ∪ B34 ⊆ B31. First, we let H1 = G4[{x} ∪ A4 ∪ (A1 \ B12) ∪ (A2 \ B21) ∪ (A3 \ B31)]
and note that diam(H1) 6 4 and H1 covers everything except B12 = B13, B21 and B31.

Let F1 = [B12, B21] and F2 = [B13, B31] and note that all edges in F1 are color 3, 4
and all edges in F2 are color 2, 4. We apply Lemma 52 to each of F1 and F2. If say F2

satisfies (P3), then letting H2 be the monochromatic subgraph covering F2, and H3 =
G2[{x} ∪ B21], we have the desired cover of V (K) with diam(H1) 6 4, diam(H2) 6 6,
and diam(H3) 6 2. So suppose neither F1 nor F2 satisfy (P3). If both F1 and F2 satisfy
(P2), then F1 ∪ F2 can be covered with at most two monochromatic subgraphs of color
4. If F1 ∪ F2 can be covered with exactly one monochromatic subgraph of color 4, let
H2 be this subgraph and we have the desired cover of V (K) with diam(H1) 6 4 and
diam(H2) 6 6. If F1 ∪F2 must be covered with two monochromatic subgraphs of color 4,
let H2, H3 be these subgraphs and we have the desired cover of V (K) with diam(H1) 6 4,
diam(H2) 6 4, and diam(H3) 6 2.

Now suppose say F2 satisfies (P2). If F1 satisfies (P1′) where B12 is the double covered
side, then letting H2 be the nontrivial color 3 subgraph of F1 and letting H3 be the color
4 subgraph which covers the rest of F1 ∪ F2, we have the desired cover of V (K) with
diam(H1) 6 4, diam(H2) 6 3, and diam(H3) 6 4. If F1 satisfies (P1′) where B21 is the
double covered side, then letting H2 be the color 4 subgraph that covers B21 along with
the the color 4 subgraph of F2 which it intersects and letting H3 be the other color 4
subgraph of F2, we have the desired cover of V (K) with diam(H1) 6 4, diam(H2) 6 4,
and diam(H3) 6 3.

We may now suppose both F1 and F2 satisfy (P1′). If say B21 is the double covered
side of F1 and B12 = B13 is the double covered side of F2, then letting H2 be the color
4 subgraph which covers F1 and letting H3 = G3[{x} ∪ B31], we have the desired cover
of V (K) with diam(H1) 6 4, diam(H2) 6 3, and diam(H3) 6 2. Now suppose B21 is the
double covered side of F1 and B31 is the double covered side of F2. If the two nontrivial
color 4 components intersect, then letting H2 be the resulting color 4 subgraph and letting
H3 = G1[{x}∪B12], we have the desired cover of V (K) with diam(H1) 6 4, diam(H2) 6 6,
and diam(H3) 6 2. If the color 4 components do not intersect, then every vertex in the
nontrivial color 4 component of F1 sends only color 2 edges to B31 and every vertex in the
nontrivial color 4 component of F2 sends only color 3 edges to B21. Thus letting H2 be
the resulting color 2 subgraph and letting H3 be the resulting color 3 subgraph, we have
the desired cover of V (K) with diam(H1) 6 4, diam(H2) 6 3, and diam(H3) 6 3.
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We now claim that we are done unless both F1 and F2 satisfy (P1′) where B12 is the
double covered side in each case. Suppose we are in this case. For i ∈ {2, 3}, let B′i be the
vertices in Bi1 which are in the component of color 4 and let B′′i be the vertices in Bi1 \B′i
which send an edge of color 4 to B′3−i. Finally, let B̄i = Bi1 \ (B′i ∪B′′i ). If there were an
edge of color 3 from B̄2 to B31 we would be done, and if there were an edge of color 2 from
B̄3 to B21 we would be done. So all edges in [B̄2, B̄3] are color 1, 4, all edges in [B̄2, B

′
3]

are color 1, 2, and all edges in [B̄3, B
′
2] are color 1, 3. If every vertex in B′2 sent an edge of

color 3 to B̄3, then we would be done, so suppose there exists a vertex y ∈ B′2 such that y
only sends edges of color 1 to B̄3. Likewise, there exists a vertex z ∈ B′3 such that z only
sends edges of color 1 to B̄2. If there is an edge of color 1 between B̄2 and B̄3, then we
would be done using the component of color 4 and the component of color 1. Otherwise
all edges between B̄2 and B̄3 are color 4, and we are done using two components of color
4.

4.6 Complete graphs, r = 5

We note that in order to generalize of proof of Theorem 42 to prove Conjecture 36 for
r = 5, it would be helpful to solve the following problem which is analogous to the last
(main) case in the proof of Theorem 42.

Conjecture 56. Suppose G is a complete 4-partite graph with vertex set partitioned as
{V1, V2, V3, V4}. If [Vi, Vj] is colored with colors from [5] \ {i, j} for all distinct i, j ∈ [4],
then G can be covered with at most three monochromatic subgraphs of bounded diameter.

4.7 Complete bipartite graphs, r = 3

Proof of Theorem 44. Suppose there exists a component C of color χ ∈ [3] such that
Vi\V (C) 6= ∅ for all i ∈ [2]. Then since each of [V1\C, V2∩C] and [V2\C, V1∩C] are colored
with colors from [3] \ {χ}, we are done by applying Lemma 52 to each of [V1 \ C, V2 ∩ C]
and [V2 \ C, V1 ∩ C]. So for every χ ∈ [3] and every component C of color χ there exists
i ∈ [2] such that Vi ⊆ V (C). If there exists a component C such that Vi ⊆ V (C) for
some i ∈ [2] and diam(C) 6 5, then we are done either because V3−i \ V (C) = ∅ or by
applying Lemma 52 to [V3−i \V (C), Vi]. So finally, suppose that there exists a component
C, say of color 3, such that Vi ⊆ V (C) for some i ∈ [2], say i = 2, and diam(C) > 6. Let
v ∈ V (G) which witnesses diam(C) and for all 0 6 i 6 d, let Di be the vertices at distance
i from v in C. Now let X1 = D0 ∪D2, X2 = (V1 \ V (C)) ∪D4 ∪ · · · ∪D2bd/2c, Y2 = D1,
Y1 = D5 ∪ · · · ∪ D2dd/2e−1, and Y0 = D3. Note that [Xi, Yi] is a complete [2]-colored
bipartite graph for all i ∈ [2] and [Y0, (V1 \ V (C))∪D0 ∪D6 ∪ · · · ∪D2bd/2c] is a complete
[2]-colored bipartite graph. Also note that C∗ = C[D0 ∪D1 ∪D2 ∪D3] is a subgraph of
color 3 which has diameter at most 6 and has X1∪Y0∪Y2 = D0∪D1∪D2∪D3 ⊆ V (C∗).

We must now analyze cases based on what happens with [Xi, Yi] for each i ∈ [2]. First,
assume that for some i ∈ [2], [Xi, Yi] satisfies (P3) in some color j ∈ [2]. Using that C∗

covers Y0 and applying Lemma 52 to [X3−i, Y3−i] completes this case.
Now assume (P1′) holds for [Xi, Yi] for some i ∈ [2] where Xi is the double covered

side. Since for any x ∈ Xi \ (D2 ∪D4), for every y ∈ Y0, the edge xy exists and is color
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1 or 2, let H1 = G1[Xi ∪ Yi ∪ Y0] and H2 = G2[Xi ∪ Yi ∪ Y0]. These two subgraphs cover
all of Xi ∪ Yi ∪ Y0 each with diameter at most 4. Lemma 52 applies to [X3−i, Y3−i] for H3

and H4 each with diameter at most 6.
Now assume (P1′) holds for [X1, Y1] where Y1 is the double covered side. Let H1 be

the color 1 component from [X1, Y1] which covers Y1. Using that C∗ covers X1 ∪ Y0 and
applying Lemma 52 to [X2, Y2] completes this case.

Now assume (P2) holds for [X1, Y1] and (P1′) holds for [X2, Y2] where Y2 is the double
covered side. Let Y ′0 = N1(v) ∩ Y0 and Y ′′0 = N2(v) ∩ Y0. If there exists a vertex x′ in
X2 \D4 which is in both the color 1 and color 2 component of [X2, Y2], then we are done
since every vertex in Y0 is adjacent to x′ in color 1 or 2. So let x′ ∈ X2 \D4 and suppose
without loss of generality that x′ is only in the color 1 component. If x′ sends a color 1
edge to Y ′0 , then we are done. Otherwise, x′ only sends color 2 edges to Y ′0 . So if x′ sends
a color 2 edge to Y ′′0 , then we are done by using the two color 2 subgraphs from [X1, Y1],
as one of these subgraphs has now been extended to cover all of Y0; or else x′ only sends
color 1 edges to Y ′′0 , in which case we are done by using the two color 1 subgraphs from
[X1, Y1], one of which contains Y ′0 , together with the color 1 subgraph from [X2, Y2], which
contains Y ′′0 , and the color 2 subgraph from [X2, Y2].

Lastly, assume (P2) holds for both [X1, Y1] and [X2, Y2]. Let Y ′0 = N1(v) ∩ Y0 and
Y ′′0 = N2(v) ∩ Y0. If any vertex in Y ′0 sends an edge of color 1 to X2, then we are done.
Otherwise there is a vertex in X2 which only sends color 2 edges to Y ′0 in which case we
are done.

5 Monochromatic covers of complete multipartite graphs

In this section, we prove Conjecture 10 for r 6 4. Let Kk be the family of complete
k-partite graphs. Lemma 53 implies the following (which was already known by [16], and
was almost certainly a folklore result before that).

Theorem 57. For all k > 2 and all K ∈ Kk, tc2(K) 6 2.

Now we consider complete 3-partite graphs.

Theorem 58. For all k > 3 and all K ∈ Kk, tc3(K) 6 3.

Proof. Let {V1, V2, V3} be the tripartition of K (we may assume K is 3-partite). First
suppose there exists a monochromatic component C, say of color 3, which covers, say
V3. Then either C covers all of V (K) and we are done, or K[(V1 ∪ V2) \ V (C), V3] is
a complete 2-colored bipartite graph and thus can be covered by two monochromatic
components and we are done. So suppose for the remainder of the proof that for all
monochromatic components C and all i ∈ [3], Vi \ V (C) 6= ∅ (?).

Claim 59. There exists a monochromatic component C so that Vi ∩ V (C) 6= ∅ for all
i ∈ [3].
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Proof. Let C be a monochromatic component and without loss of generality, suppose
V (C) ∩ V3 = ∅. Let K ′ = K[V3, (V1 ∪ V2) ∩ V (C)] be the induced 2-colored complete
bipartite graph, say the colors are red and blue. We apply Lemma 53 to K ′. By (?),
K ′ cannot satisfy (P3′). If (P1′) is the case, then by (?), it cannot be that V3 is the
double covered side, so (V1 ∪ V2) ∩ V (C) is the double covered side and thus we have
a monochromatic component which has nontrivial intersection with all three parts. So
finally, suppose (P2′) is the case, and let {X1, X2} be the corresponding bipartition of
V3 and let {Y1, Y2} be the corresponding bipartition of (V1 ∪ V2) ∩ V (C). If for some
i ∈ [2], Yi ∩ V1 6= ∅ and Yi ∩ V2 6= ∅, then we have a monochromatic component which has
nontrivial intersection with all three parts. Otherwise we have, without loss of generality,
Y1 = V1 ∩ V (C) and Y2 = V2 ∩ V (C). Every edge in [X1, Y2] is say blue and every edge in
[X2, Y2] is then red. Since every edge from Y2 to V1 \ Y1 is either red or blue, this gives us
a monochromatic component which has nontrivial intersection with all three parts.

Now by Claim 59, there exists a monochromatic component C so that Vi ∩ V (C) 6= ∅
for all i ∈ [3]. Let X1 = V1 ∩ V (C), X2 = V1 \ V (C), Y1 = V2 ∩ V (C), Y2 = V2 \ V (C),
Z1 = V3 ∩ V (C), Z2 = V3 \ V (C) and note that by (?), all of these sets are non-empty.
Note that the sets X1, Y2, Z1, X2, Y1, Z2 form a 2-colored (say red and blue) blow-up of a
C6. In the remainder of the proof, we implicity prove the general result that a 2-colored
blow-up of a C6 can be covered by at most 3 monochromatic components.

Claim 60. If there exists a monochromatic component covering any of X1 ∪ Y2 ∪ Z1,
X2 ∪ Y2 ∪ Z1, X2 ∪ Y1 ∪ Z1, X2 ∪ Y1 ∪ Z2, X1 ∪ Y1 ∪ Z2, or X1 ∪ Y2 ∪ Z2, then we have a
monochromatic 3-cover.

Proof. Suppose without loss of generality that there is a monochromatic component cov-
ering X1 ∪ Y2 ∪ Z1. Then since [Y1, X2 ∪ Z2] is a 2-colored complete bipartite graph, we
are done by Theorem 57.

We begin by focusing on the 2-colored (say red and blue) complete bipartite graphs
K1 = [Z1, X2 ∪ Y2] and K2 = [Z2, X1 ∪ Y1], but note that [X1, Y2] and [X2, Y1] are also
2-colored complete bipartite graphs colored with red and blue. We apply Corollary 53 to
each of K1 and K2.
Case 1 (K1 or K2 satisfies (P3′)) Say K1 satisfies (P3′). Since K2 can be covered by at
most two monochromatic components, we are done; thus we may assume that (P3′) is
never the case.
Case 2 (K1 or K2 satisfies (P2′))

Without loss of generality, say K1 satisfies (P2′). This means there are two red com-
ponents covering K1 and there are two blue components covering K1.

Case 2.1 (K2 satisfies (P2′))
There are two red components covering K2 and there are two blue components covering

K2. Using the fact that [X1, Y2] is a 2-colored complete bipartite graph, there is a, say,
red edge from X1 to Y2. This red edge joins one of the red components covering K1 to
one of the red components covering K2 and thus there are at most three red components
covering K.
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Case 2.2 (K2 satisfies (P1′) and X1 ∪ Y1 is the double covered side)
So there is a red component R and a blue component B which together cover K2.

Using the fact that [X1, Y2] is a 2-colored complete bipartite graph, there is a, say, red
edge from X1 to Y2. This red edge joins one of the red components covering K1 to the
red component R and thus there are two red components and one blue component (B)
which together cover K.

Case 2.3 (K2 satisfies (P1′) and Z2 is the double covered side)
So there is a red component R and a blue component B which together cover K2.

Using the fact that both [X1, Y2] and [X2, Y1] are 2-colored complete bipartite graphs, we
either have that there is a blue edge from B to X2 ∪ Y2 in which case there are two blue
components and one red component (R) which together cover K, or every edge from B
to X2 ∪ Y2 is red and thus there are three red components which cover K.
Case 3 (K1 and K2 both satisfy (P1′))

In K1 we have that Z1 is the double covered side or X2∪Y2 is the double covered side,
and in K2 we have that Z2 is the double covered side or X1 ∪ Y1 is the double covered
side. For all i ∈ [2], let Ri and Bi be, respectively, the red and blue components covering
Ki.

We will split into two subcases.
Case 3.1 (X1 ∪ Y1 is the double covered side or X2 ∪ Y2 is the double covered side)
Without loss of generality, say X2 ∪ Y2 is the double covered side in K1. If there is

a blue edge from B2 to X2 ∪ Y2, then B1 and B2 are contained together in a single blue
component B and thus B,R1, R2 forms a monochromatic cover of K. So suppose every
edge from B2 to X2 ∪ Y2 is red. So there is a red component R which covers R1 and
B2 ∩ (V1 ∪ V2). Thus R,B1, R2 forms a monochromatic cover of K.

Case 3.2 (Z1 is the double covered side and Z2 is the double covered side)
If there is a blue edge between B1 and B2 or a red edge between R1 and R2, we would

have three monochromatic components which cover K, so suppose every edge between B1

and B2 is red and every edge between R1 and R2 is blue (??).
For all i ∈ [2], let Xi(B) = Xi∩V (B3−i), Xi(R) = Xi∩V (R3−i), Yi(B) = Yi∩V (B3−i),

and Yi(R) = Yi ∩ V (R3−i).

Z1 Z2

X2(B)

Y2(B) Y2(R)

X1(R) X1(B)

Y1(R) Y1(B)

B1

R1

R2 B2

(a) Case 3.2.1: Some of the sets Y2(B), Y1(R),
Y1(B), X1(R), X1(B) may be empty

Z1 Z2

X2(B)X2(R)

Y2(B) Y2(R)

X1(R) X1(B)

Y1(R) Y1(B)

B1 R1 R2 B2

(b) Case 3.2.2

Figure 7: Case 3.2

Case 3.2.1 (For some i ∈ [2], some Xi(R), Xi(B), Yi(R), Yi(B) is empty)
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Without loss of generality, suppose X2(R) = ∅ (which implies Y2(R) 6= ∅).
If Y1(R) = ∅, then we must have X1(R) 6= ∅ and thus by (??), we have that the

complete bipartite graph [Y2(R), X1(R)] colored in blue, together with B1 and B2 form a
monochromatic cover. So suppose Y1(R) 6= ∅.

If Y1(B) = ∅, then either every vertex in X2(B) sends a red edge to Y1(R) and thus
there is red component covering X2 ∪ Y1 ∪ Z2 and we are done by Claim 60, or there is a
vertex in X2(B) which only sends blue edges to Y1(R) and thus there is a blue component
covering Z1 ∪X2 ∪ Y1 and we are again done by Claim 60. So suppose Y1(B) 6= ∅.

By (??), we have that every edge in [X2, Y1(B)] is red. So if there is a red edge from X2

to Y1(R), then there is a red component covering X2 ∪ Y1 ∪Z2 and we are done by Claim
60. So suppose every edge from X2(B) to Y1(R) is blue, which implies there is a blue
component B covering B1 and Y1(R). Now either X1(R) 6= ∅ in which case every edge in
[Y2(R), X1(R)] is blue and thus B, [Y2(R), X1(R)], B2 forms the desired monochromatic
cover, or X1(R) = ∅ in which case B,R1, B2 forms the desired monochromatic cover.

Case 3.2.2 (For all i ∈ [2], Xi(R), Xi(B), Yi(R), Yi(B) are non-empty)
We have by (??) that every edge from Y2(R) to X1(R) is blue and every edge from

Y2(B) to X1(B) is red. Suppose without loss of generality that there is a red edge from
X1(R) to Y2(B) in which case there is a red component R covering V (R1) ∪ Y2(B) ∪
X1(B) and thus R,R2 and the red component covering X2(B) ∪ Y1(B) is the desired
monochromatic cover.

The following example shows that in general, Conjecture 10 is best possible if true.

Example 61. For all k, r > 2, there exists K ∈ Kk such that tcr(K) > r.

Proof. Let K ∈ Kk in which one of the parts X has order at least r, and let x1, . . . , xr be
r distinct vertices in X. For all i ∈ [r], color all edges incident with xi with color i and
color all other edges arbitrarily.

The following is another example which shows that Theorem 58 is best possible with
the additional property that all of the parts have order 2.

Example 62. For all k > 3, there exists K ∈ Kk such that α(K) = 2 and tc3(K) > 3.

Proof. Let K ∈ Kk such that three parts X, Y, Z have order 2. Let X = {x1, x2}, Y =
{y1, y2}, Z = {z1, z2}. Let {x1, y1, z1} be a blue clique, let {x2, y1, z2} be a red clique, let
{x2, y2, z1} be a green clique, let {x1, y2} be red, let {y2, z2} be blue, let {x1, z2} be green,
let every other edge incident with {y1, z2} be red, every other edge incident with {x1, z1}
be blue, and every other edge incident with {x2, y2} be green.

Finally, we see that Conjecture 8 holds for r = 3 by either Theorem 28 with r = 3 or
Theorem 57, and Conjecture 8 holds for r = 4 by combining Theorem 28 with r = 4 and
Theorem 58.

Note that if Conjecture 9 was true for r = 5 (or, even stronger, if Conjecture 10 is true
for r − 1 = 4), then together with Theorem 28 with r = 5 this would imply Conjecture 8
is true for r = 5.
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6 Partitioning into monochromatic connected subgraphs

Erdős, Gyárfás, and Pyber proved the following theorem which strengthens the α = 1,
r = 3 case of Ryser’s conjecture.

Theorem 63 (Erdős, Gyárfás, Pyber [23]). For all finite complete graphs K, tp3(K) = 2.

Interestingly, no proof is known for infinite graphs (although the existence of a proof
via personal communication is referenced in [23]). On the other hand, Hajnal proved [34,
Theorem 1] the weaker result that tpr(K) 6 r for all infinite (countable or uncountable)
complete graphs K (in fact it can be specified that the trees have distinct colors and
radius at most 2).

Problem 64. Let K be a (countably) infinite complete graph. Prove tp3(K) = 2.

The following is a beautiful strengthening of König’s theorem (Theorem 1, Theorem 4).
We reproduce the proof here in a less general form than what is found in [25].

Theorem 65 (Fujita, Furuya, Gyárfás, Tóth [25]). For all finite graphs G, tp2(G) 6
α(G).

Proof. We are done if α(G) = 1, so suppose α(G) > 2 and the statement holds for all G′

with α(G′) < α(G).
We know that tc2(G) 6 α(G) by Theorem 4. So let R1, . . . , Rp be the red components

and let B1, . . . , Bq be the blue components in such a monochromatic cover and note that

p+ q 6 α(G).

Let R =
⋃p
i=1 V (Ri) and B =

⋃q
i=1 V (Bi). Let R′ = R \B and B′ = B \R. Note that we

are done unless R′ 6= ∅ and B′ 6= ∅. Also note that there are no edges between R′ and B′

so
α(G[R′]) + α(G[B′]) 6 α(G).

Thus α(G[R′]) < α(G) and α(G[B′]) < α(G). By induction we have p′ := tp2(G[R′]) 6
α(G[R′]) and q′ := tp2(G[B′]) 6 α(G[B′]). Let C1, . . . , Cp′ be the monochromatic parti-
tion of G[R′] and let D1, . . . , Dq′ be the monochromatic partition of G[B′]. Note that

p′ + q′ 6 α(G[R′]) + α(G[B′]) 6 α(G).

Since p′+ q+ p+ q′ 6 2α(G), we have say p′+ q 6 α(G). So C1, . . . , Cp′ , B1, . . . , Bq is the
desired monochromatic partition.

Haxell and Kohayakawa proved a weaker version of Conjecture 23 (but stronger in the
sense that the subgraphs have bounded radius).

Theorem 66 (Haxell, Kohayakawa [35]). Let r > 2. If n > 3r4r! ln r
(1−1/r)3(r−1) , then tpr(Kn) 6 r.

Furthermore, it can be specified that the trees have radius at most 2 and have distinct
colors.
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Given this result, it would be interesting to prove a bounded diameter strengthening
of Theorem 63.

Problem 67. Does there exist a constant d such that in every 3-coloring of Kn there
exists a monochromatic 2-partition consisting of subgraphs of diameter at most d?

The lower bound on n in Theorem 66 was slightly improved by Bal and DeBiasio [8] to
n > 3r2r! ln r. The proofs in [35] and [8] go as follows: Construct a set X = {x1, . . . , xr}
and disjoint set Y so that for all i ∈ [r], xi only sends edges of color i to Y . Then letting
Z = V (Kn) \ (X ∪ Y ), we have an r-colored complete bipartite graph [Y, Z]. We say that
Y has a good partition if there exists an integer 1 6 k 6 r and a partition {Y1, . . . , Yk} of
Y (allowing for parts of the partition to be empty) such that for all z ∈ Z, there exists
i ∈ [k] and y ∈ Yi such that zy has color i. Then it is shown that if Y is large enough
(equivalently, Z is small enough) then Y has a good partition. If Y has a good partition,
then there exists a partition {Z1, . . . , Zk} of Z (allowing for parts of the partition to be
empty) such that for all i ∈ [k] and z ∈ Zi, z sends an edge of color i to Yi. Thus for all
i ∈ [k], the graph of color i induced on {xi} ∪ Yi ∪ Zi can be covered by a tree of radius
at most 2.

The following lemma is a slight modification of the relevant lemma in [8].

Lemma 68. Let r > 2 and let G ∈ K2 with parts Y and Z, where Y is finite if r > 3. If
|Z| < ( r

r−1
)|Y |, then for every r-coloring of the edges of G there exists a good partition of

Y .

Proof. We say that a partition {Y1, . . . , Yk} of Y is good for z ∈ Z if there exists i ∈ [k]
and y ∈ Yi such that zy has color i; otherwise we say that the partition of Y is bad for z.

For all z ∈ Z, there are (r − 1)|Y | partitions of Y which are bad for z. Since

|Z| · (r − 1)|Y | <

(
r

r − 1

)|Y |
· (r − 1)|Y | = r|Y |,

there exists a partition of Y which is good for every vertex in Z.

Our original intention was to come up with a new proof of Theorem 63 which would
allow us to solve Problem 64 or Problem 67, but in the process we found an example to
show that Lemma 68 is tight when r = 2 or Y is infinite.

Example 69. Let G ∈ K2 with parts Y and Z where Y and Z are possibly infinite. If
|Z| > 2|Y |, then there exists a 2-coloring of the edges of G such that Y does not have a
good partition.

Proof. Let {Zb : b ∈ {0, 1}|Y |} be a partition of Z indexed by the binary strings of length
|Y | (i.e. functions from Y to {0, 1}) where every set is non-empty (which is possible since
|Z| > 2|Y |). For each z ∈ Zb and y ∈ Y , color zy with b(y) (so the colors are 0 and 1).

Consider a partition {Y0, Y1} of Y (with Yi possibly empty) and consider the binary
string a where a(y) = j if and only if y ∈ Yj. Let b be the binary string where b(y) =
1 − a(y) for all y ∈ Y . So z ∈ Zb does not send any edges of color i to Yi for all
i ∈ {0, 1}.
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y1 y2

Z00 Z01 Z10 Z11

Figure 8: Example 69 in the case |Y | = 2.

We also have an example which shows that Lemma 68 is close to tight when Y is finite
and r > 3.

Example 70. Let r > 3 and let G ∈ K2 with parts Y and Z (where Y and Z are finite).
If |Z| > 4|Y | ln r( r

r−1
)|Y |, then there exists an r-coloring of the edges of G such that Y

does not have a good partition.

This is obtained by showing that with positive probability, a random r-coloring of G
does not have a good partition. However, we don’t give the details here since this result
will be superseded by an upcoming result with a better constant term.

With regards to Problem 64, Lemma 68 has the following consequence.

Corollary 71. Let K be a 3-colored complete graph on a set V . If there exists a maximal
monochromatic component C (that is a monochromatic component which is not properly
contained in a monochromatic component of another color) such that |V (C)| < 2|V \V (C)|,
then there exists a 2-partition of K. In particular, if V is countably infinite, then there is
a 2-partition of K unless every maximal monochromatic component is cofinite.

Proof. By the assumption, let C be a maximal monochromatic component with |V (C)| <
2|V \V (C)| and without loss of generality, suppose C is green. Set Z = V (C) and Y =
V \ V (C). By maximality of C, we may suppose that all edges between Y and Z are
either red or blue. We apply Lemma 53 and note that we are done unless (P1′) holds
where Y is the double covered side (again by maximality of C). Now since |Z| < 2|Y |, we
can apply Lemma 68 to get a good partition {Y1, Y2} of Y and a corresponding partition
{Z1, Z2} of Z such that Y1 ∪ Z1 and Y2 ∪ Z2 induce monochromatic components.

The following corollary provides a proof of Theorem 25.

Corollary 72. Let k > 2 and G ∈ Kk with the vertex partition {V1, . . . , Vk}. If there
exists i ∈ [k], such that |Vi| > 2|V (G)\Vi|, then tp2(G) >

⌊
|Vi|/2|V (G)\Vi|

⌋
. In particular, for

all integers t > 1 and k > 2, there exists G ∈ Kk such that tp2(G) > t.

Proof. We let Z = Vi and Y = V (G) \ Vi and color the edges between Y and Z as in
Example 69 (where we partition Z into as equal sized sets as possible so that each part
of the partition has at least

⌊
|Z|/2|Y |

⌋
elements). Regardless of the edges inside the set

Y , no matter how the set Y gets partitioned into red and blue subgraphs, there will be a
part of the partition of Z which sends blue edges to the red subgraphs and red edges to
the blue subgraphs.
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The following question essentially asks whether the situation described in Corollary
72 is the only way to avoid having a 2-partition of a 2-colored multipartite graph.

Problem 73. Is the following true?
Let k > 2 be an integer and let G ∈ Kk with vertex partition {V1, . . . , Vk}. If for all i ∈ [k],
|Vi| < 2|V (G)\Vi|, then in every 2-coloring of the edges of G there exists a 2-partition of G.

Given an r-colored graph G and a color i ∈ [r], let Gcross(i) be the multipartite
graph consisting of the edges going between the components of color i. So if there are k
components of color i, then Gcross(i) is a k-partite graph colored with [r] \ {i}.

Problem 74. Is the following true?
There exists a 3-coloring of a complete graph such that for all i ∈ [3], there are at least
three components of color i and there is no partition of Gcross(i) into two monochromatic
connected subgraphs.

Encouraged by the exact answer for r = 2 (from Lemma 68 and Example 69), we
attempted to obtain a precise answer for r > 3 (even though it wouldn’t help improve
the lower bound in Theorem 66 by any significant amount). Towards this end, for all
integers r > 2 and d > 1, let Z(r, d) be the smallest positive integer z such that if G is
a complete bipartite graph with parts Y and Z with |Y | = d and |Z| = z, then there
exists an r-coloring of G in which there is no good partition of Y . In this language, we
know from Lemma 68, Example 69, and Example 70 that Z(2, d) = 2d for all d > 1 and(

r
r−1

)d
6 Z(r, d) 6 4d ln r

(
r
r−1

)d
for all r > 3, d > 1.

Problem 75. For all r > 3 and d > 1, determine Z(r, d).

We begin with a few simple observations.

Observation 76. For all r > 2 and d > 1,
(i) If r′ > r, then Z(r′, d) 6 Z(r, d).

(ii) Z(r, d) > d+ 1.

(iii) If r > d+ 1, then Z(r, d) 6 d+ 1.

(iv) Z(r, r) 6 r +
⌈
r
2

⌉
+ 1

Proof. Let G be a complete bipartite graph with parts Y and Z with |Y | = d and |Z| = z.
(i) If there exists an r-coloring of G such that every partition of Y is bad, then since

r′ > r the r-coloring of G is an r′-coloring of G such that every partition of Y is
bad.

(ii) If z 6 d, then let Y = {u1, . . . , ud} and Z = {v1, . . . , vz} and suppose we are given
an r-coloring of the edges of G. Let {Y1, . . . , Yr} be a partition of Y (with some sets
possibly empty) such that for all i ∈ [z], ui ∈ Yc where c is the color of the edge
uivi, and for all z + 1 6 i 6 d, ui ∈ Y1. Clearly {Y1, . . . , Yr} is a good partition of
Y . Thus Z(r, d) > d+ 1.
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(iii) Label the vertices of Z as v1, . . . , vz and consider the coloring of G where for all
i ∈ [d + 1], all edges incident with vi get color i. Then every partition of Y is bad
for some vertex in {v1, . . . , vd+1}.

(iv) Suppose z = r +
⌈
r
2

⌉
+ 1. Label the vertices of Z as v1, . . . , vr, u1, . . . , ud r2e+1 and

label the vertices of Y as y1, . . . , yr. Consider the following coloring of G. For all
i ∈ [r], all edges incident with vi get color i. For all i ∈ [

⌈
r
2

⌉
+ 1], the edges from

ui to {y1, . . . , yd r2e} are colored with i and the edges from ui to Y \ {y1, . . . , yd r2e}
are colored with i+ 1, except that the edges from udr/2e+1 to Y \ {y1, . . . , yd r2e} are

colored with 1. If there is a good partition {Y1, . . . , Yr} of Y , it must be the case
that all sets in the partition are singletons because otherwise one of v1, . . . , vr would
witness a bad partition. Also there is exactly one vertex ui ∈ {u1, . . . , ud r2e+1}
which is not satisfied by a vertex from {y1, . . . , yd r2e}; however, the only color that

ui sends to Y \ {y1, . . . , yd r2e} has already been used on {y1, . . . , yd r2e}.

We were able to compute some small values of Z(r, d) using an integer linear program.
Surprisingly, we didn’t even have enough computing power to determine Z(4, 4) or Z(3, 5).

d
r

2 3 4 5 6 7

1 2 2 2 2 2 →
2 4 3 3 3 3 →
3 8 5 4 4 4 →
4 16 8 6/7 5 5 →
5 32 11/12 6 →
6 ↓ ↘

Table 3: Values of Z(r, d). Exact values are highlighted in yellow.

Note that Z(r, d) is equivalent to the following. Let d and r be positive integers and
let Wr,d be the set of functions from [d] to [r] (which we think of as words of length d
over the alphabet [r]). Say that two functions f, g ∈ Wr,d are everywhere different if
f(i) 6= g(i) for all i ∈ [d]. Let Z(r, d) be the smallest integer z such that there exists
Z ⊆ Wr,d with |Z| = z such that for all f ∈ Wr,d, there exists g ∈ Z such that f and
g are everywhere different. For instance when d = 2 and r = 3, it is easy to see that
Z = {(1, 1), (2, 2), (3, 3)} is a smallest such set with this property. In the case d = 3 = r,
one can check that Z = {(1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 2), (3, 3, 3)} is a smallest such set.
To see that this is equivalent to the bipartite graph version, we think of the set Z as the
colorings of the edges from each vertex v ∈ Z to the set Y . Then each partition of Y
corresponds to a function f ∈ Wr,d which is everywhere different from the edge coloring
incident with some vertex in Z.

We now show that Z(r, d) is equivalent to two other well-studied parameters whose
bounds seem to be difficult to improve in general.
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Let G×d be the d-fold directed product of G; that is, V (G×d) is the set of d-dimensional
vectors with entries in V (G) and (a1, . . . , ad) is adjacent to (b1, . . . , bd) if and only if
aibi ∈ E(G) for all i ∈ [d]. We will be interested in K×dr , where we have that (a1, . . . , ad)
is adjacent to (b1, . . . , bd) if and only if ai 6= bi for all i ∈ [d]. We say that S ⊆ V (G) is a
total dominating set if every vertex in V (G) has a neighbor in S. Let γt(G) be the number
of vertices in a minimum total dominating set of G. Let H(r, d) be the (r − 1)d-uniform
hypergraph on V := V (K×dr ) where S ⊆ V is an edge of H(r, d) if and only if there exists
v ∈ V (K×dr ) such that N(v) = S; equivalently, for each (a1, . . . , ad) ∈ V (H(r, d)), the set
S(a1,...,ad) = {(b1, . . . , bd) : bi 6= ai for all i ∈ [k]} is an edge of H(r, d).

Theorem 77. For all r > 2 and d > 1, Z(r, d) = γt(K
×d
r ) = τ(H(r, d))

Proof. Let r > 2 and d > 1 be given. First note that γt(K
×d
r ) = τ(H(r, d)) since the vertex

sets of H(r, d) and K×dr correspond to each other, and the edges of H(r, d) correspond to
the neighborhoods of vertices in K×dr . Clearly a transversal in H(r, d) corresponds to a
total dominating set in K×dr .

To see that Z(r, d) = γt(K
×d
r ), suppose that we have a total dominating set T of order

z in K×dr , each vertex of which is a vector of length d over the alphabet {0, . . . , r − 1}.
Now let Z be a set of z vertices and for each vertex in Z, color the edges according to
the corresponding vertex (vector) from T . Every partition of Y now corresponds to a
vertex (x1, . . . , xd) in V (K×dr ) and since T is a total dominating set (and the definition of
K×dr ), there exists a vertex (x′1, . . . , x

′
d) ∈ T such that xi 6= x′i for all i ∈ [d] which means

(x1, . . . , xd) is a bad partition of Y . On the other hand if Z is a set of z − 1 vertices,
then since every set T ′ of z − 1 vertices in K×dr is not a total dominating set, there exists
a vertex (x1, . . . , xd) in V (K×dr ) which is not adjacent to anything in T ′ and this vertex
corresponds to a good partition of Y .

The following is a result independently obtained by Johnson [40], Lovász [46], and
Stein [55].

Proposition 78. For all hypergraphs H with maximum degree ∆, τ ∗(H) 6 τ(H) 6
(1 + ln ∆)τ ∗(H).

Because H(r, d) is (r−1)d-uniform and (r−1)d-regular, one can see that τ ∗(H(r, d)) =
( r
r−1

)d and thus we have the following corollary.

Corollary 79. For all r > 2 and d > 1, ( r
r−1

)d 6 τ(H(r, d)) 6 (1 + d ln(r − 1))( r
r−1

)d.

The following is a known fact about the total domination number of a graph (see [39]).

Proposition 80. Let G be a graph on n vertices with minimum degree δ and maximum
degree ∆. Then n

∆
6 γt(G) 6 1+ln δ

δ
n

We have |V (K×dr )| = rd and δ(K×dr ) = ∆(K×dr ) = (r − 1)d and thus we have the
following corollary.

Corollary 81. For all r > 2 and d > 1, ( r
r−1

)d 6 γt(K
×d
r ) 6 (1 + d ln(r − 1))( r

r−1
)d.

Note that by Theorem 77, Corollary 79 and Corollary 81 can be derived from each
other; however, it is interesting to note that they can be derived independently using the
known bounds from Proposition 78 and Proposition 80 respectively.
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7 Monochromatic covers of hypergraphs

The α = 1 case of Ryser’s conjecture says tcr(K
2
n) 6 r − 1. Király [41] surprisingly gave

a very simple proof that for all k > 3, tcr(K
k
n) = dr/ke. Earlier, Aharoni and Ziv [6]

proved that for k > 3, tcr(K
k
n) 6

⌈
r−1
k−1

⌉
(they proved this in the dual language of r-partite

hypergraphs in which every k edges intersect). Part of the reason determining tcr(K
k
n)

is so much easier for k > 3 than k = 2 seems to come down to the very weak notion
of connectivity typically used for hypergraphs. Inspired by some recent results ([17],
[18], [19], [27]), we propose a more general problem which allows for stronger notions of
connectivity in hypergraphs.

Let c, `, k be positive integers with k > 2 and c, ` 6 k − 1 and let H be a k-uniform
hypergraph. Say that a pair of c-sets S, S ′ ∈

(
V (H)
c

)
is `-connected if there exists edges

e1, . . . , ep such that S ⊆ e1, S ′ ⊆ ep, and |ei∩ei+1| > ` for all i ∈ [p−1]. A (c, `)-component
C of H is a maximal set of pairwise `-connected c-sets. Note that we can define a relation
∼ on

(
V (H)
c

)
where S ∼ S ′ if and only if S and S ′ are `-connected. When c > `, this is an

equivalence relation and the (c, `)-components of H are just the equivalence classes.
Let tcc,`r (H) be the smallest integer t such that in every r-coloring of the edges of H,

there exists a set of at most t monochromatic (c, `)-components C (that is, each C ∈ C is
a component in Hi for some i ∈ [r]) such that

⋃
C∈C C =

(
V (H)
c

)
. When c = `, we write

tc`r(H) to mean tc`,`r (H).
In this language, we can state Király’s result as follows. We will also give Király’s

proof of the upper bound.

Theorem 82 (Király [41]). For n > k > 3 and r > 1, tc1
r(K

k
n) = dr/ke.

Proof. If r = 1, the result is trivial, so let r > 2 and suppose that tc1
r−1(Kk

n) 6 d(r − 1)/ke.
If there exists a set S of k − 1 vertices such that S is contained in edges of at most

dr/ke colors, then we are done. So for every set S ⊆ V (K) of order k−1, S is contained in
edges of at least dr/ke+1 colors. For every edge e of color r, there are k distinct k−1 sets
contained in e and thus there are distinct S, S ′ ⊆ e with |S| = k− 1 = |S ′| and i ∈ [r− 1]
such that S and S ′ are contained in a component of color i which implies that e is contained
in a component of color i. Since all of the edges of color r are contained in a component
of color i ∈ [r− 1], we actually have an (r− 1)-coloring of K and thus by induction there
is a monochromatic d(r − 1)/ke-cover (which is of course a dr/ke-cover).

We propose the following general problem.

Problem 83. Let r, c, `, k be positive integers such that c, ` 6 k−1. Determine the value
of tcc,`r (Kk

n).

We prove the following results.

Theorem 84. Let r, c, `, k be positive integers such that 1 6 ` 6 c 6 k/3. Then

tcc,`r (Kk
n) =

⌈
r

bk/cc

⌉
.
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Note that this gives Theorem 82 when c = 1 = `.
In the case when r = 2, we are essentially able to give a complete answer.

Theorem 85. Let c, `, k be positive integers such that `, c 6 k − 1. Then

tcc,`2 (Kk
n) =


1 if c 6 k/2

2 if k/2 < c 6 k − `/2
Ω(n) if max{k − `/2, k/2} < c 6 k − 1

The case c < ` is harder to analyze, but we are able to determine one interesting case
exactly.

Theorem 86. tc1,2
3 (K3

n) = 1 (i.e. in every 3-coloring of K3
n there is a spanning monochro-

matic tightly connected component)

7.1 Lower bounds

The following example generalizes Király’s example (which corresponds to the case c =
` = 1) and provides the lower bound in Theorem 84.

Example 87. For all c, ` > 1, r > 2, k > 3 and n > c ·
(

r

d r
bk/cce−1

)
, tcc,`r (Kk

n) >
⌈

r
bk/cc

⌉
.

Proof. Set t := bk/cc and q := dr/te − 1. Let K = Kk
n and partition V (K) into m :=

(
r
q

)
sets Vx1 , . . . , Vxm of order at least c, where x1, . . . , xm represent each of the subsets of [r] of
order q. For each edge e ∈ E(K), let φ(e) =

⋃
i:|e∩Vxi |>c

xi. Since |e| = k < (bk/cc+ 1)c =

(t + 1)c, e intersects at most t of the sets Vx1 , . . . , Vxm in at least c vertices, so |φ(e)| 6
tq < r and thus [r] \ φ(e) 6= ∅. Color e with the smallest j ∈ [r] \ φ(e). Now let A ⊆ [r]
with |A| = q and note that there exists i such that A = xi. Note that no (c, `)-component
having a color in A contains any of the c-sets from Vxi and thus the number of (c, `)-

components needed to cover
(
V (K)
c

)
is more than q; i.e. tcc,`r (Kk

n) > q + 1 =
⌈

r
bk/cc

⌉
.

The next example provides the lower bound in the last case of Theorem 85.

Example 88. Let c, ` > 1, r > 2, n > k > 3. If c > max{k − (1 − 1/r)`, k/2}, then
tcc,`r (Kk

n) > bn/cc+ 1.

Proof. Set t := bn/cc, let K = Kk
n, and choose t disjoint sets x1, . . . , xt ⊆ V (K) each of

order c. Let X = {x1, . . . , xt}. First note that since c > k − (1− 1/r)` we have

r(c+ `− k) > r(c+ `− (c+ (1− 1/r)`)) = `. (2)

For each `-set y ∈
(
V (K)
`

)
let

Iy = {i ∈ [t] : `+ c− |y ∩ xi| = |y|+ |xi| − |y ∩ xi| = |y ∪ xi| 6 k}
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(equivalently Iy = {i ∈ [t] : y ∪ xi ⊆ e ∈ E(K)}) and note that |Iy| 6 r − 1 as otherwise

` = |y| >
∑
i∈Iy

|y ∩ xi| > r(`+ c− k),

contradicting (2).
Let φy be an injective function from Iy to [r − 1] and for all i ∈ Iy, color all edges

containing y ∪ xi with color φy(i). Now color all other edges with color r. Since c > 2k,
no edge in E(K) contains more than one element of x as a subset. So by this fact and
the way in the which the coloring was defined, no pair of c-sets from X is in the same
monochromatic (c, `)-component.

7.2 Upper bounds

We begin with a few basic observations.
First, let 0 6 c 6 k be integers and let H be a k-uniform hypergraph. For a set

S ∈
(
V (H)
c

)
, the link hypergraph of S, denoted H(S), is the hypergraph on vertex set

V (H) \S and edge set {T ∈
(
V (H)
k−c

)
: S ∪T ∈ E(H)}. If H is edge colored, then the edges

of H(S) inherit the color of the corresponding edge from H.

Observation 89. Let k > 2 and c, `, r > 1 with c, ` 6 k − 1.
(i) tcc,`r (Kk+1

n ) 6 tcc,`r (Kk
n).

(ii) tcc,`r (Kk
n) 6 tcc,`+1

r (Kk
n).

(iii) tcc,`r (Kk
n) 6 tcc+1,`

r (Kk
n).

(iv) tcc,`+1
r (Kk+1

n ) 6 tcc,`r (Kk
n−1).

Proof.
(i) Suppose we are given an r-coloring of Kk+1

n . This induces an r-coloring of all of the
k-sets. So if we have a monochromatic (c, `)-cover of the r-coloring Kk

n, then this
gives a (c, `)-cover of Kk+1

n .

(ii) A monochromatic (c, `+ 1)-component is a monochromatic (c, `)-component.

(iii) Since every c-set is contained in a (c+1)-set, a monochromatic (c+1, `)-component
covers all of the c-sets contained in the (c+ 1)-sets.

(iv) Suppose we are given an r-coloring of Kk+1
n . Consider the link hypergraph of a

vertex v which induces an r-coloring of Kk
n−1. Note that a monochromatic (c, `)-

component in the link hypergraph of v is a (c, ` + 1)-component in Kk+1
n . So any

monochromatic cover with (c, `)-components of the link hypergraph of v gives a
monochromatic cover with (c, `+ 1)-components of Kk+1

n .

7.2.1 c > `

Observation 90. Let k − 1 > c > ` > 1, r > 2, and let H be an r-colored k-uniform
hypergraph. Let 2 6 k′ 6

(
k
c

)
and let G be a k′-uniform hypergraph on vertex set

(
V (H)
c

)
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where {S1, . . . , Sk′} ∈ E(G) if and only if there exists e ∈ E(H) such that S1∪· · ·∪Sk′ ⊆ e.
Furthermore, color {S1, . . . , Sk′} ∈ E(G) with the color of the edge e ∈ E(H) such that
S1 ∪ · · · ∪ Sk′ ⊆ e, and note that {S1, . . . , Sk′} may receive more than one color.

If there are t monochromatic (1, 1)-components in G which cover V (G), then there
exists t′ 6 t monochromatic (c, `)-components in H which cover

(
V (H)
c

)
.

Proof. Let S and S ′ be vertices in G and suppose there is a monochromatic (1, 1)-
component which contains both S and S ′. So there is a collection of edges, all the same
color, e1, . . . , em ∈ E(G) such that S ∈ e1, S ′ ∈ em and ei ∩ ei+1 6= ∅ for all i ∈ [m − 1].
Thus there are edges f1, . . . , fm ∈ E(H), all the same color, such that S ⊆ f1, S ′ ⊆ fm
and |fi ∩ fi+1| > c > ` for all i ∈ [m− 1]. Thus there is a monochromatic `-walk from S
to S ′ in H. The result follows.

Theorem 91. Let r > 2, k > 3, and c > ` > 1. If k/2 < c 6 k − (1 − 1/r)`,
then tcc,`r (Kk

n) 6 r2, unless r = 2 in which case tcc,`2 (Kk
n) 6 2, or r = 3 in which case

tcc,`3 (Kk
n) 6 6.

Proof. Let K := Kk
n with a given r-coloring of the edges.

Suppose k/2 < c 6 k−(1−1/r)`. First note that given a c-set A and an `-set B, there
exists e ∈ E(K) such that A ∪ B ⊆ e if and only if k > |A ∪ B| = |A|+ |B| − |A ∩ B| =
c+ `− |A ∩B|; i.e. |A ∩B| > c+ `− k.

Given any family of r + 1 c-sets X = {X1, . . . , Xr+1}, since

r(c+ `− k) 6 r(c+ `− (c+ (1− 1/r)`)) = `,

for every set of r elements of X, there exists an `-set which is contained in an edge with
each of the r elements. Furthermore, since c > 2`/r (using c > ` and r > 2) we have

(r + 1)(c+ `− k) 6 k,

and we can choose a family of r + 1 `-sets Y = {Y1, . . . , Yr+1} such that Yi is contained
in an edge with every element in X \ {Xi} and |Y1 ∪ · · · ∪ Yr+1| 6 k which implies that
every pair Yi, Yj is contained in the same edge of K of some color, say r. So if any two
sets Xi, Xj are both contained in an edge of color r with an element in Y , there would
be a `-walk of color r between Xi and Xj in K. So suppose that at most one element
from X, say Xr+1, is contained in an edge of color r with some element of Y . However,
now Yr+1 is contained in an edge with every element in X \ {Xr+1} and since there are
only r − 1 colors used on such edges, there is a monochromatic `-walk between some Xi

and Xj in K. Altogether, this implies that there is a monochromatic `-walk between

some pair of distinct elements from X, so the closure of G (the auxiliary graph Ĝ with an
edge of color i between any two vertices (c-sets) which have an `-walk of color i between
them) has independence number at most r and thus by Observation 29 and Fact 5, we
have tcr(G) 6 tcr(Ĝ) 6 rα(Ĝ) 6 r2. If r = 2, then Theorem 4 applies and we have
tc2(G) 6 tc2(Ĝ) 6 α(Ĝ) 6 2. If r = 3, then Aharoni’s theorem [4] applies (in the dual
language) and we have tc3(G) 6 tc3(Ĝ) 6 2α(Ĝ) 6 6.
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We now prove an upper bound on tcc,`r (Kk
n) when c 6 k/2 and c > `. In particular,

when c 6 k/3, this provides the upper bound for Theorem 84.

Theorem 92. For c > ` > 1, r > 2, and c 6 k/2, tcc,`r (Kk
n) 6 tc1

r(K
bk/cc
n ). In particular,

when c 6 k/3, we have tcc,`r (Kk
n) 6

⌈
r
bk/cc

⌉
.

Proof. We have an r-coloring of K := Kk
n with vertex set V . Let H be an r-colored bk/cc-

uniform hypergraph on vertex set
(
V
c

)
where {X1, . . . , Xbk/cc} is an edge of color i in H if

and only if there exists an edge e of color i in K such that X1∪· · ·∪Xbk/cc ⊆ e. Note that

since K is k-uniform, H is a complete bk/cc-uniform graph. So tcc,`r (Kk
n) 6 tc1

r(K
bk/cc
n ).

When bk/cc > 3, it follows from Theorem 82 that tcc,`r (K) 6 tc1
r(H) 6

⌈
r
bk/cc

⌉
.

We now obtain the following complete answer when r = 2 and c > `.

Proof of Theorem 85. If c 6 k/2, then by Theorem 92 we have

tcc,`2 (Kk
n) 6 tc1

2(Kbk/ccn ) = 1

where the last equality holds by Theorem 82. If k/2 < c 6 k − `/2, then Theorem 91
applies and we have tcc,`2 (Kk

n) 6 2. Finally, if max{k − `/2, k/2} < c 6 k − 1, then
Example 88 applies and we have tcc,`2 (Kk

n) > bn/cc = Ω(n).

In the case when c > `, we are left with the following.

Problem 93. Determine tcc,`r (Kk
n) when c > `, c > 2, r > 3 and k/3 < c 6 k−(1−1/r)`.

An interesting test case for c > ` would be tc2,1
3 (K3

n). We have tc2,1
3 (K3

n) 6 tc2
3(K3

n) 6 6
(from Observation 89(ii) and Theorem 91), but perhaps tc2,1

3 (K3
n) 6 2?

An interesting test case for c = ` and k/2 < c 6 k − 2`/3 (when c = `, this is
k/2 < c 6 3k/5) would be tc3

3(K5
n).

An interesting test case for c = ` and k/3 < c 6 k/2 would be tc2
4(K4

n).

7.3 c < `

The case c < ` seems to be harder to analyze because of the fact mentioned earlier that
we can define a relation ∼ on

(
V (H)
c

)
where S ∼ S ′ if and only if S and S ′ are `-connected.

When c > `, this is an equivalence relation and the (c, `)-components of H are just the
equivalence classes; however, when c < ` it is not necessarily the case that ∼ is transitive
– it may happen that A,B,C are c-sets and there is an `-walk from A to B and an `-walk
from B to C, but this does not guarantee an `-walk from A to C.

The only general non-trivial upper bound is the following observation which is an
extension of Observation 89(iv).

Observation 94. If c < `, then for all 0 6 s 6 ` − 1, tcc,`r (Kk
n) 6 tcc,`−sr (Kk−s

n−s). In

particular, tcc,`r (Kk
n) 6 tccr(K

k−(`−c)
n−(`−c)).

the electronic journal of combinatorics 28(4) (2021), #P4.37 43



Proof. Let [n] = V (Kk
n) and let S ⊆

(
[n]
s

)
and let H(S) be the link hypergraph of S (which

is a complete (k − s)-uniform hypergraph on n − s vertices). Note that if T and T ′ are
two c-sets in

(
V (H(S))

c

)
and there is a monochromatic (` − s)-walk between T and T ′ in

H(S), then there is a monochromatic `-walk between T and T ′ in Kk
n. So if there are

t := tcc,`−sr (Kk−s
n−s) monochromatic (c, `− s)-components covering

(
[n]\S
c

)
, then there are t

monochromatic (c, `)-components covering
(

[n]
c

)
.

Note that previous observation in particular implies tc1,k−1
r (Kk

n) 6 tc1
r(K

2
n) = tcr(Kn).

The first interesting test case for c < ` is tc1,2
3 (K3

n). We have tc1,2
3 (K3

n) 6 tc1
3(K2

n) = 2
from above, but perhaps, tc1,2

3 (K3
n) = 1? We now show that this is indeed the case by

more carefully considering the possible structures in the 3-colored link graph of a vertex.
The following Lemma appears in [20], but we reproduce it here for completeness.

Lemma 95. Let K be a complete graph. For every 3-coloring of K, either
(i) there exists a monochromatic connected subgraph on n vertices, or

(ii) there exists a partition {W,X, Y, Z} of [n] (all parts non-empty), such that B1 :=
[W,X] and B2 := [Y, Z] are complete in blue, R1 := [W,Y ] and R2 := [X,Z] are
complete in red, and G1 := [W,Z] and G2 := [X, Y ] are complete in green, or

(iii) there exists a partition {W,X, Y, Z} of [n] with X, Y, Z non-empty such that B :=
W ∪ X ∪ Y is connected in blue, R := W ∪ X ∪ Z is connected in red, and G :=
W ∪ Y ∪Z is connected in green. Furthermore, [X, Y ] is complete in blue, [X,Z] is
complete in red, and [Y, Z] is complete in green, whereas no edge in [W,X] is green,
no edge in [W,Y ] is red, and no edge in [W,Z] is blue.

Proof. Suppose B is a maximal monochromatic, say blue, connected subgraph and set
U = V (K) \B. If U = ∅ then we are in case (i); so suppose not. Note that all edges from
B to U are either red or green. Let R be a maximal, say red, component which intersects
both B and U . By the maximality of B, we have B \R 6= ∅.

First suppose U \ R 6= ∅. In this case, both [B ∩ R,U \ R] and [B \ R,U ∩ R] are
complete in green. This implies [B ∩ R,U ∩ R] and [B \ R,U \ R] are complete in red
and [B ∩R,B \R] and [U ∩R,U \R] are complete in blue. So we are in case (ii), setting
W := B ∩R, X := B \R, Y := U ∩R, and Z := U \R.

Finally, suppose U \ R = ∅. In this case [B \ R,U ] is complete in green, so there is a
maximal green component G containing U ∪ (B \ R). Then we are in case (iii), setting
W := B ∩R ∩G, X := B \G, Y := B \R, and Z := U .

Proof of Theorem 86. Let K = K3
n and let u ∈ V (K). If the link graph K(u) is connected

in any color, then we are done (as in the proof of Observation 89(iv)). So by Lemma 95,
there are two cases (type (ii) and type (iii)). We will consider how the edges which do not
contain u (which have order 3) interact with the link graph K(u) (which is a 2-uniform
hypergraph).

Claim 96. (i) Let H be a connected color i subgraph in the link graph K(u) for some
i ∈ [3]. If for all c ∈ V (K(u)) \ V (H), there exists ab ∈ E(H) such that abc is a
color i edge of K, then there is a monochromatic spanning tight component of K.
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Figure 9: Colorings of type (ii) and (iii) respectively.

(ii) Suppose H1 and H2 are connected color i subgraphs in the link graph K(u) such
that {V (H1), V (H2)} forms a partition of V (K(u)). If there exists ab ∈ E(H1) and
cd ∈ E(H2) such that abc, bcd are color i edges of K, then we have a monochromatic
spanning tight component.

Proof. Without loss of generality, suppose i = 1 and say this color is red. In either case,
there is clearly a red tight walk between u and any other vertex in V (K(u)). So let
v, w ∈ V (K(u)).

(i) If v ∈ V (K(u)) \ V (H), then let e ∈ E(H) be the red edge guaranteed by the
hypothesis and if v ∈ V (H), then let e ∈ E(H) such that v ∈ e. Likewise, let f be
the red edge corresponding to w. Now any path between e and f in H, together
with u gives a red tight walk from v to w in K.

(ii) Let e ∈ E(H) such that v ∈ e and let f ∈ E(H) such that w ∈ f . If e ∈ E(Hi) and
f ∈ E(Hi) for some i ∈ [2], then there is a red tight walk from v to w, so suppose
e ∈ E(H1) and f ∈ E(H2). Let P be a path from e to ab in H1 and let Q be a path
from f to cd in H2. The path P together with u gives us a red tight walk from v to
ab (the last edge being uab), the edges abc and bcd give us a tight red walk from v
to cd (the last edge being bcd), and finally Q together with u again, gives us a red
tight walk from bc to w. So all together we have a red tight walk from v to w.

Case 1 (K(u) has a type (ii) coloring).
If for every vertex v ∈ W ∪ Y , there exists a red v,X, Z-edge, then we are done by

96(i). Likewise if for every vertex v ∈ X ∪Z, there exists a red v,W, Y -edge. So suppose
without loss of generality that there exists, say w′ ∈ W and x′ ∈ X such that no w′, X, Z-
edge is red and no x′,W, Y -edge is red. So every w′, x′, Y ∪Z-edge is either blue or green.
If all such edges are blue, then we are done by Claim 96(i), so suppose without loss of
generality that there exists y ∈ Y such that w′x′y is green. If any w′, x′, Z-edge is green,
then we are done by 96(ii); so suppose every w′, x′, Z-edge is blue. If for all y ∈ Y , there
exists a blue y,W,X-edge, then we are done by Claim 96(i); so suppose there exists y′ ∈ Y
such that no y′,W,X-edge is blue. We already know that no x′, y′,W -edge is red and we
know that no x′, y′,W -edge is blue, so every x′, y′,W -edge is green. If there exists a green
w′, y′, Z-edge, then we are done by Claim 96(ii) and if there exists a blue w′, y′, Z-edge,
then we are done by Claim 96(ii), so every w′, y′, Z-edge is red. Since every x′, y′,W -edge
is green, there exists z′ ∈ Z such that no z′, X, Y -edge is green (by Claim 96(i)). Finally,
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consider the edge x′y′z′. We just showed that x′y′z′ cannot be green, if x′y′z′ is red, then
we are done by Claim 96(ii), and if x′y′z′ is blue, then we are done by Claim 96(ii).

Case 2 (K(u) has a type (iii) coloring). Note that by Claim 96(i) we would be done
if for all x ∈ X, there exists a green x, Y, Z-edge, or for all y ∈ Y , there exists a red
y,X, Z-edge, or for all z ∈ Z, there exists a blue z,X, Y -edge; so suppose there exists
x′ ∈ X such that no x′, Y, Z-edge is green, y′ ∈ Y such that no y′, X, Z-edge is red, and
z′ ∈ Z such that no z′, X, Y -edge is blue. However, this is a contradiction as the edge
x′y′z′ is either red, blue, or green.

7.4 Partitioning

We now draw attention to the partition version of the problem raised by Fujita, Furuya,
Gyárfás, and Tóth [25]. Let tpc,`r (H) be the smallest integer t such that in every r-coloring
of the edges of H, there exists a set T of at most t monochromatic (c, `)-components C
(that is, each C ∈ C is a component in Hi for some i ∈ [r]) such that

⋃
C∈C C =

(
V (H)
c

)
and C ∩ C ′ = ∅ for all distinct C,C ′ ∈ C.

Problem 97 (Fujita, Furuya, Gyárfás, Tóth [25, Problem 14]). Is tp1
6(K3

n) = 2?

7.5 Large monochromatic subgraphs

Finally, we raise the problem of determining the largest monochromatic (c, `)-component
(recall that a (c, `) component is a subset of

(
V (H)
c

)
) in an arbitrary r-coloring of H. Let

mcc,`r (H) be largest integer m such that in every r-coloring of H, there is a monochromatic
(c, `) component of order at least m.

In this language Theorem 7 says mc1
r(G) > n

(r−1)α(G)
. From Theorem 86, we know

mc1,2
3 (K3

n) = n. And from Theorem 84 we have have that if 1 6 ` 6 c 6 k/3, then

mcc,`r (Kk
n) >

(
n
c

)⌈
r
bk/cc

⌉ .
So we ask the following question.

Problem 98. Determine mcc,`r (Kk
n). In particular, determine mc1,2

r (K3
n) for r > 4.

8 Further generalizations and strengthenings

8.1 Aharoni’s proof for r = 3

Given a hypergraph H and a matching M in H, let ρ(M) be the minimum size of a set
of edges F having the property that every edge in M intersects some edge in F . Let the
matching width of H, denoted mw(H), be the maximum value of ρ(M) over all matchings
M in H. Note that mw(H) is witnessed by a maximal matching.

Observation 99. Given a hypergraph of rank at most r (that is, each edge has order at
most r), mw(H) 6 ν(H) 6 r ·mw(H).
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Proof. Clearly ρ(M) 6 |M | for all matchings M , which implies mw(H) 6 ν(H). Let F be
a set of edges F which witnesses mw(H). Since H has rank r, there are at most r ·mw(H)
vertices spanned by F , and thus at most r ·mw(H) disjoint edges can intersect F .

Aharoni’s [4] proof of Ryser’s conjecture for the case r = 3 implicitly shows that if
τ(H ′) 6 (r − 1)mw(H ′) for all (r − 1)-partite hypergraphs H ′, then τ(H) 6 (r − 1)ν(H)
for all r-partite hypergraphs H. So we ask the following question.

Problem 100. Let r > 4 and let H ′ be an (r − 1)-partite hypergraph. Is it true that
τ(H ′) 6 (r − 1)mw(H ′)?

In the case r = 2, this is trivial. In the case r = 3 we have τ(H ′) = ν(H ′) by
König’s theorem, and thus ν(H ′) 6 2mw(H ′) by Observation 99. We stress that we
have no evidence one way or the other, but since a positive answer would imply Ryser’s
conjecture, we wouldn’t be surprised if the answer is negative.3

8.2 Lovász’ conjecture

Lovász [45] made the following conjecture which would give an inductive proof of Ryser’s
conjecture.

Conjecture 101 (Lovász [45]). In every r-partite hypergraph, there exists a set of at
most r − 1 vertices whose deletion decreases the matching number.

In the dual language (R2), in every r-colored graph, there exists a set of at most r− 1
monochromatic components whose deletion decreases the independence number.

Haxell, Narins, and Szabó [36] proved this for all 3-partite hypergraphs in which
τ(H) = 2ν(H). Aharoni, Barát, Wanless [5] proved a fractional version of this; that is,
in every r-partite hypergraph H, there exists a set S of at most r − 1 vertices (which is
contained in an edge) such that ν∗(H − S) 6 ν∗(H)− 1.

8.3 Monochromatic covers with extra restrictions

Aharoni conjectured (see [5]) the following strengthening of Ryser’s conjecture (stated
here in the dual language): in any r-coloring of Kn, there is a monochromatic (r − 1)-
cover in which either all the components have the same color, or there is a vertex which
is contained in all the components. Francetic, Herke, McKay, and Wanless disproved [24,
Theorem 3.1] this conjecture by constructing a 13-coloring of Kn such that every color
class has 13 components and every set of 12 monochromatic components which cover
V (Kn) has empty intersection.

In [5] it was already noted that the following stronger conjecture is not true for all
r > 3: in any r-coloring of Kn, there exists i ∈ [r] such that there is a monochromatic
(r − 1)-cover in which all of the components have color i, or there is a monochromatic

3After submitting the paper, we asked this question on MathOverflow https://mathoverflow.net/

questions/372992/relationship-between-minimum-vertex-cover-and-matching-width and in-
deed a construction providing a negative answer was given by Alex Ravsky.
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(r − 1)-cover in which all of the components have colors in [r] \ {i} and some vertex is
contained in all of the components.

Note that our Conjecture 9 is a weakening of this stronger conjecture.

8.4 t-intersecting hypergraphs/t-multicolored edges

Bustamente and Stein [15], and Király and Tóthmérész [42] independently studied the
following problem.

Problem 102 ([15], [42]). Let r and t be integers with r > 2 and t > 1 and let H
be an r-partite hypergraph in which every pair of edges intersects in at least t vertices.
Determine an upper bound on τ(H).

In the dual language (R2), we have a r-colored complete graph in which every pair of
vertices is contained in components of at least t different colors (equivalently, every edge
gets t different colors) and we are looking for the monochromatic cover with the smallest
number of components.

The best known results are due to Bishnoi, Das, Morris, Szabó [12]; in fact, when
t > r

3
, their results are tight.

Theorem 103 (Bishnoi, Das, Morris, Szabó [12]). Let t and r be integers with r
3
< t 6 r.

If H is an r-partite hypergraph in which every pair of edges has intersection size at least
t, then τ(H) 6

⌈
r−t+1

2

⌉
, and this is best possible.

Bishnoi, Das, Morris, Szabó [12] also studied a generalization where every set of k
edges intersect in at least t vertices. It turns out that their result is a generalization of
Theorem 82 (which is the case k > 3, t = 1 below).

Theorem 104 (Bishnoi, Das, Morris, Szabó [12]). Let k, r, and t be integers with k > 3,
r > 2, and t > 1. If H is an r-partite hypergraph in which every set of k edges has
intersection size at least t, then τ(H) 6

⌈
r−t+1
k

⌉
=
⌊
r−t
k

⌋
+ 1, and this is best possible.

In the dual language (R2), given an r-coloring of Kk
n in which every set of k vertices

is contained in components of t different colors (equivalently, every edge gets t different
colors), then there is a monochromatic

⌈
r−t+1
k

⌉
-cover.

What follows is an alternate proof of the upper bound in Theorem 104. In fact, this
alternate proof shows that the monochromatic cover can be chosen to avoid any set of
t− 1 colors.

Proof. Let S ⊆ [r] with |S| = t− 1. Every edge has a color from the set [r] \S, which has

size r− (t− 1) and thus by Theorem 82, there is a monochromatic
⌈
r−(t−1)

k

⌉
-cover where

all of the components have a color from the set [r] \ S.

Now we use Theorem 104 to give an alternate proof of the upper bound of Theorem
103 (with the additional property that the monochromatic cover can be chosen to avoid
any set of

⌈
3t−r

2

⌉
− 1 colors).
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Proof. For all distinct x, y ∈ V (K), let Axy be the set of colors appearing on the edge
xy. We claim that in every set {x, y, z} of three vertices there are at least

⌈
3t−r

2

⌉
colors

which appear more than once. To see this, we may assume |Axy ∩Axz ∩Ayz| 6
⌊

3t−r
2

⌋
, as

otherwise we are done. So, the number of colors appearing at least twice is

|Axy ∩ Axz|+ |Axy ∩ Ayz|+ |Axz ∩ Ayz| − 2|Axy ∩ Axz ∩ Ayz|
= |Axy|+ |Axz|+ |Ayz| − |Axy ∪ Axz ∪ Ayz| − |Axy ∩ Axz ∩ Ayz|

> 3t− r −
⌊

3t− r
2

⌋
=

⌈
3t− r

2

⌉
.

Now form a complete 3-uniform hypergraph H on V (K) where for each edge xyz and
all i ∈ [r], we color xyz with any color i if color i appears more than once on {x, y, z} in
K. So H is an r-colored complete 3-uniform hypergraph where each edge gets at least⌈

3t−r
2

⌉
colors. Now applying Theorem 104 to H, we see that there is a monochromatic⌊

r−d 3t−r
2 e

3

⌋
+ 1-cover of H where

⌊
r −

⌈
3t−r

2

⌉
3

⌋
+ 1 6

⌊
r − 3t−r

2

3

⌋
+ 1 =

⌈
r − t+ 1

2

⌉
.

This monochromatic
⌈
r−t+1

2

⌉
-cover of H corresponds to a monochromatic

⌈
r−t+1

2

⌉
-cover

of K.

8.5 Linear hypergraphs/linear colorings

We say that H is a linear hypergraph if every pair of vertices is contained in at most one
edge. Francetic, Herke, McKay, and Wanless [24] proved Ryser’s conjecture for intersect-
ing linear hypergraphs in the case r 6 9.

Theorem 105. Let r > 2 and let H be an r-partite intersecting linear hypergraph. If
r 6 9, then τ(H) 6 r − 1.

In the dual language (R2), this says that for all 2 6 r 6 9 and every r-coloring of a
complete graph K in which every monochromatic component is a clique and every edge
gets exactly one color, there exists a monochromatic (r − 1)-cover of K.

8.6 Local colorings

A local r-coloring of G is an edge coloring in which each vertex is adjacent to edges of at
most r different colors. We define tcr−loc and tpr−loc analogously to tcr and tpr.

Sárközy extended the methods of [8] to prove a strengthening of Theorem 66 for local
colorings.

Theorem 106 (Sárközy [53]). For all r > 1 and n > r2(r+2), tpr−loc(Kn) 6 r (in fact, the
subgraphs can be chosen to be trees of radius at most 2 of distinct colors). Furthermore,
tcr−loc(Kn) > r whenever a projective plane of order r − 1 exists.
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This raises the following question.

Problem 107. Is tcr−loc(Kn) > r for all r? In particular, is tc7−loc(Kn) > 7?

8.7 Monochromatic covers with subgraphs of special types

It was conjectured by Gyárfás [30] that in every r-coloring of a complete graph K, there
is a partition into at most r monochromatic paths, and there is an example to show that
this is best possible. For finite complete graphs, this is known for r 6 3 [50]. Interestingly,
this is known for all r for countably infinite complete graphs [51] and uncountably infinite
complete graphs [54].

It was conjectured by Erdős, Gyárfás, and Pyber [23] that in every r-coloring of a
complete graph K, there is a partition into at most r monochromatic cycles. For finite
complete graphs, this is known for r = 2 [10], but it is not true for r > 3 [50]. It may still
be true that there is a cover with at most r monochromatic cycles or a partition into at
most r + 1 monochromatic cycles.

Since Ryser’s conjecture is known to be true for r = 3, it would be interesting to
ask whether it remains true if the monochromatic cover must consist of certain types of
graphs. A branch vertex in a tree is a vertex of degree at least 3. A spider is a tree with
at most one branch vertex. A broom is a tree obtained by joining the center of a star
to an endpoint of a path (equivalently, obtained by repeatedly subdividing one edge of a
star). It is a fun and simple exercise to prove that in every 2-coloring of Kn there exists a
monochromatic spanning spider (not a particular spider, but some member of the family
of spiders). A more challenging result due to Burr (the result is unpublished, but a very
nice proof can be found in [31]) is that in every 2-coloring of Kn there is a monochromatic
spanning broom (not a particular broom, but some member of the family of brooms).

So we ask the following specific questions.

Problem 108. In every 3-coloring of Kn is there a monochromatic 2-cover consisting of
spiders? consisting of brooms?

8.8 Monochromatic covers of Steiner triple systems

A Steiner triple system (STS) of order n is a 3-uniform hypergraph on n vertices such that
every pair of vertices is contained in exactly one edge. It is well known that an STS of order
n exists if and only if n ≡ 1, 3 mod 6. For a given n, let ST Sn be the family of all STS
of order n. Gyárfás [32] proved that for all H ∈ ST Sn, mc3(H) > 2n

3
+ 1 and that this is

best possible when n ≡ 3 mod 18. Gyárfás also proved that for all r > 3 and H ∈ ST Sn,
mcr(H) > n

r−1
and this is best possible for infinitely many n when r − 1 ≡ 1, 3 mod 6

and an affine plane of order r − 1 exists. DeBiasio and Tait [21] extended these results
showing that, in particular, for almost all H ∈ ST Sn, mc3(H) > (1−o(1))n. We propose
the following problem.

Problem 109. Let r > 2 and let n ≡ 1, 3 mod 6.
(i) Determine bounds on tcr(H) which hold for all H ∈ ST Sn.

(ii) Is tcr(H) = tcr(H
′) for all H,H ′ ∈ ST Sn?
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8.9 Monochromatic covers of complete r-partite r-uniform hypergraphs

Just as Király was able to prove that a natural generalization of Ryser’s conjecture holds
for complete k-uniform hypergraphs when k > 3 (Theorem 82), Gyárfás and Király [33]
proved that a natural generalization of Conjecture 19 holds for complete k-partite k-
uniform hypergraphs when k > 3; that is, they showed that if k > 3 and G is a complete
k-partite k-uniform hypergraph, then tcr(G) = r.

8.10 Monochromatic covers of bounded diameter graphs

Tonoyan [56] proved that for all r > 1, d > D > 1, n > 2, there exists N such that in
every r-coloring of the edges of every graph on at least N vertices with diameter at most
D contains a monochromatic subgraph on at least n vertices of diameter at most d.

It would be interesting to consider host graphs of bounded diameter and ask whether
it is possible to cover them with monochromatic subgraphs of bounded diameter.

Problem 110. Let r,D, δ be positive integers.
(i) Determine an upper bound on tcr(G) which holds for all graphs G of diameter at

most D. (Even the case r = 2 = D is open).

(ii) Determine an upper bound on dcδr(G) which holds for all graphs G of diameter at
most D.

8.11 Monochromatic covers of large minimum degree graphs

Bal and DeBiasio made the following conjecture about monochromatic covers of graphs
with large minimum degree and proved a weaker result.

Conjecture 111 (Bal, DeBiasio [8]). For all integers r > 1, if G is a graph on n vertices

with δ(G) > r(n−r−1)
r+1

, then tcr(G) 6 r (possibly tpr(G) 6 r).

Theorem 112 (Bal, DeBiasio [8]). For all integers r > 1 there exists n0 such that if G
is a graph on n > n0 vertices with δ(G) > (1− 1

er!
)n, then tpr(G) 6 r.

Girão, Letzter, and Sahasrabudhe [28] proved the partition version of Conjecture 111
for r = 2.

Bucić, Korándi, and Sudakov [14] proved the following theorem which solved a different
conjecture from [8].

Theorem 113 (Bucić, Korándi, Sudakov [14]). For all integers r > 1, if G is a graph
on n vertices with δ(G) > (1 − 1

2r
)n, then G has a monochromatic r-cover consisting of

components of different colors.

8.12 Monochromatic covers of random graphs

Bal and DeBiasio proved the following results about monochromatic covers of random
graphs.
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Theorem 114 (Bal, DeBiasio [8]). For all integers r > 2,

(i) if p�
(
r logn
n

)1/r
, then a.a.s. tcr(Gn,p)→∞.

(ii) if p�
(
r logn
n

)1/(r+1)
, then a.a.s. tcr(Gn,p) 6 r2.

(iii) if p�
(
r logn
n

)1/3
, then a.a.s. tpr(Gn,p) 6 2.

Kohayakawa, Mota, and Schacht [43] proved that if p�
(
r logn
n

)1/2
, then a.a.s.

tpr(Gn,p) 6 2 and proved that for r > 3 if p �
(
r logn
n

)1/(r+1)
, then a.a.s. tcr(Gn,p) > r

which disproved a conjecture from [8]. Recently Bucić, Korándi, and Sudakov extended
these results, disproving a conjecture from [43] in such a way which drastically reshaped
the known picture. Many problems remain regarding the sharpening of these results.

Theorem 115 (Bucić, Korándi, Sudakov [14]). For all integers r > 2, there exist
constants C, c > 0 such that

(i) if p <
(
c logn
n

)√r/2r−2

, then a.a.s. tcr(Gn,p) > r.

(ii) if p >
(
C logn
n

)1/r
, then a.a.s. tcr(Gn,p) 6 r2.

(iii) if p >
(
C logn
n

)1/2r

, then a.a.s. tcr(Gn,p) 6 r.
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[24] N. Francetić, S. Herke, B. D. McKay, and I. M. Wanless, On Ryser’s conjecture for
linear intersecting multipartite hypergraphs, European Journal of Combinatorics 61
(2017), 91–105.
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[36] P. E. Haxell, L. Narins, and T. Szabó, Extremal hypergraphs for Ryser’s conjecture,
Journal of Combinatorial Theory, Series A 158 (2018), 492–547.

[37] P. E. Haxell and A. D. Scott, A note on intersecting hypergraphs with large cover
number, The Electronic Journal of Combinatorics 24 (2017), no. 3, #P3.26.

[38] J. R. Henderson, Permutation decomposition of (0, 1)-matrices and decomposition
transversals, Ph.D. thesis, California Institute of Technology, 1971.

[39] M. A. Henning and A. Yeo, Total domination in graphs, Springer, 2013.

the electronic journal of combinatorics 28(4) (2021), #P4.37 54



[40] D. S. Johnson, Approximation algorithms for combinatorial problems, Proceedings of
the Fifth Annual ACM Symposium on Theory of Computing, 1973, pp. 38–49.
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Appendix A: General properties of a minimal counterexample

In this section we collect a a few more observations about a hypothetical minimal coun-
terexample to Ryser’s conjecture.

Recall that to prove tcr(G) 6 (r − 1)α(G) it suffices to consider r-colorings of multi-
graphs in which every monochromatic component is a clique. In such an r-colored multi-
graph, we call an edge e of color i and multiplicity 1 an essential edge of color i.

Theorem 116. Suppose there exists positive integers r and n, a multigraph G on n
vertices with α := α(G), and an r-coloring c : E(G)→ [r] (in which every monochromatic
component is a clique) such that G cannot be covered by at most (r− 1)α monochromatic
components. Choose such a graph and a coloring which (i) minimizes r, (ii) minimizes
α, (iii) minimizes n, (iv) minimizes e(G). Then G has the following properties:

(i) tcr(G) = (r − 1)α + 1

(ii) Every color class contains at least (r − 1)α + 1 components.

(iii) For all i ∈ [r], every component of color i contains an essential edge of color i.

(iv) Every vertex is incident with an edge of every color. In particular, every monochro-
matic component has at least 2 vertices.

(v) Every set of r components intersect in at most one vertex.

(vi) If α = 1 and 0 6 t 6 r − 1, then every set of r − t components intersect in at most
t! vertices.

(vii) For all S ⊆ [r] with s := |S| > 2, α(GS) > (r−1)α+1
s−1

. In particular, for all distinct
i, j ∈ [r], we have α(Gi,j) > (r − 1)α(G) + 1.

Proof.
(i) Let v be any vertex. Consider the graph G′ obtained by removing all of the vertices

in monochromatic components containing v. Since α(G′) 6 α(G) − 1, and G is a
minimal counterexample, we have tcr(G

′) 6 (r− 1)(α− 1) and thus (r− 1)α+ 1 6
tcr(G) 6 (r − 1)(α− 1) + r = (r − 1)α + 1.

(ii) This follows since every color class is a monochromatic cover and we are assuming
that we are in a minimal counterexample.

(iii) If not, we may remove the edges of color i corresponding to this component and
call the resulting graph G′. Note that e(G′) < e(G), but α(G′) = α(G), so by
minimality, we have tcr(G) 6 tcr(G

′) 6 (r − 1)α.

(iv) If there exists v such that v is incident with edges of at most r−1 colors, then consider
the graph G′ obtained by removing all of the vertices in monochromatic components
containing v. Since α(G′) 6 α(G)− 1, and G is a minimal counterexample, we have
tcr(G

′) 6 (r − 1)(α − 1) and thus tcr(G) 6 (r − 1)(α − 1) + (r − 1) = (r − 1)α, a
contradiction.

(v) If the components are not of distinct colors, then their intersection is empty; so sup-
pose the colors are distinct. If there are at least two vertices u, v in the intersection,
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replace them with a vertex w such that for all x /∈ {u, v}, wx is an edge colored
with every color appearing on ux or on vx; call this new graph G′. A covering of G′

gives a covering of G since any component in the covering of G′ which contains w,
contains u and v in G.

(vi) The previous item provides the base case, so suppose t > 1. Let H1, . . . , Hr−t be a
set of r − t components of distinct colors and suppose for contradiction that there
are at least t! + 1 vertices in the intersection A. Let v be a vertex which is not
in any of H1, . . . , Hr−t and note that every edge from v to A has one of t different
colors and thus by pigeonhole, there is a fixed color i such that v sends at least⌈
t!+1
t

⌉
= (t − 1)! + 1 edges of color i to A. However, now we have r − (t − 1)

components which intersect in at least (t− 1)! + 1 vertices, a contradiction.

(vii) By (vi), we have (r − 1)α(G) + 1 = tcr(G) 6 tcs(GS) 6 (s − 1)α(GS) and thus

α(GS) > (r−1)α(G)+1
s−1

.
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