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Abstract

The critical number cr(r, n) of natural intervals [r, n] was introduced by Herzog,
Kaplan and Lev in 2014. The critical number cr(r, n) is the smallest integer t
satisfying the following conditions: (i) every sequence of integers S = {r1 = r 6
r2 6 · · · 6 rk} with r1+r2+ · · ·+rk = n and k > t has the following property: every
integer between r and n− r can be written as a sum of distinct elements of S, and
(ii) there exists S with k = t, which satisfies that property. In this paper we study
a variation of the critical number cr(r, n) called the r-critical number rcr(r, n). We
determine the value of rcr(r, n) for all r, n satisfying r | n.

Mathematics Subject Classifications: 05A17, 11B25

1 Introduction

Let r, n be positive integers satisfying r 6 n and let [r, n] denote the closed interval of
integers between r and n. In [13], Herzog, Kaplan and Lev introduced the notion of the
critical number cr(r, n) of the interval [r, n]. We begin this paper with four definitions
from [13], the last of which is the definition of cr(r, n).

Definition 1. Let R = {r1 6 r2 6 · · · 6 rk} be a finite sequence of integers. The integer
k is called the length of R and will be denoted by |R|. Moreover, the sum of elements of
R will be denoted by σ(R) and the set of sums of elements of all subsequences of R will
be denoted by SR. In other words,

σ(R) = r1 + r2 + · · ·+ rk
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and
SR = {σ(B) | B ⊆ R, |B| > 0}.

Definition 2. A sequence of integers

R = {r1 6 r2 6 · · · 6 rk}

is called an (r, n)-sequence if r1 = r and σ(R) = n.
The set of all (r, n)-sequences will be denoted by L(r, n).

Definition 3. Let R be an (r, n)-sequence. We say that R is a spanning (r, n)-sequence
if either n = r or n > 2r and

SR = [r, n− r] ∪ {n}.

The set of spanning (r, n)-sequences will be denoted by Sp(r, n).

If n > 3r, then a spanning (r, n)-sequence R must contain the subsequence (r, r +
1, r + 2, . . . , 2r − 1). This condition is incorporated in the following definition of the
critical number cr(r, n) of an interval [r, n], which was studied in [13].

Definition 4. The critical number cr(r, n) of an interval [r, n] is the smallest positive
integer t satisfying the following conditions:

1. There exists a spanning (r, n)-sequence R with |R| = t.

2. Each (r, n)-sequence D satisfying:

(a) |D| > t, and

(b) if n > 3r, then (r, r + 1, r + 2, . . . , 2r − 1) ⊆ D,
is a spanning (r, n)-sequence.

In [13] and in [16] the critical numbers are completely determined for the cases in
which they exist.

The critical number cr(1, n) may be viewed as a variation on the theme of cr(G),
when G is a cyclic group of order n. The critical number cr(G) of the cyclic group G of
prime order was first studied by P. Erdős and H. Heilbronn in [5] in 1964. It was defined
as the smallest positive integer l such that every subset S ⊆ G \ {0} with |S| > l has
the following property: every element of G can be written as a nonempty sum of distinct
elements of S. Thirty years later, in 1994, A. Dias da Silva and Y. ould Hamidoune [3]
proved that for odd primes p, cr(Zp) 6

√
4p− 7. This result is essentially best possible,

the exact value of cr(Zp) being b2
√
p− 2c (see Theorem 1.2 in [6]).

The extended problem of the critical number of finite abelian groups was investigated
by various authors (see [3, 4, 6, 8, 12, 17]).The last open case was settled in 2009 by M.
Freeze, W. Gao and A. Geroldinger in [6], where the final result is stated in Theorem 1.2,
and where more references may be found.
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We mention also some recent results concerning the notion c0(G), which was introduced
by J. E. Olson and then studied by C. Peng in 1987 (see [9, 10] for further details and
references). A sequence S over an abelian group G is regular if for every subgroup
H ⊆ G, S contains at most |H| − 1 terms from H. Let c0(G) be the smallest integer t
such that every regular sequence S over G of length |S| > t forms an additive base of G
(i.e., every element of G can be expressed as a sum over a nonempty subset of S). The
value of c0(G) was determined for various families of abelian groups by W. Gao, D. Han,
G. Qian, Y. Qu and H. Zhang in 2015 [9] and by W. Gao, Y. Qu and H. Zhang in 2020
[10].

When we look at the cyclic group G of order n, written additively as (Zn,+), it is
easily observed that the analogy between cr(G) and cr(1, n) is “relatively weak”, due to
different restrictions on the corresponding “Spanning sets”. i.e., in the case of cr(1, n) we
consider:

1. A spanning sequence (and not just a set as in the case for cr(G)).

2. The sum of the elements of a spanning sequence equals n (and in particular is
congruent to 0 modulo n), while the sum of the elements of a proper subsequence
is less then n (and in particular not congruent to 0 modulo n).

These observations lead us to introduce the following two definitions.

Definition 5. Let (G,+) be an abelian group and let A = {g1, g2, . . . , gk} be a sequence
of elements of G. We say that A is a minimal zero sum (MZS)-sequence if the following
holds:

1. g1 + g2 + · · ·+ gk = 0.

2. The sum of the elements of every proper subsequence of A is different from zero.

Definition 6. Let (G,+) be an abelian group. The minimal zero sum critical number of
G (the MZS-critical number of G), zcr(G), is the smallest positive integer t for which the
following two conditions hold:

1. There exists an MZS-sequence A of G such that |A| = t and A spans G (i.e. for each
x ∈ G there exists a subsequence of A, such that the sum of its elements equals x).

2. Every MZS-sequence A of G with |A| > t spans G.

LetM be a minimal zero-sum sequence of maximal length over a finite abelian groupG.
It is easily verified that M spans G. The maximal length of minimal zero-sum sequences
over a finite abelian group G is called the Davenport constant of G, denoted by D(G)
(see[7] or [11] Chapter 5 ). Therefore, we have zcr(G) 6 D(G).

One easily observes that for cyclic groups the following holds:

Proposition 7. If G is the cyclic group of order n, then cr(1, n) 6 zcr(G).
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It is unclear to us whether the above lower bound is tight.
We consider now a variant of zcr(G) referring to subgroups which is defined below

(Definition 9).

Definition 8. An MZS-sequence of elements from the cyclic group of order n (Zn,+) is
called an r-MZS-sequence if 1, 2, . . . , r − 1 are not elements of the sequence and r is an
element of the sequence.

Definition 9. Let (G,+) = (Zn,+) be the cyclic group of order n, and let r be a
positive integer such that r | n. Let Hr = {r, 2r, . . . , n} be the subgroup of G of order n

r
.

The critical number zcr(G,Hr) is the smallest positive integer t satisfying the following
conditions:

1. There exists an r-MZS-sequence A of G such that |A| = t and A spans Hr.

2. Every r-MZS-sequence A of G with |A| > t spans Hr.

We remark that parallel problems of spanning a subgroup of finite groups G (not
necessarily abelian) by subsets of G were investigated in various papers (see, for example,
[1, 2, 14] and [15] for details and further references). This provides us a motivation to
consider and investigate the notion of rcr(r, n) which corresponds to the spanning of the
set 〈r〉n = {sr|s ∈ N and sr 6 n} (for r | n) by (r, n)-sequences (for the full definition,
see Definition 12 below). Similarly to the analogy between cr(r, n) and the problem of
group covering, there is a clear analogy between rcr(r, n) and the problem of subgroup
covering.

In this paper we compute the value of rcr(r, n) for every positive integer n and r > 2
which divides n. (see Theorem 14 below).

The connection between rcr(r, n) and zcr(G,Hr) (where G is the cyclic group of order
n) is given by the following proposition.

Proposition 10. Let G be the cyclic group of order n, and let r > 2 be such that r | n.
Then rcr(r, n) 6 zcr(G,Hr).

As shown in Lemma 13(3), if R is an (r, n)-sequence and 〈r〉n ⊆ SR, then r | n.
Therefore our new critical number is defined only if r | n, and for each such couple of
integers, the (r, n)-sequence R = (r, r, . . . , r) with n

r
elements satisfies our new spanning

condition.
So here are our two new basic definitions.

Definition 11. Let R be an (r, n)-sequence with r | n. We say that R is an r-spanning
(r, n)-sequence if

〈r〉n ⊆ SR.

The set of r-spanning (r, n)-sequences will be denoted by rSp(r, n).

Definition 12. For r, n ∈ N with r | n, the r- critical number rcr(r, n) of the interval
[r, n] is the smallest positive integer t satisfying the following conditions:
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1. There exists an r-spanning (r, n)-sequence R with |R| = t.

2. Each (r, n)-sequence D satisfying |D| > t is an r-spanning (r, n)-sequence.

Before stating our main result, we shall prove the following basic lemma.

Lemma 13. Let R be an (r, n)-sequence. Then the following statements hold.

1. If r = 1 and n > 2, then cr(1, n) = 1cr(1, n).

2. If R ∈ Sp(r, n) and r | n, then R ∈ rSp(r, n).

3. If 〈r〉n ⊆ SR, then r|n.

4. We have |R| 6 n
r
. If |R| > n

r
, then |R| = n

r
, r | n, R = (r, r, . . . , r) and R ∈

rSp(r, n).

Proof. (1) If R ∈ L(1, n) with n > 2, then R ∈ Sp(1, n) if SR = [1, n − 1] ∪ {n} = [1, n]
and R ∈ 1Sp(1, n) if 〈1〉n = [1, n] ⊆ SR. Therefore Sp(1, n) = 1Sp(1, n) and hence
cr(1, n) = 1cr(1, n).

(2) If R ∈ Sp(r, n), then SR = [r, n − r] ∪ {n}. If r | n, then 〈r〉n ⊆ SR and hence
R ∈ rSp(r, n).

(3) Suppose that 〈r〉n ⊆ SR and r - n. Then r > 2 and n = tr + d, where t and d are
positive integers and 0 < d < r. Since tr < n, tr ∈ SR and R contains a subsequence B
with σ(B) = tr. Let D = R \ B ⊆ R. Then σ(D) = d with 0 < d < r, which contradicts
our assumption that r is the least element in R.

(4) Since all elements of R are greater or equal to r, it follows that |R| 6 n
r
. Hence if

|R| > n
r
, then |R| = n

r
, r | n, R = (r, r, . . . , r) and R ∈ rSp(r, n).

Since the values of cr(1, n) were completely determined in [13], we shall restrict our
discussion of rcr(r, n) to the case r > 2.

Our main result is the following theorem.

Theorem 14. If n and r are integers satisfying r | n and r > 2, then rcr(r, n) exists and

rcr(r, n) =

⌈
n+ r − 1

r + 1

⌉
,

with the following exceptions:

1. r > 2 and n = 3r, in which case rcr(r, n) = n−r
r

= 2.

2. r = 2, 3|n and n 6= 6, 12, in which case rcr(r, n) = n
r+1

= n
3
.

3. r > 2, n > r2 − r and r + 1|n+ r − 1, in which case rcr(r, n) = n+r−1
r+1

+ 1.

4. r > 2, n 6= 3r and n = r2 − αr for an integer 2 6 α 6 r − 1, in which case
rcr(r, n) = r − α = n

r
= dn+r−1

r+1
e − 1.
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Remark 15. Notice that there exist A ∈ L(r, n) satisfying A ∈ rSp(r, n) with |A| <
rcr(r, n). For example, A = (5, 5, 10) ∈ L(5, 20) satisfies A ∈ 5Sp(5, 20) and |A| = 3,
while n = r2 − r and by Theorem 14 rcr(5, 20) = d20+5−1

6
e = 4. This happens because

rcr(r, n) denotes the minimal integer satisfying the property that if A ∈ L(r, n) and
|A| > rcr(r, n), then A ∈ rSp(r, n), and there exists another B = (5, 6, 9) ∈ L(5, 20) with
|B| = 3 and B /∈ 5Sp(5, 20).

Some preliminary results concerning the r-spanning (r, n)-sequences will be stated and
proved in Section 2. Section 3 will be devoted to the proof of Theorem 14.

2 Preliminary results

From now on, we shall use the following notation, unless stated otherwise. If R = (r1 6
r2 6 · · · 6 rk) and r1 = f1 < f2 < · · · < fd are the distinct elements of R with the

corresponding multiplicities n1, n2, . . . , nd, then we shall write R = (f
(n1)
1 , f

(n2)
2 , . . . , f

(nd)
d ),

with fi for f
(1)
i . For example, R = (2, 2, 2, 3, 3, 5) = (2(3), 3(2), 5). Notice that if R ∈

L(r, n), then n1 is the multiplicity of r in R, n1 > 1 and
∑d

i=1 nifi = n.
We start with a basic result which was presented in [13] (see Proposition 1 in [13]).

Here the multiplicity of r + i in A is denoted by nr+i. In particular, the multiplicity of r
is denoted by nr.

Proposition 16. Let

A = (r(nr), (r + 1)(nr+1), (r + 2)(nr+2), . . . , (r + j)(nr+j)) ∈ L(r,m),

where r ∈ N , j ∈ N ∪{0}, m =
∑j

i=0 nr+i(r+ i), nr, nr+1, . . . , nr+j > 1, and either j > r
or j = r − 1 and nr > 2. Then A ∈ Sp(r,m).

Notice that if r | m, then by Lemma 13(2), Proposition 16 implies that A ∈ rSp(r,m).
Let r | n. In the following lemma we determine conditions under which the existence

of a subsequence B of A ∈ L(r, n), satisfying B ∈ rSp(r, k) for certain k < n, implies
that A ∈ rSp(r, n).

Lemma 17. Let A ∈ L(r, n) with r|n and let k be an integer satisfying

n− r
2

6 k < n.

If there exists a subsequence B of A satisfying B ∈ L(r, k), and 〈r〉k ⊆ SB then A ∈
rSp(r, n).

Proof. Since B is a subsequence of A satisfying B ∈ rSp(r, k), it follows that SB ⊆ SA

and if x 6 k is an integer divisible by r, then x ∈ SB ⊆ SA. Hence it remains only to
prove that if x is an integer satisfying r | x and k < x 6 n− r, then x ∈ SA. So let x be
such an integer. Since n−r

2
6 k, it follows that

r 6 n− x < n− k 6 k + r.
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But r | n − x and by Lemma 13(3) also r | k, so the above inequalities imply that
r 6 n − x 6 k. Hence n − x ∈ SB ⊆ SA, so there exists a subsequence U of A with
σ(U) = n − x. But σ(A) = n, so σ(A \ U) = x, and since A \ U ⊆ A, it follows that
x ∈ SA, as required.

Lemma 17 yields the following corollary. Recall that if R ∈ L(r, n), then n1 denotes
the multiplicity of r in R.

Corollary 18. If A ∈ L(r, n) with r|n and n1r > n−r
2

, then A ∈ rSp(r, n).

Proof. Let k = n1r and B = (r(n1)). Clearly B is a subsequence of A and B ∈ rSp(r, k).
If k = n, then A ∈ rSp(r, n). So assume that k < n. Then n−r

2
6 k < n and by Lemma

17 A ∈ rSp(r, n).

In the next proposition we determine conditions under which A ∈ L(r, n) with r|n and
|A| > n+r−1

r+1
satisfies A ∈ rSp(r, n).

Proposition 19. Let A ∈ L(r, n) and suppose that r|n, n1 > r > 1 and |A| > n+r−1
r+1

.
Then A ∈ rSp(r, n).

Proof. We begin this proof with a general remark concerning subsequences of a sequence
of integers. Given a sequence S = (a1 6 a2 6 . . . 6 ar) of r integers, we can always find
a non-empty subsequence S1 of S satisfying r|σ(S1). Indeed, among the r partial sums
a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + · · ·+ ar either at least one is divisible by r, or there
are two distinct sums whose difference is divisible by r. Hence there exists a non-empty
subsequence S1 of S satisfying r|σ(S1), as claimed. This is a classical result in zero-sum
theory: D(Cr) = r, where D(Cr) is the Davenport constant of Cr (see [7] or [11] Chapter
5).

We proceed with the proof of Proposition 19. Assume, by way of contradiction, that
Proposition 19 does not hold and let n be the least integer for which there exists A ∈
L(r, n) satisfying our assumptions, but not belonging to rSp(r, n).

We consider first the case when

|A| − n1 > r.

Then A contains at least r elements greater than r and therefore, by the opening remark,
there exists a non-empty subsequence S of A consisting of elements of greater than r and
with x = σ(S) satisfying r|x. Choosing a minimal such S, we may assume that |S| 6 r
and since the elements of S are all greater than r, we also have |S| 6 x

r+1
. Let D = A\S.

Then D ∈ L(r, n− x) and

|D| = |A| − |S| > n+ r − 1

r + 1
− x

r + 1
=

(n− x) + r − 1

r + 1
.

Since D contains n1 r-elements, it satisfies the assumptions of Proposition 19, and it
follows by the minimality of n that D ∈ rSp(r, n − x). If n − x > n−r

2
, then by Lemma
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17 A ∈ rSp(r, n), a contradiction. So we must have 2(n− x) < n− r. Since both sides of
this inequality are divisible by r, it follows that 2(n− x) 6 n− 2r, so n 6 2x− 2r.

Let B be the subsequence of A obtained by adjoining to S the n1 r’s of A. Then
B ∈ L(r, n1r+x) and σ(A\B) = n−x−n1r. Since A\B contains only elements greater
than r, it follows that |A \B| 6 n−x−n1r

r+1
and hence

|B| = |A| − |A \B| > n+ r − 1

r + 1
− n− x− n1r

r + 1
=
x+ n1r + r − 1

r + 1
.

Thus B satisfies the conditions of Proposition 19 and if B 6= A, then it follows by the
minimality of n that B ∈ rSp(r, x + n1r). Since x + n1r > x > n+2r

2
> n−r

2
, Lemma 17

implies that A ∈ rSp(r, n), a contradiction. So assume that B = A. Then n1r + x = n,
yielding n1 = n−x

r
and since 2(n−x) 6 n−2r, it follows that n−x 6 n−2r

2
and n1 6 n−2r

2r
.

Thus we obtain
n+ r − 1

r + 1
6 |A| = n1 + |S| 6 n− 2r

2r
+ r. (1)

We shall show now that the case |A| − n1 6 r − 1 leads to the same inequality.
Having done that, we shall complete the proof by showing that inequality (1) leads to a
contradiction.

So suppose that |A| − n1 6 r − 1. Then

n1 > |A| − r + 1 >
n+ r − 1

r + 1
− r + 1.

If n1r > n
2
, then n1r > n−r

2
and A ∈ rSp(r, n) by Corollary 18, a contradiction. So we

may assume that n1 6 n
2r

, which implies that n+r−1
r+1

− r + 1 6 n
2r

, which is identical to
inequality (1).

So suppose that inequality (1) holds. Then

n+ r − 1

r + 1
6
n− 2r + 2r2

2r
,

which implies that n 6 2r2 6 2n1r. Hence A ∈ rSp(r, n) by Corollary 18, a final
contradiction.

Our final proposition in this section determines upper bounds for rcr(r, n) and lists
some important extreme cases. These results will be used for the evaluation of rcr(r, n)
in the proof of Theorem 14.

Proposition 20. Let n, r be positive integers satisfying r > 2 and r | n, and let A ∈
L(r, n). Denote Π = dn+r−1

r+1
e. Then the following statements hold.

1. If r > 2, n = 3r and |A| > n−r
r

= 2, then A ∈ rSp(r, n).

2. If r = 2, 3|n, n 6= 6 and |A| > n
r+1

= n
3

= Π − 1, then A ∈ 2Sp(2, n), with the
following exception: r = 2, n = 12, |A| = n

3
= 4 = Π − 1 and A = (2, 2, 3, 5) /∈

2Sp(2, 12).
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3. If r > 2, r 6= 4, n = r2 − r and |A| > Π = n
r
, then |A| = Π and A = (r(

n
r
)) ∈

rSp(r, n).

4. If r > 2, n > r2 − r, 3 - n if r = 2, n 6= 9 if r = 3 and |A| > Π, then A ∈
rSp(r, n), with the following exceptions: r + 1 | n + r − 1, |A| = n+r−1

r+1
= Π and

A = (r(r−1), (r + 1)(
n+r−r2

r+1
)) /∈ rSp(r, n).

5. If r > 2, n 6= 3r, n = r2 − αr with 2 6 α 6 r − 1 and |A| > Π − 1 = n
r
, then

|A| = Π− 1 and A = (r(
n
r
)) ∈ rSp(r, n).

Before starting with the proof of Proposition 20, we shall prove the following auxiliary
Lemma 21. In the proofs of Lemma 21 and of item (2) in Proposition 20, we shall change
our notation and we shall denote by ni the multiplicity of i in A. In particular, n2 will
denote the multiplicity of 2 in A.

Lemma 21. 1. Let A ∈ L(2, n) with |A| > n
3

and let b1, b2, . . . , bk be the elements of

A that are greater than 4. Then n2 >
∑k

i=1(bi − 3). In other words, each such bi
must be accompanied by bi − 3 elements 2.

2. Let A ∈ L(2, n) with 6 | n and n > 12, and suppose that A satisfies the following
conditions: |A| > n

3
and n2 = 1. Then A = (2, 3(n3), 4(n4)) with n3, n4 > 0 and

A ∈ 2Sp(2, n).

3. Let r and n be integers satisfying r > 2 and r | n and let t = dn+r−1
r+1
e. Then the

following statements hold.

(i) If n < r2 − r, then n = (t− 1)r and if n > r2 − r, then n > tr.

(ii) t = 1⇐⇒ (r, n) = (2, 2).

(iii) t 6 2 ⇐⇒ either n = r > 2 or (r, n) ∈ {(2, 4), (3, 6)}.

Proof of Lemma 21. (1) Let A ∈ L(2, n) with |A| > n
3

and let b1, b2, . . . , bk be the elements
of A that are greater than 4. Then

n−
k∑

i=1

bi − 2n2 > (|A| − k − n2)3 > n− 3k − 3n2,

which implies that n2 >
∑k

i=1(bi − 3).
(2) Suppose that 6|n, n > 12 and A ∈ L(2, n) satisfies |A| > n

3
and n2 = 1. Since

n2 = 1, it follows by (1) that A = (2, 3(n3), 4(n4)). Thus n = 2 + 3n3 + 4n4 and since 3|n,
we must have n4 6= 0. If n3 = 0, then |A| = 1 + n4 and n = 2 + 4n4 6 3|A| = 3 + 3n4,
implying that n4 6 1 and n 6 6, a contradiction. Hence also n3 > 0 and by Proposition
16 A ∈ Sp(2, n). Since 2|n, Lemma 13(2) implies that A ∈ 2Sp(2, n). as required.

(3) Let n and r be integers and suppose that r > 2 and r | n. Denote k = n
r

and let
t = dn+r−1

r+1
e. We have

t =

⌈
kr + r − 1

r + 1

⌉
=

⌈
k + 1 +

−k − r − 1 + r − 1

r + 1

⌉
=

⌈
k + 1− k + 2

r + 1

⌉
.

the electronic journal of combinatorics 28(4) (2021), #P4.42 9



Therefore if 1 6 k < r − 1, then t = k + 1 and if k > r − 1, then t 6 k. Thus
(i) If n < r2 − r then n = (t− 1)r and if n > r2 − r then n > tr.
We always have t > 1 and t = 1 if and only if n + r − 1 6 r + 1, hence if and only if

n 6 2. Thus t = 1 if and only if (r, n) = (2, 2).
Moreover, t = 2 if and only if r + 1 < n + r − 1 6 2r + 2, hence if and only if

2 < n 6 r + 3. Since r|n, it follows that t = 2 if and only if one of the following holds:
(1) n = r > 2, (2) r = 2, n = 4, and (3) r = 3, n = 6. Thus

(ii) t = 1 if and only if (r, n) = (2, 2), and
(iii) t 6 2 if and only if either n = r > 2 or (r, n) ∈ {(2, 4), (3, 6)}.

We continue now with the proof of Proposition 20. By (i) we shall denote item (i) in
Proposition 20.

Proof of Proposition 20. (1) Since L(r, 3r) = {(r, 2r), (r(3))}, with both these sequences
belonging to rSp(r, n), it follows that if A ∈ L(r, 3r) and |A| > 2, then A ∈ rSp(r, n).

(2) Recall that in this item ni denotes the multiplicity of i in A. Let A ∈ L(2, n) with
6|n, n > 12 and |A| > n

3
= Π − 1. Our aim is to prove that A ∈ 2Sp(2, n), with the

following exception: r = 2, n = 12, |A| = n
3

= 4 and A = (2, 2, 3, 5) /∈ 2Sp(2, n). The
case n = 6 was excluded since it belongs to item (1).

We first notice that if A ∈ L(2, n), 6|n, n > 12, |A| > n
3

and n2 = 1, then A ∈ 2Sp(2, n)
by Lemma 21(2). This statement will be referred to as “our first result”.

So we may assume, from now on, that n > 12 and n2 > 2.
Suppose, first, that n = 12 and |A| > 4 = Π − 1. If n2 > 3, then 2n2 > 12−2

2
and

A ∈ 2Sp(2, n) by Corollary 18. If n2 = 2, then either A = (2, 2, 3, 5), the excluded
sequence satisfying A /∈ 2Sp(2, 12), or A = (2, 2, 4, 4), which belongs to 2Sp(2, 12), as
required. So we may assume, from now on, that n > 18 and n2 > 2.

Suppose, next, that n = 18, A ∈ L(2, 18) and |A| > n
3

= 6. If n2 > 4, then 2n2 > 18−2
2

and A ∈ 2Sp(2, 18) by Corollary 18. So assume that 2 6 n2 6 3. Since |A| > n
3

= 6, it
follows by Lemma 21(1) that there is at most one element b ∈ A satisfying b > 5, and
such b must satisfy 5 6 b 6 6. Consider the integer

m = 2n2 + 3n3 + 4n4 > 12 >
18− 2

2
,

and let B = (2(n2), 3(n3), 4(n4)), allowing n3 = 0 or n4 = 0. Then σ(B) = m and B
is a subsequence of A. If n3 6= 0, then Proposition 16 implies that 2j ∈ SB for all
2 6 2j 6 m − 2 and the same conclusion certainly holds if n3 = 0. If m is even, then
〈2〉m ⊆ SB and since m > 18−2

2
, it follows by Lemma 17 that A ∈ 2Sp(2, 18), as required.

If m is odd, then b = 5 is an element in A and m = 13. Since m is odd, it follows that
n3 is odd, and in particular n3 > 1. Let C = (2(n2), 3(n3−1), 4(n4)). Then σ(C) = 10 and it
follows using the above arguments that 〈2〉10 ⊆ SC . Since 10 > 18−2

2
, it follows by Lemma

17 that in this case also A ∈ 2Sp(2, 18). Thus A ∈ 2Sp(2, 18) in all cases.
Suppose, finally, that n > 24, 6|n, n2 > 2, |A| > n

3
and (2) holds for all appropriate

l < n. If one of (2, 4), (6) and (3, 3) is a subsequence of A denoted by B, then C =
A \ B ∈ L(2, n− 6) and |C| = |A| − |B| > n

3
− 2 = n−6

3
. Notice that n− 6 > 12. If n2 of
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C equals 1, then C ∈ 2Sp(2, n− 6) by “our first result”, and the same holds by induction
if that n2 satisfies n2 > 2. Since n− 6 > n−2

2
, Lemma 17 implies that A ∈ 2Sp(2, n).

So we may assume, from now on, that n > 24, 6 | n, n2 > 2, |A| > n
3
, n3 6 1, n4 = 0

and n6 = 0.
Suppose that n5 > 2. Since |A| > n

3
, it follows by Lemma 21(1) that n2 > 4. Hence

B = (2(4), 5(2)) is a subsequence ofA and by Corollary 18, B ∈ 2Sp(2, 18), since 4·2 > 18−2
2

.
If n 6 38 = 2 · 18 + 2, then it follows by Lemma 17 that A ∈ 2Sp(2, n), as required. So
we may assume that n > 38.

If n2 > 4, then C = A \B ∈ L(2, n− 18) and |C| > n−18
3

. Since n− 18 > 12, it follows
by “our first result” if n2 of C equals 1 and by induction if that n2 satisfies n2 > 2, that
C ∈ 2Sp(2, n− 18). Since n− 18 > n−2

2
, Lemma 17 implies that A ∈ 2Sp(2, n).

If n2 = 4, then n5 = 2 and nb = 0 if b > 5. Thus n = 2n2 + 3n3 + 4n4 + 5n5 6
8 + 3 + 0 + 10 = 21, a contradiction.

So we may assume, from now on, that n5 6 1.
Suppose, first, that nb > 0 for some even b > 6. Then, by Lemma 21(1), B =

(2(b−3), b) ∈ L(2,m) is a subsequence of A and since b is even, m = 2(b− 3) + b = 3b− 6 is
divisible by 6. As |B| = b− 2 = m

3
and 2(b− 3) > m−2

2
= 3b−8

2
, it follows by Corollary 18

that B ∈ 2Sp(2,m) and if m > n−2
2

, then A ∈ 2Sp(2, n) by Lemma 17. So suppose that
m < n−2

2
, which implies that n−m > n+2

2
> 12. If n2 > b−3, then C = A\B ∈ L(2, n−m)

satisfies |C| = |A| − |B| > n
3
− m

3
= n−m

3
and it follows by “our first result” if n2 of C

equals 1 and by induction if that n2 satisfies n2 > 2, that C ∈ 2Sp(2, n −m). Hence it
follows by Lemma 17 that A ∈ 2Sp(2, n), since n−m > n+2

2
. Finally, if n2 of A satisfies

n2 = b− 3, then nb = 1 and nd = 0 for {d > 3|d 6= b}. Thus n 6 2(b− 3) + 3 + b = 3b− 3
and 2n2 = 2b− 6 > 3b−3−2

2
> n−2

2
, implying by Corollary 18 that A ∈ 2Sp(2, n).

So we may also assume that nb = 0 for all even b > 4.
Suppose that A has two odd elements b, c > 5, where b 6 c. It follows from n5 6 1

that either b = 5 < c or 7 6 b 6 c. In the first case, B = (2(2+(c−3)), 5, c) ∈ L(2,m) is a
subsequence of A, where m = 2[2+(c−3)]+5+c = 3c+3 is divisible by 6. If m = n, then
A = B ∈ 2Sp(2, n) by Corollary 18, since 2(2+(c−3)) = 2c−2 > m−2

2
= 3c+1

2
. So suppose

that m < n. Since m > 12 and |B| = c+1 = m
3

, it follows by induction that B ∈ 2Sp(2,m)
and if m > n−2

2
, then A ∈ 2Sp(2, n) by Lemma 17. So suppose that m < n−2

2
. Then

n−m > n+2
2
> 12 and C = A\B satisfies |C| = |A|−|B| > n

3
−m

3
= n−m

3
. If n2 > 2+(c−3),

then it follows by “our first result” if n2 of C equals 1 and by induction if that n2 satisfies
n2 > 2, that C ∈ 2Sp(2, n −m), which implies that A ∈ 2Sp(2, n) by Lemma 17, since
n − m > n+2

2
. Finally, if n2 = 2 + (c − 3), then nd = 0 for {d > 3 | d 6= 5, c} and

n5 = nc = 1. Hence A = (2(c−1), 3(n3), 5, c) and since n is even and c is odd, n3 6 1 implies
that n3 = 0 and A = (2(c−1), 5, c). Thus n = 3c + 3 and 2n2 = 2(c − 1) > n−2

2
= 3c+1

2
,

which implies by Corollary 18 that A ∈ 2Sp(2, n) and we are finished with the first case.
So suppose that the second case holds: 7 6 b 6 c. Suppose, first, that b = c.

Then by Lemma 21(1) B = (2(2(b−3)), b(2)) ∈ L(2,m) is a subsequence of A, where m =
2[2(b− 3)] + 2b = 6b− 12 is divisible by 6. If n = m, then A ∈ 2Sp(2, n) by Corollary 18,
since 2[2(b− 3)] > n−2

2
= 3b− 7.

So suppose that m < n. Since m > 12 and |B| = 2b− 4 = m
3

, it follows by induction
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that B ∈ 2Sp(2,m) and if m > n−2
2

, then A ∈ 2Sp(2, n) by Lemma 17. So suppose that
m < n−2

2
. Then n−m > n+2

2
> 12 and C = A\B satisfies |C| = |A|−|B| > n

3
−m

3
= n−m

3
.

If n2 > 2(b− 3), then it follows by “our first result” if n2 of C equals 1 and by induction
if that n2 satisfies n2 > 2, that C ∈ 2Sp(2, n −m), which implies that A ∈ 2Sp(2, n) by
Lemma 17, since n−m > n+2

2
. Finally, if n2 = 2(b− 3), then nd = 0 for {d > 3 | d 6= b}

and nb = 2. Hence A = (2(2b−6), 3(n3), b(2)) and since n is even, n3 6 1 implies that n3 = 0
and A = (2(2b−6), b(2)). Thus n = 6b − 12 and 2n2 = 2(2b − 6) > n−2

2
= 3b − 7, which

implies by Corollary 18 that A ∈ 2Sp(2, n).
It remains to deal with the case: 7 6 b < c and both b and c are odd. Then

by Lemma 21(1) B = (2[(b−3)+(c−3)], b, c) ∈ L(2,m) is a subsequence of A, where m =
2[(b + c) − 6] + b + c = 3(b + c) − 12 is divisible by 6. If n = m, then A ∈ 2Sp(2, n) by

Corollary 18, since 2[(b+ c)− 6]) > n−2
2

= 3(b+c)−14
2

.
So suppose that m < n. Since m > 12 and |B| = (b + c) − 4 = m

3
, it follows by

induction that B ∈ 2Sp(2,m) and by Lemma 17 A ∈ 2Sp(2, n) if m > n−2
2

. So suppose
that m < n−2

2
. Then n − m > n+2

2
> 12 and C = A \ B ∈ L(2, n − m) satisfies

|C| = |A|− |B| > n
3
− m

3
= n−m

3
. If n2 > b+ c−6, then it follows by “our first result” if n2

of C equals 1 and by induction if that n2 satisfies n2 > 2, that C ∈ 2Sp(2, n−m), which
implies that A ∈ 2Sp(2, n) by Lemma 17, since n −m > n+2

2
. Finally, if n2 = b + c − 6,

then nd = 0 for {d > 3 | d 6= b, c} and nb = nc = 1. Hence A = (2(b+c−6), 3(n3), b, c) and
since n is even and b and c are odd, n3 6 1 implies that n3 = 0, A = (2(b+c−6), b, c) and
n = 3(b+ c)− 12. Since

2n2 = 2(b+ c− 6) = 2(b+ c)− 12 >
n− 2

2
=

3(b+ c)− 14

2
,

Corollary 18 implies that A ∈ 2Sp(2, n).
So we may assume from now on that A contains at most one element b > 4, which

needs to be an odd integer. If A contains no such element, then since n is even and n3 6 1,
it follows that A = (2(n2)) ∈ 2Sp(2, n). So assume, finally, that such an element b does
exist. Since n is even, b is odd and n3 6 1, it follows that A = (2(n2), 3, b). Moreover, since
|A| > n

3
, it follows that n2 + 2 > 2n2+3+b

3
, implying that b 6 n2 + 3. If 2n2 > n−2

2
, then

A ∈ 2Sp(2, n) by Corollary 18. So suppose that 2n2 = n− 3− b < n−2
2

. Then n2 <
n−2
4

,
implying that b < n−2

4
+ 3 and

n <
n− 2

2
+ 3 + b <

n− 2

2
+ 3 +

n− 2

4
+ 3.

Hence n < 18, a final contradiction. The proof of item (2) of Proposition 20 is now
complete.

(3) Notice that if n = r2 − r and r = 2, then n = 2 = r. Moreover, if r = 4, then
n = 12 = 3r, and this case was excluded since it belongs to item (1).

Now for all r > 2 we have Π = d r2−r+r−1
r+1

e = r − 1 = n
r
. Hence by Lemma 13(4), if

A ∈ L(r, n) satisfies |A| > Π, then |A| = Π and A = (r(
n
r
)) ∈ rSp(r, n).

(4) Let A ∈ L(r, n) and suppose that n > r2 − r, 3 - n if r = 2, n 6= 9 if r = 3 and
|A| > dn+r−1

r+1
e. Cases (r, n) = (2, n) with 3 | n were excluded, since they belong to item

(2) and the case (r, n) = (3, 9) was excluded since it belongs to item (1).
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Our aim is to prove that A ∈ rSp(r, n), with the following exceptions: r+1 | n+r−1,

|A| = n+r−1
r+1

and A = (r(r−1), (r + 1)(
n+r−r2

r+1
)).

Denote A = (f
(n1)
1 , f

(n2)
2 , . . . , f

(nd)
d ) with f1 = r < f2 < · · · < fd and

∑d
i=1 nifi = n.

In addition to our previous assumptions, assume that n1 = r − j 6 r − 1 for some j
satisfying 1 6 j 6 r− 1 and A /∈ rSp(r, n). Since A /∈ rSp(r, n), we must have d > 2 and
f2 > r + 1. But then

n+ r − 1

r + 1
6 |A| 6 r − j +

n− (r − j)r
r + 1

=
n+ r − j
r + 1

which implies that j = 1, |A| = n+r−1
r+1

, r+ 1 | n+ r− 1, d = 2, f2 = r+ 1 and n1 = r− 1.

Hence A is the excluded sequence A = (r(r−1), (r + 1)(
n+r−r2

r+1
)).

So we may assume, from now on, that n1 > r > 1. Since |A| > n+r−1
r+1

, it follows by
Proposition 19 that A ∈ rSp(r, n).

(5) If r > 2, n 6= 3r and n = r2 − αr, with 2 6 α 6 r − 1, then

Π =

⌈
r2 − αr + r − 1

r + 1

⌉
=

⌈
(r − α)(r + 1)− r + α + r − 1

r + 1

⌉
=

⌈
r − α +

α− 1

r + 1

⌉
= r − α + 1 =

n

r
+ 1.

It follows by Lemma 13(4) that if |A| > Π − 1 = n
r
, then |A| = Π − 1 and A = (r(

n
r
)) ∈

rSp(r, n). Cases n = 3r were excluded, since they belong to item (1).
The proof of Proposition 20 is now complete.

3 Proof of Theorem 14

In this section we prove Theorem 14.

Proof of Theorem 14. Let n and r be positive integers satisfying r > 2 and r|n. In
Proposition 20, each such couple (r, n) was considered once and only once, and for each
such couple we determined an integral function f(r, n) such that if A ∈ L(r, n) and
|A| > f(r, n), then A ∈ rSp(r, n).

Theorem 14 claims that for each r > 2 and each n divisible by r, the function f(r, n)
is equal to rcr(r, n).

In order to prove Theorem 14, it is necessary to show that for each such r and n, there
exists A ∈ L(r, n) with |A| = f(r, n), and on the other hand to show that if A ∈ L(r, n)
and |A| = f(r, n)− 1, then either A does not exist or there exists such an A which does
not belong to rSp(r, n).

We shall perform these two tasks in two propositions. First we shall establish the
existence of A ∈ L(r, n) with |A| = f(r, n) for each of the five items of Proposition 20.

Proposition 22. For each set of values of the couples (r, n) in the items of Proposition
20, there exists A ∈ L(r, n) satisfying |A| = f(r, n).
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Proof. Given the couple (r, n) with r > 2 and r|n, let t = dn+r−1
r+1
e. We shall go over the

items of Proposition 20, denoted by 20(i) with i ∈ {1, 2, 3, 4, 5}, and for each (r, n) we
shall present A ∈ L(r, n) satisfying |A| = f(r, n).

In 20(1), r > 2, n = 3r and f(r, 3r) = 2. Then A = (r, 2r) ∈ L(r, 3r) satisfy
|A| = 2 = f(r, n).

In 20(2), r = 2, 6|n, n 6= 6 and f(r, n) = t − 1, unless (r, n) = (2, 12), in which
case f(r, n) = t = 5. Suppose, first, that (r, n) 6= (2, 12). Since n > r2 − r, it follows
by Lemma 21(3(i)) that n > tr, and Lemma 21(3(iii)) implies that t � 2, so t > 3.
Hence n = (t − 2)r + b, with t − 2 > 0, b > 2r and A = (r(t−2), b) ∈ L(r, n) satisfy
|A| = t− 1 = f(r, n).

Suppose, now, that (r, n) = (2, 12). Then A = (2(4), 4) ∈ L(2, 12) and |A| = 5 =
f(r, n).

In 20(3), r > 2, r 6= 4, n = r2 − r and f(r, n) = t = n
r
. Then A = (r(

n
r
)) satisfies

|A| = n
r

= f(r, n).
In 20(4), r > 2, n > r2 − r, 3 - n if r = 2, (r, n) 6= (3, 9) and f(r, n) = t, unless

r+ 1 | n+ r− 1, in which case f(r, n) = t+ 1. Suppose, first, that r+ 1 - n+ r− 1. Since
n > r2 − r, it follows by Lemma 21(3(i)) that n > tr, and Lemma 21(3(ii)) implies that
t 6= 1, so t > 2. Hence n = (t− 1)r+ a with t− 1 > 0, a > r and A = (r(t−1), a) ∈ L(r, n)
satisfies |A| = t = f(r, n).

Suppose, now, that r + 1|n + r − 1. Recall that k = n
r
> r − 1, so k+2

r+1
> 1. Now

t = n+r−1
r+1

= k+ 1− k+2
r+1

, so t 6 k− 1. Hence k > t+ 1, n > (t+ 1)r and n = tr+ a, with

t > 0 and a > r. It follows that A = (r(t), a) ∈ L(r, n) with |A| = t+ 1 = f(r, n).
In 20(5), n < r2 − r, n 6= 3r and f(r, n) = t− 1 = n

r
. Hence A = (r(

n
r
)) ∈ L(r, n) and

|A| = n
r

= f(r, n).

Our final result deals with sequences satisfying |A| = f(r, n)− 1. We shall prove the
following proposition.

Proposition 23. Let n and r be positive integers satisfying r > 2 and r|n and suppose
that A ∈ L(r, n) satisfies one of the following assumptions:

1. r > 2, n = 3r and |A| = 1 6 dn+r−1
r+1
e − 2.

2. r = 2, 3|n, n 6= 6, 12 and |A| = n
3
− 1 = dn+r−1

r+1
e − 2.

3. r > 2, n > r2 − r, r + 1 | n+ r − 1 and |A| = n+r−1
r+1

.

4. r > 2, n 6= 3r, n = r2 − αr with 2 6 α 6 r− 1, and |A| = r− α− 1 = dn+r−1
r+1
e − 2.

5. In all other cases, |A| = dn+r−1
r+1
e − 1.

Then either such sequence A does not exist or there exists such sequence A which does
not belong to rSp(r, n).
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Proof of Proposition 23. If n = r = 2, then A ∈ (5) and |A| = dn+r−1
r+1
e − 1 = d2+2−1

2+1
e −

1 = 0, so A does not exist. If n = r > 2, then A ∈ (4) with α = r − 1 and again
|A| = r − (r − 1)− 1 = 0, so A does not exist.

So we may assume that n > r and |A| > 2. Since r | n, we must have n > 2r. If
n = 2r and r = 2, then A ∈ (5) and |A| = d4+2−1

2+1
e − 1 = 1, so A does not exist. Finally,

if n = 2r and r > 3, then n = r2 − (r − 2)r, A ∈ (4) and |A| = r − (r − 2) − 1 = 1,
and as before A does not exist. So we may assume that n > 2r, hence n > 3r. If n = 3r
and r > 2, then A ∈ (1) and |A| = 1, so again A does not exist. So we may assume that
n > 4r. If |A| = 2, then A = (r, n − r) and A /∈ rSp(r, n) since 2r /∈ SA. So we may
assume from now on that n > 4r and |A| > 3.

Assume that r = 2. If 3|n and n 6= 6, 12, then A ∈ (2) and |A| = n
3
−1. As n > 4r = 8

and 6|n, we must have n > 18 and |A| > 5. Then n = 3|A| + 1 = 2 + 3(|A| − 2) + 5
and A = (2, 3(|A|−2), 5) ∈ L(2, n) \ 2Sp(2, n), since 4 /∈ SA. If n = 12, then A ∈ (5),
|A| = d12+1

3
e − 1 = 4 and A = (2, 2, 3, 5) ∈ L(2, 12) satisfies |A| = 4 and it does not

belong to 2Sp(2, 12) since 6 /∈ SA. Finally, suppose that 3 - n. If 3 | n+2−1, then A ∈ (3)
and |A| = n+1

3
. Thus n = 3|A|−1 = 2+3(|A|−1) and A = (2, 3(|A|−1)) ∈ L(2, n)\2Sp(2, n)

since 4 /∈ SA. If 3 - n + 2 − 1 = n + 1, then A ∈ (5) and since 3 - n, n + 1, it follows
that |A| = dn+1

3
e − 1 = n+2

3
− 1. Thus n = 3(|A| + 1) − 2 = 2 + 3(|A| − 2) + 5 and

A = (2, 3(|A|−2), 5) ∈ L(2, n) \ 2Sp(2, n) since 4 /∈ SA. So the proposition also holds for
r = 2.

So assume that n > 4r, r > 2 and |A| > 3. Since for all A satisfying our assumptions
we have |A| 6 n+r−1

r+1
, it follows that n > (r + 1)|A| − r + 1 and therefore the integer s =

n−(r+1)(|A|−2)−r satisfies s > 3. If s > r+1 and s 6= 2r, then let A = (r, (r+1)(|A|−2), s)
if s > r + 1 and A = (r, (r + 1)(|A|−1)) if s = r + 1. In both cases A ∈ L(r, n) and
A /∈ rSp(r, n) since 2r /∈ SA. If s = 2r, then let A = (r, (r + 1)(|A|−3), r + 2, 2r − 1) if
r > 3 and let A = (r, (r + 1)(|A|−3), (2r − 1)(2)) if r = 3. In both cases A ∈ L(r, n) and
A /∈ rSp(r, n) since 2r /∈ SA. If s = r, then let A = (r(2), (r+ 1)(|A|−2)). Then A ∈ L(r, n)
and 3r /∈ SA since r > 3. Hence A /∈ rSp(r, n).

By the previous paragraph, we may assume that 3 6 s < r. Recall that (|A| − 2)(r +
1) = n− s− r, which implies by Lemma 13(4) that (|A| − 1)r + |A| − 2 + s = n > |A|r.
It follows that |A| − 2 > r − s and r | |A| − 2 + s since r|n.

Assume, first, that |A| − 2 > r − s. Then |A| > 3 + r − s and by Lemma 13(4)
n > |A|r > r(3 + r − s). Let A = (r(2+r−s), (r + 1)(|A|+s−r−2)). Notice that A ∈ L(r, n),
and since r > s > 3 we have 2 < 2 + r − s 6 r − 1. Moreover, since |A| − 2 > r − s
and r | |A| − 2 + s, we have |A| + s − r − 2 > r. Now 3 < 3 + r − s 6 r and hence
3r < r(3 + r− s) < r(r+ 1), which implies that r(3 + r− s) /∈ SA. Since n > r(3 + r− s),
it follows that A /∈ rSp(r, n).

Assume, finally, that |A| − 2 = r − s. Then n = (r + 1)(|A| − 2) + r + s = |A|r, since
s = r − |A| + 2 in this case. As |A| 6 n+r−1

r+1
and n = |A|r, we have |A| 6 r − 1 and

n 6 r2−r. As A /∈ (3), it follows by our assumptions that |A| < n+r−1
r+1

, which implies that
|A| < r − 1 and n < r2 − r. Since r|n, we may conclude that n = r2 − αr for an integer
α satisfying 2 6 α 6 r− 1. By our assumptions n > 4r, so A ∈ (4) and |A| = n

r
= r− α,

contradicting our assumption that |A| = r − α − 1 in this case. Hence A does not exist,
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and the proof of Proposition 23 is now complete.

As mentioned above, it follows from Propositions 22 and 23 that Theorem 14 is correct.
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