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Abstract

A graph X is said to be unstable if the direct product X ×K2 (also called the
canonical double cover of X) has automorphisms that do not come from automor-
phisms of its factors X and K2. It is nontrivially unstable if it is unstable, connected,
and nonbipartite, and no two distinct vertices of X have exactly the same neighbors.

We find three new conditions that each imply a circulant graph is unstable.
(These yield infinite families of nontrivially unstable circulant graphs that were not
previously known.) We also find all of the nontrivially unstable circulant graphs of
order 2p, where p is any prime number.

Our results imply that there does not exist a nontrivially unstable circulant
graph of order n if and only if either n is odd, or n < 8, or n = 2p, for some prime
number p that is congruent to 3 modulo 4.

Mathematics Subject Classifications: 05C25, 05C76

1 Introduction

Let X be a circulant graph. (All graphs in this paper are finite, simple, and undirected.)

Definition 1.1 ([18]). The canonical bipartite double cover ofX is the bipartite graphBX
with V (BX) = V (X)× {0, 1}, where

(v, 0) is adjacent to (w, 1) in BX ⇐⇒ v is adjacent to w in X.
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Letting S2 be the symmetric group on the 2-element set {0, 1}, it is clear that the
direct product AutX × S2 is a subgroup of AutBX. We are interested in cases where
this subgroup is proper:

Definition 1.2 ([11, p. 160]). If AutBX 6= AutX × S2, then X is unstable.

It is easy to see (and well known) that if X is disconnected, or is bipartite, or has
“twin” vertices (see Definition 2.5 below), then X is unstable (unless X is the trivial
graph with only one vertex). The following definition rules out these trivial examples:

Definition 1.3 (cf. [20, p. 360]). If X is connected, nonbipartite, twin-free, and unstable,
then X is nontrivially unstable.

S. Wilson found the following interesting conditions that force a circulant graph to be
unstable. (See Definition 2.3 for the definition of the “Cayley graph” notation Cay(G,S).)

Theorem 1.4 (Wilson [20, Appendix A.1] (and [16, p. 156])). Let X = Cay(Zn, S) be a
circulant graph, such that n is even. Let Se = S ∩ 2Zn and So = S \ Se. If any of the
following conditions is true, then X is unstable.

(C.1) There is a nonzero element h of 2Zn, such that h+ Se = Se.

(C.2′) n is divisible by 4, and there exists h ∈ 1 + 2Zn, such that

(a) 2h+ So = So, and

(b) for each s ∈ S, such that s ≡ 0 or −h (mod 4), we have s+ h ∈ S.

(C.3′) There is a subgroup H of Zn, such that the set

R = { s ∈ S | s+H 6⊆ S },

is nonempty and has the property that if we let d = gcd
(
R∪{n}

)
, then n/d is even,

r/d is odd for every r ∈ R, and either H * dZn or H ⊆ 2dZn.

(C.4) There exists m ∈ Z×n , such that (n/2) +mS = S.

Remark 1.5. As will be explained in Remark 3.14, the statements (C.2′) and (C.3′) are
slightly corrected versions of the original statements of Theorems C.2 and C.3 that appear
in [20]. The correction (C.2′) is due to Qin-Xia-Zhou [16, p. 156].

Definition 1.6. We say that X has Wilson type (C.1), (C.2′), (C.3′), or (C.4), respec-
tively, if it satisfies the corresponding condition of Theorem 1.4.

In this terminology (modulo the corrections mentioned in Remark 1.5), Wilson [20,
p. 377] conjectured that every nontrivially unstable circulant graph has a Wilson type.
Unfortunately, this is not true, because counterexamples of order 24 were found by Qin-
Xia-Zhou [16, p. 156] (cf. Observation 6.1).
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Three of our results provide new conditions that force a circulant graph to be unstable.
(These conditions provide infinitely many new counterexamples.) It seems likely that
other conditions (and additional counterexamples) remain to be discovered.

Our first condition includes (C.1) as the special case where K = Zn, includes (C.2′) as
the special case where K = 2Zn, and includes (C.3′) as another special case (see Propo-
sition 3.4).

Theorem 3.2 (cf. [20, Thms. 1, C.1, and C.3]). Let X = Cay(Zn, S) be a circulant graph.
Choose nontrivial subgroups H and K of Zn, such that |K| is even, and let Ko = K \2K.
If either

(1) S +H ⊆ S ∪ (Ko +H) and H ∩Ko = ∅, or

(2) (S \Ko) +H ⊆ S ∪Ko and either |H| 6= 2 or |K| is divisible by 4,

then X is not stable.

Our second condition is the following generalization of (C.4).

Proposition 3.7. Assume X = Cay(Zn, S) is a circulant graph of even order. If X ∼=
Cay

(
Zn, (n/2) + S

)
, then X is unstable.

Letting Se be the set of even elements of S, and So be the set of odd elements, as in
Theorem 1.4, our third condition states that if Cay(Zn, Se) is unstable, and So is invariant
under sufficiently many translations, then X is unstable.

Proposition 3.12. Assume X = Cay(Zn, S) is a circulant graph of even order. If there
exist permutations α and β of 2Zn, and a subgroup H of 2Zn, such that:

(1) α 6= β,

(2) if the vertices u, v ∈ 2Zn are adjacent, then the vertices α(u) and β(v) are also
adjacent,

(3) w +H ⊆ S, for all odd w ∈ S, and

(4) α(v)− v ∈ H and β(v)− v ∈ H, for all v ∈ 2Zn,

then X is unstable.

Wilson’s conjecture is vacuously true for graphs of odd order:

Theorem 1.10 (Fernandez-Hujdurović [4] (or [12])). There are no nontrivially unstable
circulant graphs of odd order.

Therefore, only graphs of even order are of interest. Another of our main results shows
that the conjecture is true in the easiest of these interesting cases:

Theorem 5.1. If p is a prime number, then every nontrivially unstable circulant graph
of order 2p has Wilson type (C.4).
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This allows us to provide an explicit description of the nontrivially unstable circulant
graphs of such orders:

Corollary 5.7. Let X = Cay(Z2p, S) be a connected, twin-free, nonbipartite, circulant
graph of order 2p, where p is prime, and let Se = S ∩ 2Z2p. The graph X is nontrivially
unstable if and only if there exists m ∈ Z×2p, such that m2Se = Se, mSe 6= Se, and

S = Se ∪
(
(n/2) +mSe

)
.

It also makes it possible to strengthen Theorem 1.10 to a determination of all the
possible orders of nontrivially unstable circulant graphs:

Corollary 5.8. For n ∈ Z+, there does not exist a nontrivially unstable circulant graph
of order n if and only if either n is odd, or n < 8, or n = 2p, for some prime number
p ≡ 3 (mod 4).

Here is an outline of the paper. After this introduction comes a short section of
preliminaries. Our main results, which were described above, are proved in Section 3
(Theorem 3.2 and Propositions 3.7 and 3.12) and Section 5 (Theorem 5.1 and its corollar-
ies). In between, Section 4 discusses a lemma from [12]. Finally, Section 6 briefly presents
a few minor results that were obtained by computer exploration.

2 Preliminaries

For emphasis, and ease of reference, we repeat a basic assumption from the first paragraph
of the introduction (and add an exception):

Assumption 2.1. All graphs in this paper are finite, undirected, and simple (no loops
or multiple edges), except that loops will be allowed in Section 4 (see Assumption 4.1).

Notation 2.2. For convenience, proofs will sometimes use the following abbreviation:

n = n/2.

Definition 2.3. Let S be a subset of an abelian group G, such that −s ∈ S for all s ∈ S,
and 0 /∈ S.

(1) The Cayley graph Cay(G,S) is the graph whose vertices are the elements of G, and
with an edge from v to w if and only if w = v + s for some s ∈ S (cf. [10, §1]).

(2) For s ∈ S, we let s̃ = (s, 1).

(3) Note that if X = Cay(G,S), and we let S̃ = { s̃ | s ∈ S }, then

BX = Cay
(
G× Z2, S̃

)
.

For s ∈ S, we say that an edge uv of BX is an s-edge if v = u± s̃.
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Remark 2.4. The reason that the set S in Cay(G,S) is not allowed to contain 0 is that
Assumption 2.1 forbids the graphs in this paper from having loops.

Definition 2.5 (Kotlov-Lovász [7]). A graph X is twin-free if there do not exist two
distinct vertices that have exactly the same neighbors.

Remark 2.6. It is easy to see (and well known) that Cay(Zn, S) is twin-free if and only
if there does not exist a nonzero h ∈ Zn, such that h+ S = S.

The notion of “block” is a fundamental concept in the theory of permutation groups,
but we need only the following special case:

Definition 2.7 (cf. [3, pp. 12–13]). Let X = Cay(Zn, S) be a circulant graph. A
nonempty subset B of V (BX) is a block for the action of AutBX if, for every α ∈ AutBX,
we have

either α(B) = B or α(B) ∩ B = ∅.

It is easy to see that this implies B is a coset of some subgroup H of Zn × Z2, and that
every coset of H is a block. Indeed, the action of AutBX permutes these cosets, so there
is a natural action of AutBX on the set of cosets.

Definition 2.8 (cf. [10, Defn. 3.1]). To say that a circulant graph X = Cay(Zn, S) has
the Cayley Isomorphism Property means that if S ′ is a subset of Zn, such that X ∼=
Cay(Zn, S

′), then there exists m ∈ Z×n , such that S ′ = mS.

Theorem 2.9 (Muzychuk [13]). If n is either square-free, or twice a square-free number,
then every Cayley graph on Zn has the Cayley Isomorphism Property.

3 Some conditions that imply instability

The following known result is elementary, but, for the reader’s convenience, we briefly
recall the proof.

Lemma 3.1 ([9, Thm. 3.2], [11, Prop. 4.2]). Let X be a graph. If there exist permutations
α and β of V (X), such that α 6= β and, for every edge uv of X, the vertex α(u) is adjacent
to β(v), then X is unstable.

The converse holds if BX is connected.

Sketch of proof. (⇒) Define ϕ ∈ Aut(BX) by

ϕ(v, i) =

{(
α(v), i

)
if i = 0,(

β(v), i
)

if i = 1.

Since α 6= β, we have ϕ /∈ AutX × S2.
(⇐) Let ϕ ∈ AutBX, such that ϕ /∈ AutX × S2. Since BX is connected, we know

that its bipartition is unique, so the bipartition sets are blocks for the action of AutBX.
Therefore, after composing by a translation, we may assume ϕ

(
Zn × {i}

)
= Zn × {i} for

i = 0, 1. So we may define permutations α and β of V (X) by ϕ(v, 0) =
(
α(v), 0

)
and

ϕ(v, 1) =
(
β(v), 1

)
.
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Theorem 3.2 (cf. [20, Thms. 1, C.1, and C.3]). Let X = Cay(Zn, S) be a circulant graph.
Choose nontrivial subgroups H and K of Zn, such that |K| is even, and let Ko = K \2K.
If either

(1) S +H ⊆ S ∪ (Ko +H) and H ∩Ko = ∅, or

(2) (S \Ko) +H ⊆ S ∪Ko and either |H| 6= 2 or |K| is divisible by 4,

then X is not stable.

Proof (cf. proof of [20, Thm. 1]). Let h be a generator of H. We will define permutations
α and β of Zn, such that Lemma 3.1 applies.

(1) Define

α(x) =

{
x+ h if x ∈ 2K +H;

x otherwise;
β(x) =

{
x+ h if x ∈ Ko +H;

x otherwise.

Note that 0 /∈ Ko + H (because H ∩Ko = ∅), so β(0) = 0. Since α(0) = h, this implies
α 6= β.

Given an edge uv of X, we wish to show that α(u) is adjacent to β(v). We may assume
that either u is moved by α or v is moved by β. In fact, we may assume that exactly one
of the vertices is moved, for otherwise,

β(v)− α(u) = (v + h)− (u+ h) = v − u ∈ S.

This means we may assume that either u ∈ 2K+H or v ∈ Ko +H, but not both. Letting
s = v − u ∈ S, this implies s /∈ Ko +H.

Also, we have

β(v)− α(u) ∈ (v +H)− (u+H) = (v − u) +H = s+H,

so we may write β(v) − α(u) = s + h′, for some h′ ∈ H. By the first assumption of (1),
we know s + h′ ∈ S ∪ (Ko + H). Since s /∈ Ko + H, this implies s + h′ ∈ S, so α(u) is
adjacent to β(v).

(2) If h ∈ 2K, then Ko +H = Ko, so

(S ∩Ko) +H ⊆ Ko +H = Ko.

Since, by the first assumption of (2), we also have (S \Ko) + H ⊆ S ∪Ko, this implies
that (1) applies. Therefore, we may assume

h /∈ 2K.

Define

α(x) =


x+ h if x ∈ 2K;

x− h if x ∈ 2K + h;

x otherwise

β(x) =


x+ h if x ∈ Ko;

x− h if x ∈ Ko + h;

x otherwise.
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We claim that α 6= β. Note that α(0) = h. Therefore, if α = β, then we must have
β(0) = h. Since 0 /∈ Ko, this implies that 0 ∈ Ko + h (which means h ∈ Ko) and −h = h
(which means |h| = 2). Since |h| = 2 and h ∈ Ko, we see that |H| = 2 and that |K| is
not divisible by 4. This contradicts the second half of assumption (2), so the proof of the
claim is complete.

Given an edge uv of X, we wish to show that α(u) is adjacent to β(v). That is, we
wish to show β(v)− α(u) ∈ S. We have v = u+ s for some s ∈ S. We may assume

β(v)− α(u) 6= v − u.

In particular, we cannot have both α(u) = u and β(v) = v. Therefore,

either u ∈ 2K ∪ (2K + h) or v ∈ Ko ∪ (Ko + h).

Case 1. Assume u ∈ 2K ∪ (2K + h) and v ∈ Ko ∪ (Ko + h). We consider two different
possibilities, but both of the arguments are very similar.

Subcase 1.1. Assume u ∈ 2K. Then α(u) = u + h. Since β(v) − α(u) 6= v − u, this
implies β(v) 6= v + h, so v /∈ Ko. By the assumption of Case 1, this implies v ∈ Ko + h,
so β(v) = v − h. Hence, β(v)− α(u) = s− 2h.

We have u ∈ 2K and v ∈ Ko + h, so s = v − u ∈ Ko + h, which means s − h ∈ Ko.
Since h /∈ 2K, this implies s /∈ Ko and s − 2h /∈ Ko. Since s /∈ Ko, the first assumption
of (2) tells us s + H ⊆ S ∪Ko. Since s − 2h /∈ Ko, this implies s − 2h ∈ S. So α(u) is
adjacent to β(v).

Subcase 1.2. Assume u ∈ 2K+h. We have α(u) = u−h. Since β(v)−α(u) 6= v−u, this
implies β(v) 6= v − h, so v /∈ Ko + h. By the assumption of Case 1, this implies v ∈ Ko,
so β(v) = v + h. Hence, β(v)− α(u) = s+ 2h.

We have u ∈ 2K + h and v ∈ Ko, so s = v − u ∈ Ko − h, which means s + h ∈ Ko.
Since h /∈ 2K, this implies s /∈ Ko and s + 2h /∈ Ko. Since s /∈ Ko, the first assumption
of (2) tells us s + H ⊆ S ∪Ko. Since s + 2h /∈ Ko, this implies s + 2h ∈ S. So α(u) is
adjacent to β(v).

Case 2. Assume Case 1 does not apply. As in Case 1, we consider two different possibil-
ities, but both of the arguments are very similar.

Subcase 2.1. Assume u ∈ 2K ∪ (2K + h). Choose δ ∈ {0, 1}, such that u ∈ 2K + δh.
We have α(u) = u + εh, where ε = 1 − 2δ, and we also have v /∈ Ko ∪ (Ko + h), since
Case 1 does not apply, so β(v) = v. Since u ∈ 2K + δh, but u+ s = v /∈ Ko + δh, we have
s /∈ Ko. So the first assumption of (2) tells us s+H ⊆ S ∪Ko, so s− εh ∈ S ∪Ko. Since
β(v) − α(u) = s − εh, then we may assume s − εh ∈ Ko (otherwise, α(u) is adjacent to
β(v), as desired), so s ∈ Ko + εh. Then

v = u+ s ∈ (2K + δh) + (Ko + εh) = Ko + (δ + ε)h = Ko + (1− δ)h.

Since 1− δ ∈ {0, 1}, but v /∈ Ko ∪ (Ko + h), this is a contradiction.

Subcase 2.2. Assume v ∈ Ko ∪ (Ko + h). Choose δ ∈ {0, 1}, such that v ∈ Ko + δh.
We have β(v) = v + εh, where ε = 1 − 2δ, and we also have u /∈ 2K ∪ (2K + h), since
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Case 1 does not apply, so α(u) = u. Since v ∈ Ko + δh, but v − s = u /∈ 2K + δh, we
have s /∈ Ko. So the first assumption of (2) tells us s+H ⊆ S ∪Ko, so s+ εh ∈ S ∪Ko.
Since β(v)−α(u) = s+ εh, then we may assume s+ εh ∈ Ko (otherwise, α(u) is adjacent
to β(v), as desired), so s ∈ Ko − εh. Then

u = v − s ∈ (Ko + δh)− (Ko − εh) = 2K + (δ + ε)h = 2K + (1− δ)h.

Since 1− δ ∈ {0, 1}, but u /∈ 2K ∪ (2K + h), this is a contradiction.

Remark 3.3. In the notation of Theorem 3.2, it is clear that(
S ∩ (Ko +H)

)
+H ⊆ (Ko +H) +H = Ko +H.

Therefore, the first condition of 3.2(1) can be restated as:(
S \ (Ko +H)

)
+H ⊆ S.

Wilson types (C.1), (C.2′), and (C.3′) are special cases of Theorem 3.2(2):

Proposition 3.4. If Cay(Zn, S) has Wilson type (C.1), (C.2′), or (C.3′), then there
are nontrivial subgroups H and K of Zn that satisfy the conditions given in part (2) of
Theorem 3.2 (and |K| is even).

Proof. (C.1) Let K = Zn and H = 〈h〉. Then

(S \Ko) +H = Se + 〈h〉 = Se ⊆ S,

so the first condition of 3.2(2) is satisfied. Also, since h ∈ 2Zn = 2K, it must be true that
either |H| 6= 2 or |K| is divisible by 4.

(C.2′) Let H = 〈h〉 and K = 2Zn. (Note that |H| > 2, since h is odd and n is divisible
by 4.) Then

Ko = {x ∈ Zn | x ≡ 2 (mod 4) }.
We will show that (S \Ko) +H ⊆ S ∪Ko.

We may assume h ≡ 1 (mod 4), by applying the graph automorphism x 7→ −x if
necessary. Fix some s ∈ S \Ko.

Suppose, first, that s 6≡ 0 (mod 4) (and recall that s /∈ Ko, so s 6≡ 2 (mod 4)), so s
is odd. This means s ∈ So, so we see from C.2′(a) that s + 2kh ∈ S for all k ∈ Z. If
s+ 2kh ≡ 3 (mod 4), then s+ (2k + 1)h ∈ S (by C.2′(b)). If s+ 2kh ≡ 1 (mod 4), then
s+ (2k + 1)h ∈ Ko. Thus, we have s+H ⊆ S ∪Ko.

Now, suppose s ≡ 0 (mod 4). Then s + h ∈ S (by C.2′(b)). Now, since s + h 6≡ 0
(mod 4), the previous case tells us that s+h+H ⊆ S∪Ko. Since h+H = H, this means
s+H ⊆ S ∪Ko.

(C.3′) Let K = 〈R〉 = 〈d〉. Since n/d is even, we know that K has even order. Then,
since r/d is odd for every r ∈ R, we see that R ⊆ Ko. By the definition of R, this means
(S \Ko) +H ⊆ S, so the first condition of 3.2(2) is satisfied.

Also, since either H * dZn or H ⊆ 2dZn, we know that either H * K or H ⊆ 2K. If
H * K and |H| = 2, then it is clear that H ∩K = {0} ⊆ 2K. Thus, in both cases, we
have H ∩K ⊆ 2K, which easily implies that either |H| 6= 2 or |K| is divisible by 4.
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There is a strong converse to Proposition 3.4 when n is not divisible by 4:

Proposition 3.5. If X = Cay(Zn, S), H, and K satisfy the conditions of Theorem 3.2(2),
and n is not divisible by 4, then X has Wilson type (C.1).

Proof. Since n is not divisible by 4, it is not possible for |K| to be divisible by 4, so the
second half of Theorem 3.2(2) tells us that |H| > 2. This implies that He := H ∩ 2Zn is
nontrivial. Also, since n is not divisible by 4, we know that Ko ∩ 2Zn = ∅, so

Se +He = (S ∩ 2Zn) +He ⊆ (S \Ko) +H ⊆ S ∪Ko ⊆ S ∪ (Zn \ 2Zn).

Since He ⊆ 2Zn, we also know that Se+He ⊆ 2Zn. Therefore, we conclude that Se+He ⊆
Se, so X has Wilson type (C.1).

Remark 3.6. By combining Propositions 3.4 and 3.5, we see that if X has a Wilson type,
and n is not divisible by 4, then X must have Wilson type (C.1) or (C.4).

Proposition 3.7. Assume X = Cay(Zn, S) is a circulant graph of even order. If X ∼=
Cay

(
Zn, S + (n/2)

)
, then X is unstable.

Proof. If α is an isomorphism from Cay(Zn, S) to Cay(Zn, S+n), then Lemma 3.1 applies
with β(x) = α(x) + n.

Remarks 3.8.

(1) Proposition 3.7 is a generalization of Wilson type (C.4). To see this, note that if
n + mS = S, then mS = S + n. Also, it is well known that if m ∈ Z×n , then
Cay(Zn, S) ∼= Cay(Zn,mS) (cf. [5, Lem. 3.7.3, p. 48]). Therefore, we conclude that
Cay(Zn, S) ∼= Cay(Zn, S + n), so Proposition 3.7 applies.

(2) M. Muzychuk [14] found an efficient method to check whether two circulant graphs
(such as Cay(Zn, S) and Cay(Zn, S + n)) are isomorphic.

Here is a family of examples that illustrate Proposition 3.7:

Example 3.9. Let n = 2p2, where p is prime and p ≡ 1 (mod 4), and choose c ∈ Z, such
that c2 ≡ −1 (mod p). Fix some a ∈ Zn of order p, and let S = Se ∪ So, where

Se =
(
±2 + 〈a〉

)
∪ {±a} ⊆ 2Zn,

S ′o =
(
±2 + 〈a〉

)
∪ {±ca} ⊆ 2Zn,

So = n+ S ′o ⊆ 1 + 2Zn.

Then

(1) Cay(Zn, S) ∼= Cay
(
Zn, S + (n/2)

)
, so Proposition 3.7 implies that Cay(Zn, S) is

(nontrivially) unstable, but

(2) Cay(Zn, S) does not have a Wilson type.
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Proof. (1) Choose a set R of coset representatives for 〈a〉 in Zn, such that R + n = R,
and define α : Zn → Zn by

α(r + x) = r + cx for r ∈ R and x ∈ 〈a〉.

It suffices to show that if v, w ∈ Zn, such that v − w ∈ S, then α(v)− α(w) ∈ S + n.
First, consider two vertices v = r+ x and w = r+ y that are in the same coset of 〈a〉.

Then the definition of S implies that v − w = ±a, so y = x± a, so

α(v)− α(w) =
(
r + cx

)
−
(
r + c(x± a)

)
= ±ca ∈ S ′o = So + n.

Next, suppose v ∈ w + n + 〈a〉. Assume, without loss of generality, that v ∈ 1 + 2Zn

and w ∈ 2Zn. Write v = r + n + x and w = r + y with r ∈ R and x, y ∈ 〈a〉. The
definition of S implies that v−w = n± ca, so y = x± ca, so (using the fact that c2 ≡ −1
(mod p)) we have

α(v)− α(w) =
(
r + n+ cx

)
−
(
r + c(x± ca)

)
= n± c2a = n∓ a ∈ n+ Se.

We may now assume that v and w are in two different cosets of 〈a, n〉. Then, from the
definition of S, we see that every vertex in v + 〈a〉 is adjacent to every vertex in w + 〈a〉.
Since α(v) ∈ v + 〈a〉 and α(w) ∈ w + 〈a〉, it is therefore obvious that α(v) is adjacent to
α(w).

(2) The proof is by contradiction.
Suppose, first, that Cay(Zn, S) has Wilson type (C.1), (C.2′), or (C.3′). Then Re-

mark 3.6 tells us that the graph actually has Wilson type (C.1), so h+ Se = Se for some
non-zero h ∈ 2Zn. Since 2Zn

∼= Zp2 , we know that |h| is divisible by p. Since Se is a
union of cosets of 〈h〉, this implies that |Se| is divisible by p, which contradicts the fact
that |Se| = 2|a|+ 2 = 2p+ 2.

We may now assume that the graph is of Wilson type (C.4). Then we can find
m ∈ Z×2p2 , such that mS + n = S. Since n is odd, this implies mSe + n = So, so
mSe = S ′o. By passing to the quotient group 2Zn/〈a〉, we conclude that m ≡ ±1 (mod p).
So ma = a /∈ S ′o. This contradicts the fact that mSe = S ′o.

It is shown in [6] that every nontrivially unstable circulant graph of valency 6 7 has
a Wilson type, so the following examples have minimal valency among those that do not
have a Wilson type:

Example 3.10. Let n := 3 · 2`, where ` > 4 is even, and let

S :=
{
±3,±6,± n

12
,
n

2
± 3
}
.

Then the circulant graph X := Cay(Zn, S) has valency 8 and is nontrivially unstable, but
does not have a Wilson type.
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Proof. It is easy to see that X is connected, nonbipartite, and twin-free. For convenience,
let a = n/12.

(unstable) Let ρ0 : 2Zn → Z2 be the homomorphism with kernel 4Zn. Then define
ρ : Zn → Z2 by

ρ(v) =

{
ρ0(v) if v ∈ 2Zn;

ρ0(v + 1) otherwise.

Finally, we let m := (n/6)− 1, and define

α(v) = mv + ρ(v)n.

We will show that α is an isomorphism from X to X ∼= Cay(Zn, S+n), so Proposition 3.7
shows that X is unstable. Thus, given v ∈ Zn and s ∈ S, we wish to show that

α(v + s)− α(v) ∈ S + n. (3.11)

From the choice of m, we have m · 3 = n− 3, and a straightforward calculation shows
that m(n+ 3) = −3 (in Zn), so

m{±3, n± 3}+ 〈n〉 = {±3, n± 3} ⊆ S.

Since it is clear from the definition of α that α(v+ s)−α(v) ∈ ms+ 〈n〉, this implies that
(3.11) holds for s ∈ {±3, n± 3}.

To deal with the remaining elements ±6 and ±a of S, first note that 6 /∈ 4Zn and
a = 2`−2 ∈ 4Zn (since ` > 4), so ρ0(6) = 1 and ρ0(a) = 0. Hence, for all v ∈ Zn, we have

ρ(v ± 6) = ρ(v) + 1 and ρ(v ± a) = ρ(v).

Therefore, we have

α(v ± 6)− α(v) =
(
m(v ± 6) + ρ(v ± 6)n

)
−
(
mv + ρ(v)n

)
= ±6m+

(
ρ(v ± 6)− ρ(v)

)
n

= ±(n− 6) + n

≡ ±6 + n (mod n)

∈ S + n.

Also note that 2`−1 ≡ 8 (mod 12) (because `− 1 > 3 is odd), so we have m = 2`−1 − 1 =
6k + 1, where k is odd. Therefore

α(v ± a)− α(v) =
(
m(v ± a) + ρ(v ± a)n

)
−
(
mv + ρ(v)n

)
= ±ma+

(
ρ(v ± a)− ρ(v)

)
n

= ±(6k + 1)a+ 0n

= ±(kn+ a)

= ±a+ n

∈ S + n.
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(no Wilson type) First, suppose that the graph has Wilson type (C.1), (C.2′), or
(C.3′). By Proposition 3.4, this implies there are subgroups H and K of Zn that satisfy
the conditions of Theorem 3.2(2). In particular, at least one coset of H is completely
contained in S.

We claim that H = 〈n〉. Let h = n/|H|, so h is a divisor of n, and H = 〈h〉.
Since S contains a coset of H, we know that at least one of any h consecutive elements
x+ 1, x+ 2, . . . , x+ h of Zn is an element of S. Since (n− 3)− (n/12) > n/3, this easily
implies h = n, which completes the proof of the claim.

Since 6 + n /∈ S and (n/12) + n /∈ S, we then see from the first half of 3.2(2) that
6 ∈ Ko and n/12 ∈ Ko. This is impossible, because n/12 is divisible by 4, but 6 is not.

Now suppose that the graph has Wilson type (C.4). This means there is some m ∈ Z×n ,
such that mS = S + n. Since n is even, this implies mSo = So + n, so (perhaps after
replacing m with −m, we have m · 3 ∈ {3, n+ 3}. But then

m · 6 + n = 2(m · 3) + n ∈ 2{3, n+ 3}+ n = {6 + n}.

Since 6 + n /∈ S, this is a contradiction.

Proposition 3.12. Assume X = Cay(Zn, S) is a circulant graph of even order. If there
exist permutations α and β of 2Zn, and a subgroup H of 2Zn, such that:

(1) α 6= β,

(2) if the vertices u, v ∈ 2Zn are adjacent, then the vertices α(u) and β(v) are also
adjacent,

(3) s+H ⊆ S, for all odd s ∈ S, and

(4) α(v)− v ∈ H and β(v)− v ∈ H, for all v ∈ 2Zn,

then X is unstable.

Proof. Define permutations α′ and β′ of Zn by stipulating that

α′(v) = β′(v) = v if v is odd,

whereas
α′(v) = α(v) and β′(v) = β(v) if v is even.

It is straightforward to verify that if uv is an edge of X, then α′(u) is adjacent to β′(v),
so Lemma 3.1 tells us that X is unstable.

The following result is the special case where Cay(2Zn, S∩2Zn) has Wilson type (C.4).

Corollary 3.13. Assume X = Cay(Zn, S) is a circulant graph with n ≡ 0 (mod 4). If
there exists m ∈ Z∗n, such that mSe + n = Se, and So + 2(m− 1)Zn = So + n = So, then
X is unstable.
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Proof. Define permutations α and β of 2Zn by α(x) = mx and β(x) = mx + n. (The
assumption that n ≡ 0 (mod 4) implies that n is even, so the image of β is in 2Zn.) Let
H = 〈2(m − 1)Zn, n〉, so So + H = So, by assumption. Then Proposition 3.12 applies,
since α(v)− v = (m− 1)v ∈ 2(m− 1)Zn ⊆ H and β(v)− v = (m− 1)v + n ⊆ H.

Remark 3.14. Parts (C.2′) and (C.3′) of the statement of Theorem 1.4 are corrected
versions of the original statements of Theorems C.2 and C.3 that appear in [20].

(C.2′) Y.-L. Qin, B. Xia, and S. Zhou [16] corrected the original hypothesis (C.2) by
adding condition (b). (Note that complete graphs with more than two vertices are stable
[16, Eg. 2.2], but satisfy condition (a) with h = 1, so this condition alone does not imply
instability, even when n is divisible by 4.)

(C.3′) The original statement of hypothesis (C.3) in [20, p. 376] includes the extraneous
hypothesis that d > 1, and neglects to state the requirements that n/d is even and that
either H * dZn or H ⊆ 2dZn. (Explanation: [20, Thm. 1] does not require the Cayley
graph generated by the red edges to be disconnected, so there is no need to assume d > 1.
The proof of [20, Thm. C.3] uses the assumption that r/d is odd to conclude that each
component of Cay(Zn, R) is bipartite; this requires each r ∈ R to be an element of even
order in Zn, which means that n/gcd(r, n) is even. Conditions (1) and (2) near the bottom
of [20, p. 360] translate to the requirement that either H * dZn or H ⊆ 2dZn.)

It was mentioned above that if n > 2, then the complete graph Kn is stable [16,
Eg. 2.2]. However, if n is even, then Kn satisfies the conditions in the original statement
of (C.3) (with H = 〈n/2〉, R = {n/2}, d = n/2, and r/d = 1 for the unique element r
of R). This shows that the additional conditions in (C.3′) cannot be deleted.

4 The main lemma of [12]

Assumption 4.1. For the proof of Corollary 4.7, it will be helpful to temporarily relax
our standing assumption that all graphs are simple (see Assumption 2.1). Namely graphs
are allowed to have loops (but not multiple edges) in this section.

The following elementary observation is stated only for automorphisms in [12], but
the same proof applies to isomorphisms.

Lemma 4.2 (cf. [12, Lem. 2.2]). Let m ∈ Z+, and let X1 = Cay(G1, S1) and X2 =
Cay(G2, S2) be Cayley graphs, such that

(1) G1 and G2 are abelian, and

(2) for j = 1, 2, we have ms 6= mt for all s, t ∈ Sj, such that s 6= t.

If ϕ is any isomorphism from X1 to X2, then ϕ is also an isomorphism from Cay(G1,mS1)
to Cay(G2,mS2), where mSj = {ms | s ∈ Sj }.

Proof (cf. proof of [12, Lem. 2.2]). Write m = p1p2 · · · pr, where each pi is prime, and let
mi = p1p2 · · · pi for 0 6 i 6 r. We will prove by induction on i that ϕ is an isomorphism
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from Cay(G1,miS1) to Cay(G2,miS2) The base case is true by assumption, since m0Sj =
1Sj = Sj.

For v, w ∈ Gj, let #(v, w) be the number of walks of length pi from v to w in the
graph Cay(Gj,mi−1Sj). These walks are in one-to-one correspondence with the pi-tuples
(s1, s2, . . . , spi) of elements of mi−1Sj, such that

s1 + s2 + · · ·+ spi = w − v.

Since Gj is abelian, any cyclic rotation of (s1, s2, . . . , spi) also corresponds to a walk from v
to w. Therefore, the set of these walks can be partitioned into sets of cardinality pi,
unless w = pis + v, for some s ∈ mi−1Sj, in which case there is a walk of the form
v, s+v, 2s+v, . . . , pis+v = w. (Also note that s is unique, if it exists, by assumption (2).)
Hence, we see that

#(v, w) 6≡ 0 (mod pi) ⇐⇒ v is adjacent to w in Cay(Gj, pimi−1Sj).

Since pimi−1 = mi, the desired conclusion that ϕ is an isomorphism from Cay(G1,miS1) to
Cay(G2,miS2) now follows from the induction hypothesis that ϕ is an isomorphism from
Cay(G1,mi−1S1) to Cay(G2,mi−1S2) (and the observation that isomorphisms preserve the
value of the function #).

Corollary 4.3. Let X = Cay(Zn, S) be a circulant graph of even order, let ϕ be an
automorphism of BX, and let

S ′ = { s′ ∈ S | s′ + (n/2) /∈ S }.

Then ϕ is an automorphism of Cay(Zn × Z2, 2S
′ × {0}).

Proof. For every s ∈ S, we have

{ (t, 1) ∈ G× {1} | 2(t, 1) = 2(s, 1) } = {(s, 1), (s+ n, 1)},

since n is the unique element of order 2 in Zn. Hence, the set

{ (t, 1) ∈ S × {1} | 2(t, 1) = 2(s, 1) }

has cardinality 1 (which is odd) if s+ n /∈ S, and has cardinality 2 (which is even) other-
wise. Therefore, the desired conclusion is obtained by applying the proof of Lemma 4.2
with G1 = G2 = Zn × Z2 and m = 2, since 2(S ′ × {1}) = 2S ′ × {0}.

Corollary 4.4 ([12, Rem. 3.1], [17, Thm. 23.9(a), p. 58]). Let ϕ be an automorphism of
a Cayley graph Cay(G,S), and let m ∈ Z+. If G is abelian and gcd

(
m, |G|

)
= 1, then ϕ

is an automorphism of Cay(G,mS).

Proof. Apply Lemma 4.2 with G1 = G2 = G and S1 = S2 = S. To verify hypothesis (2)
of the lemma, note that the map x 7→ mx is a bijection on G, since gcd

(
m, |G|

)
= 1.
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Corollary 4.5. Let α be an automorphism of BX, where X = Cay(Zn, S) is a circulant
graph, let s, t ∈ S, and let k, ` ∈ Z+. Assume

(1) α maps some s-edge to a t-edge,

(2) ks ∈ S,

(3) k ≡ ` (mod gcd
(
|s|, |t|

)
), and

(4) gcd
(
k, |s|

)
= gcd

(
`, |t|

)
= 1.

Then `t ∈ S.

Proof. By assumption (3), there exists m ∈ Z+, such that m ≡ k (mod s) and m ≡ `
(mod |t|). Then assumption (4) implies that m is relatively prime to |s| and |t|, so, by
Dirichlet’s Theorem on primes in arithmetic progressions, we may choose a prime p > 2n,
such that pm ≡ 1 (mod lcm

(
|s|, |t|

)
). This implies pks = s and p`t = t.

Since p is relatively prime to |Zn × Z2|, we know from Corollary 4.4 that every au-
tomorphism of BX is an automorphism of Cay

(
Zn × Z2, p

(
S × {1}

))
. Since (s, 1) =

p(ks, 1) ∈ p
(
S × {1}

)
, and α maps some s-edge to a t-edge, this implies that t ∈ pS.

Since t = p`t, and multiplication by p is a bijection on Zn × Z2, this implies `t ∈ S.

Here are two interesting special cases:

Corollary 4.6. Let α be an automorphism of BX, where X = Cay(Zn, S) is a circulant
graph, and let s, t ∈ S. If α maps some s-edge to a t-edge, and either gcd(|s|, |t|

)
= 1, or

S contains every element that generates 〈s〉 (e.g., if |s| ∈ {1, 2, 3, 4, 6}), then S contains
every element that generates 〈t〉.

Proof. Let `t be a generator of 〈t〉, so gcd
(
`, |t|

)
= 1. It suffices to find k ∈ Z+, such that

ks ∈ S, k ≡ ` (mod gcd
(
|s|, |t|

)
), and gcd

(
k, |s|

)
= 1,

for then Corollary 4.5 tells us that `t ∈ S.
If gcd(|s|, |t|

)
= 1, we may let k = 1.

Since gcd
(
`, |t|

)
= 1, we know that ` is relatively prime to gcd

(
|s|, |t|

)
, so there is

some k ∈ Z+, such that

k ≡ ` (mod gcd
(
|s|, |t|

)
) and gcd

(
k, |s|

)
= 1.

(For example, we could take k to be a large prime.) If S contains every element that
generates 〈s〉, then ks ∈ S.

Recall that the following cor’s assumption that X is loopless will automatically be
satisfied in all of the following sections of the paper (see Assumption 2.1).

Corollary 4.7. Let α be an automorphism of BX, where X = Cay(Zn, S) is a connected,
nonbipartite, loopless, circulant graph, and let t ∈ Zn. If α(0, 1) = (t, 1), then S does not
contain any generator of the subgroup 〈t〉.
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Proof. Let Sc = G \ S be the complement of S, and let Xc = Cay(Zn, S
c). Since BX

is connected, it is easy to see that every automorphism of BX is also an automorphism
of BXc.

Note that 0 ∈ Sc, since X is assumed to be loopless. Therefore, we may let s = 0 (so
|s| = 1) to conclude from Corollary 4.6 that Sc contains every generator of 〈t〉.

The following result is stated only for automorphisms in [12], but essentially the same
proof applies to isomorphisms.

Corollary 4.8 (cf. [12, Thm. 1.1]). Assume X1 = Cay(Zn, S1) and X2 = Cay(Zn, S2) are
twin-free, connected, circulant graphs of odd order. If ϕ is any isomorphism from BX1 to
BX2, such that

ϕ(Zn × {0}) = Zn × {0},

then there is an isomorphism α : X1 → X2, such that ϕ(x, i) =
(
α(x), i

)
for all (x, i) ∈

BX1.

Proof. This follows quite easily from Lemma 4.2 (with m = n + 1), by the argument in
the proof of [12, Thm. 1.1].

5 Unstable circulant graphs of order 2p

Theorem 5.1. If p is a prime number, then every nontrivially unstable circulant graph
of order 2p has Wilson type (C.4).

The proof of this theorem will use several lemmas that are stated in greater generality
than is needed here, because they may be useful for understanding the unstable circulant
graphs of other square-free orders.

Lemma 5.2. Let X = Cay(Zn, S) be a connected, nonbipartite, circulant graph, such that
n ≡ 2 (mod 4). Then X has Wilson type (C.1) if and only if BX has an automorphism α,
such that

(1) α /∈ AutX × S2, and

(2) α fixes 2Zn × Z2 (setwise).

Proof. (⇒) This is the easy half of the proof (and does not require the assumption that
n ≡ 2 (mod 4)). If h+ Se = Se, then we may define α ∈ Aut(BX) by

α(x, i) =

{
(x+ h, i) if x ≡ i (mod 2),

(x, i) if x 6≡ i (mod 2).

(⇐) Since α /∈ AutX × S2, there is some v ∈ Zn, such that α(v, 1) 6= α(v, 0) + (0, 1).
After conjugating α by a translation that moves (v, 0) to (0, 0), we may assume v = 0.
This means that α(0, 0) = (0, 0) and α(0, 1) 6= (0, 1).
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Let Se = S ∩ 2Zn, and let Xe = Cay(2Zn, Se), so the subgraph of X induced by
2Zn × Z2 is BXe. Then assumption (2) implies that α restricts to an automorphism
of BXe.

Now, let X ′e be the connected component of Xe that contains 0. Since n ≡ 2 (mod 4),
we know that n/2 is odd, so |〈Se〉| is odd. This implies that BX ′e is connected, and is
therefore a connected component of BXe. Since BX ′e contains the fixed point (0, 0), we
conclude that BX ′e is α-invariant. Therefore, α restricts to an automorphism of BX ′e.
Since α fixes (0, 0), then it follows from Theorem 1.10 that α(0, 1) = (0, 1). This is a
contradiction.

Lemma 5.3 (Klin-Muzychuk, 1995, personal communication). Let

• X = Cay(Zn, S) be a circulant graph of order n,

• G be an abelian group of order n,

• e ∈ Z, such that eg = 0 for all g ∈ G, and

• m ∈ Z, such that m ≡ 1 (mod e) and gcd(m,n) = 1.

If X is isomorphic to some Cayley graph Cay(G, T ) on G, then S = mS.

Proof (Klin-Muzychuk). Let ζ be a primitive nth root of unity, and, for 1 6 i 6 n, let
λi =

∑
s∈S ζ

is, so λ1, λ2, . . . , λn are the eigenvalues of X [2, Prop. 3.5, p. 16]. Since
gcd(m,n) = 1, there is a Galois automorphism α of the field extension Q[ζ]/Q, such that
α(ζ) = ζm [8, Thm. 6.3.1, p. 278]. Since eg = 0 for all g ∈ G (and G is abelian), we
know that each eigenvalue of Cay(G, T ) is a sum of eth roots of unity. (The range of any
homomorphism χ : G→ C× consists of eth roots of unity, so this is a consequence of the
well-known formula in [1, Cor. 3.2] that generalizes the above formula for the eigenvalues of
a circulant graph.) Since m ≡ 1 (mod e), this implies that every eigenvalue of Cay(G, T )
is fixed by α. So λ1, λ2, . . . , λn are fixed by α. For 1 6 i 6 n, this means

∑
s∈S

ζ is = λi = α(λi) = α

(∑
s∈S

ζ is

)
=
∑
s∈S

ζmis =
∑
s∈mS

ζ is.

Since the Vandermonde matrix [ζ ij]16i,j6n is invertible [19] (and therefore has linearly
independent rows), this implies that S = mS.

Lemma 5.4. Assume X = Cay(Zn, S) is a nontrivially unstable, circulant graph of even
order, and there exists α ∈ AutBX, such that α fixes the two cosets of 2Zn × {0} that
are in Zn×{0}, but interchanges the two cosets that are in Zn×{1}. If X does not have
Wilson type (C.1), then:

(1) n ≡ 2 (mod 4),

(2) 〈S ∩ 2Zn〉 = 2Zn, and

(3) X ∼= Cay(Zn, S + (n/2)) (so Proposition 3.7 applies).
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Proof. Let

• Se = S ∩ 2Zn,

• So = S \ Se,

• Ge = 2Zn × Z2,

• Go = 〈2Zn × {0}, (1, 1)〉 = 〈(1, 1)〉 =
(
2Zn × {0}

)
∪
(
(2Zn + 1)× {1}

)
,

• Xo = Cay(2Zn, So + n),

• Be = BXe = Cay
(
Ge, Se × {1}

)
be the subgraph of BX induced by Ge,

• Bo = Cay
(
Go, So × {1}

)
be the subgraph of BX induced by Go, and

• n = n/2 (see Notation 2.2).

By assumption,

the restriction of α to Ge is an isomorphism from Be to Bo.

(1) [The proof of this part of the lemma does not require the assumption that X does
not have Wilson type (C.1).] Suppose n 6≡ 2 (mod 4). Then gcd(1+n, n) = 1. Therefore,
since Go is cyclic, and ng = 0 for all g ∈ Ge, we see from Lemma 5.3 that

So = (1 + n)So = So + n.

This means that Bo has twins. More precisely, since |n| = 2, each equivalence class of
vertices with the same neighbors has even cardinality. So the same must be true in the
isomorphic graph Be, which means there exists an element (h1, h2) of order 2 in Ge, such
that (

Se × {1}
)

+ (h1, h2) = Se × {1}.

Since the element of order 2 in the cyclic group 2Zn is unique (and the equation 1+h2 = 1
implies that h2 = 0), we conclude that Se is invariant under translation by n. We already
know that the same is true for So, so we conclude that S + n = S. This contradicts the
assumption that X is nontrivially unstable (and therefore twin-free).

(2) Since n ≡ 2 (mod 4), we know that n is odd. So Zn = 2Zn ∪ (2Zn + n). For
convenience, label the 4 cosets of 2Zn × {0} by

Ci
e = 2Zn × {i} and Ci

o = (2Zn + n)× {i} for i ∈ Z2.

Then Ge = C0
e∪C1

e and Go = C0
e∪C1

o . By assumption, α fixes C0
e and C0

o , but interchanges
C1

e and C1
o .

The function ϕ(x, i) = (x+ in, i) is an isomorphism

from Bo = Cay
(
Go, So × {1}

)
to BXo = Cay

(
2Zn × Z2, (So + n)× {1}

)
.
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By composing ϕ with the restriction of α to Ge (that is, by restricting the map ϕ
(
α(x, i)

)
to Ge), we obtain an isomorphism from BXe to BXo. Since X does not have Wilson
type (C.1), we know that Xe is twin-free (see Remark 2.6), so we see from Theorem 1.10
that each connected component of Xe is isomorphic to a connected component of Xo.
Hence, these two connected components must have the same order, which means that the
two subgroups 〈Se〉 and 〈So + n〉 of Zn have the same order, and are therefore equal. So

〈Se, n〉 ⊇ 〈Se ∪ So〉 = 〈S〉 = Zn.

Hence, 〈Se〉 is a subgroup of index 6 2 in Zn, and must therefore be all of 2Zn. This
establishes (2).

(3) Let us begin by making a part of the above proof of (2) more concrete. It was
established there that composing ϕ with the restriction of α to Ge is an isomorphism
from BXe to BXo. Since Xe is twin-free, we therefore see from Corollary 4.8 that there
is an isomorphism α0 : Xe → Xo, such that

α(x, 1) =
(
α0(x) + n, 1

)
for x ∈ 2Zn.

Similarly, if we let ϕ′(x, i) =
(
x+ (1− i)n, i

)
, then restricting the map α

(
ϕ′(x, i)

)
− (n, 0)

to Ge yields an isomorphism from BXo to BXe. So there is an isomorphism α1 : Xo → Xe,
such that

α(x, 1) =
(
α1(x) + n, 1

)
for x ∈ 2Zn.

By comparing the two formulas for α(x, 1), we see that α0 = α1.
Now, define α′ : Zn → Zn by

α′(x) =

{
α0(x) if x ∈ 2Zn,

α0(x+ n) + n if x /∈ 2Zn.

Since S = Se ∪ So (and therefore S + n = (So + n)∪ (Se + n)), it will suffice to show that

α′ is an isomorphism from Cay(Zn, Se) to Cay(Zn, So + n)

and
α′ is an isomorphism from Cay(Zn, So) to Cay(Zn, Se + n).

The first is easy to see from the definition of α′, because

α0 is an isomorphism from Xe = Cay(2Zn, Se) to Xo = Cay(2Zn, So + n).

To establish the second, let s ∈ So. If x ∈ 2Zn, then

α′(x+ s) = α0

(
(x+ s) + n

)
+ n (definition of α′, since x+ s /∈ 2Zn)

∈ α0(x) + Se + n

(
α0 = α1 is an isomorphism

from Xo to Xe

)
= α′(x) + (Se + n). (definition of α′, since x ∈ 2Zn)
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Similarly, if x /∈ 2Zn, then

α′(x+ s) = α0(x+ s)

(
definition of α′,

since x+ s ∈ 2Zn

)
= α0

(
(x+ n) + (s+ n)

)
(n+ n = 0)

∈ α0(x+ n) + Se

(
α0 = α1 is an isomorphism

from Xo to Xe

)
=
(
α0(x+ n) + n

)
+
(
Se + n

)
(n+ n = 0)

= α′(x) +
(
Se + n

)
.

(
definition of α′,
since x /∈ 2Zn

)
Since α′(x + s) ∈ α′(x) + (Se + n) in both cases, we conclude that α′ is an isomorphism
from Cay(Zn, So) to Cay(Zn, Se + n), as desired. This completes the proof of (3).

The following result gathers the most important conclusions of Lemmas 5.2 and 5.4.

Corollary 5.5. Let X = Cay(Zn, S) be a nontrivially unstable, circulant graph, such that
n ≡ 2 (mod 4), and such that 2Zn×{0} is a block for the action of AutBX. Then either
X has Wilson type (C.1), or X is isomorphic to Cay

(
Zn, S + (n/2)

)
(so Proposition 3.7

applies).

Proof. Since X is unstable, there exists α ∈ AutBX, such that α /∈ AutX × S2. By
composing with a translation, we may assume that α fixes (0, 0). Since 2Zn × {0} is a
block for the action of AutBX, this implies that α fixes 2Zn × {0}. It must also fix the
bipartition set Zn × {0}, so it fixes the difference(

Zn × {0}
)
\
(
2Zn × {0}

)
= (2Zn + 1)× {0}.

And then α either fixes the two remaining cosets, or interchanges them. In the first case,
Lemma 5.2 tells us that X has Wilson type (C.1). In the second case, Lemma 5.4(3)
provides the desired conclusion.

The following result presents some useful special cases. Recall that the “Cayley Iso-
morphism Property” was defined in Definition 2.8.

Corollary 5.6. Assume X is as in Corollary 5.5. Also assume that either

(1) X has the Cayley Isomorphism Property, or

(2) Xe has the Cayley Isomorphism Property, or

(3) n is square-free, or

(4) the valency of Xe is 6 5.

Then X has Wilson type (C.1) or (C.4).
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Proof. Assume X does not have Wilson type (C.1). Then Corollary 5.5 tells us that
X ∼= Cay(Zn, S + n).

(1) If X has the Cayley Isomorphism Property, this implies there is some m ∈ Z×n ,
such that S + n = mS, so X has Wilson type (C.4).

(2) Assume that Xe has the Cayley Isomorphism Property. Let α0 and α1 be the iso-
morphisms in the proof of Lemma 5.4(3). Since Xe has the Cayley Isomorphism Property,
we have α0(x) = mϕ(x), for some m ∈ Z×n , and some ϕ ∈ AutXe. Then

mSe = m
(
ϕ(Se)− ϕ(0)

)
(ϕ ∈ AutXe)

= α0(Se)− α0(0) (α0(x) = mϕ(x))

= So + n (α0 : Xe

∼=→ Xo).

Now, since ϕ ∈ AutXe = Aut Cay(2Zn, Se) and m ∈ Z×n , Corollary 4.4 implies

ϕ ∈ Aut Cay(2Zn,mSe) = Aut Cay(2Zn, So + n) = AutXo.

Therefore

m(So + n) = m
(
ϕ(So + n)− ϕ(0)

)
(ϕ ∈ AutXo)

= α0(So + n)− α0(0) (α0(x) = mϕ(x))

= Se,

(
α0 = α1 is an isomorphism

from Xo to Xe

)
so mSo = Se + n. Therefore

mS = m(Se ∪ So) = mSe ∪mSo = (So + n) ∪ (Se + n) = S + n.

So X has Wilson type (C.4).
(3) The order of X is square-free, so Theorem 2.9 tells us that X has the Cayley

Isomorphism Property. Therefore (1) applies.
(4) It is known [10, §7.2] that every connected, circulant graph of valency 6 5 has the

Cayley Isomorphism Property. (A proof for valency 4 can also be found in [15, Thm. 5.4].)
Therefore (2) applies.

Proof of Theorem 5.1. Let X = Cay(Z2p, S) be a nontrivially unstable, circulant
graph of order n = 2p. It is easy to see, by inspection, that there are no nontrivially
unstable, circulant graphs of order 4, so p is odd. Therefore n = 2p is square-free.

Let
S ′ = S \ (S + p).

Since X is twin-free, we know that S + p 6= S (see Remark 2.6), which means that 2S ′ is
nonempty.

Case 1. Assume 2S ′ 6= {0}. Since 2Z2p has order p, which is prime, every nonzero

element is a generator. So 2S ′ generates 2Z2p. We also know from Corollary 4.3 that
every automorphism of BX is an automorphism of

Cay
(
Z2p × Z2, 2S

′ × {0}
)
.
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By combining these two facts, we conclude that 2Z2p × {0} is a block for the action of
AutBX.

Therefore, Corollary 5.6(3) applies, so X has Wilson type (C.1) or (C.4). However,
2Z2p

∼= Zp has no nontrivial, proper subgroups, so it is obvious that X does not have
Wilson type (C.1). Therefore, it must have Wilson type (C.4), which is exactly what we
needed to prove.

Case 2. Assume 2S ′ = {0}. This means that S ′ = {p}, so p ∈ S.
SinceX is unstable, we may let α be an automorphism of BX, such that α(0, 1) = (t, 1)

with t 6= 0. For all x ∈ Zn, we see from Corollary 4.7 that if |x| = |t|, then x /∈ S. Since
p ∈ S, this tell us that |t| 6= 2. So |t| is either p or 2p. Therefore, either S does not
contain any element of order p, or S does not contain any element of order 2p. However,
since 2S ′ = {0}, we also know that s+ p ∈ S for all s ∈ S \ {p}. Also note that

|s| = p ⇐⇒ |s+ p| = 2p.

Putting this together, we conclude that S = {p}. This contradicts the fact that the
nontrivially unstable graph X must be connected.

Corollary 5.7. Let X = Cay(Z2p, S) be a circulant graph of order 2p, where p is an
odd prime, and let Se = S ∩ 2Z2p. The graph X is unstable if and only if either it
is trivially unstable, or there exists m ∈ Z×2p, such that m2Se = Se, mSe 6= Se, and

S = Se ∪
(
(n/2) +mSe

)
.

Proof. (⇐) If X is not trivially unstable, then the conditions imply that X has Wilson
type (C.4).

(⇒) Assume X is nontrivially unstable. We conclude from Theorem 5.1 that X has
Wilson type (C.4), so there is some m ∈ Z2p, such that S = mS + p. Since p is odd, this
implies that So = mSe + p (where So = S \ Se) and

Se = mSo + p = m(mSe + p) = m2Se.

If mSe = Se, then So = Se + p, so S = S + p, which contradicts the fact that nontrivially
unstable graphs are twin-free.

Corollary 5.8. For n ∈ Z+, there does not exist a nontrivially unstable circulant graph
of order n if and only if either n is odd, or n < 8, or n = 2p, for some prime number
p ≡ 3 (mod 4).

Proof. (⇒) If n is not prime, then 2Zn
∼= Zn/2 has a nontrivial, proper subgroup A.

Choose some b ∈ 2Zn \ A, and let S = {±1} ∪ (±b + A), so Se := S ∩ 2Zn = ±b + A.
Then X = Cay(Zn, S) has Wilson type (C.1), so it is unstable.

If n is prime, and n 6≡ 3 (mod 4) (and n > 8), then n ≡ 1 (mod 4), so there exists
m ∈ Z×n , such that m2 = −1. Let S = {±1, n ±m}, so Se := S ∩ 2Zn = {±m + n} and
S = mS + n. Then X = Cay(Zn, S) has Wilson type (C.4), so it is unstable.

In either case, X is also connected (because 1 ∈ S) and nonbipartite (because Se 6= ∅).
Hence, if X is not nontrivially unstable, then it must not be twin-free, so there is a nonzero
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h ∈ Zn, such that h + S = S. Note that in both cases, So = {±1} and since n > 4 and
h is nonzero, it cannot happen that {±1} + h = {±1}. It follows that So + h = Se and
Se + h = So (and h is odd).

Since So + 2h = So (and S0 = {±1}), we must have 2h = 0, which means h = n, so
Se = So + n = {n± 1}.

If n is not prime, then, since {n ± 1} = Se = ±b + A, we must have 〈2〉 ⊆ A. Since
n > 4, this implies |b+ A| = |A| > n/2 > 2, which is a contradiction.

If n is prime, we must have m = ±1 (since Se = {n±m}, which contradicts the fact
that m2 = −1.

(⇐) We prove the contrapositive: supposing there does exist a nontrivially unstable
circulant graph of order n, we will show that n is odd, that n > 8, and that n/2 is not a
prime number that is congruent to 3 (mod 4).

The fact that n is odd is immediate from Theorem 1.10. Also, it is easy to see, by
inspection, that there are no nontrivially unstable circulant graphs of order 2 or 4; so
n > 6.

Now suppose X = Cay(Z2p, S) is a nontrivially unstable circulant graph of order 2p,
where p is prime, and p ≡ 3 (mod 4). (This includes the case where n = 6.) We will
show that this leads to a contradiction. By Theorem 5.1, we know that X has Wilson
type (C.4), so there is some m ∈ Z×2p, such that S = mS + n. Write m = mom2, where
mo has odd order (as an element of the group Z×2p), and the order of m2 is a power of 2.
Since Z×2p is cyclic of order p − 1 ≡ 2 (mod 4), there are no elements of order 4 in Z×2p,
so m2 ∈ {±1}. Since S = −S, this implies S = m2S, so we conclude that S = moS + n.
After repeatedly multiplying both sides of this equation by mo, we see that S = mk

oS + n
for any odd number k, including k = |mo|. Hence, we have S = S + n. This contradicts
the fact that X is twin-free.

6 Computational results

S. Wilson [20, p. 377] mentioned: “There are 3274 circulant graphs which are non-trivially
unstable and have no more than 38 vertices.” However, we performed computations that
produce a different number: there seem to be 3576 such graphs (up to isomorphism).
The interested reader can reproduce our results in only a few minutes by running the
Sagemath1 code or Magma code or Maple code that is available online at https://

arxiv.org/src/2108.05893/anc/.
Analysis of these graphs establishes:

Observation 6.1. Every nontrivially unstable circulant graph of order less than 40 has
a Wilson type, except the following six graphs (up to isomorphism), all of order 24:

(1) Cay(Z24, {±2,±3,±8,±9,±10}),

(2) Cay(Z24, {±2,±3,±8,±9,±10, 12}),
1Sagemath code can be run online at https://cocalc.com/
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(3) Cay(Z24, {±1,±2,±5,±7,±8,±10,±11}),

(4) Cay(Z24, {±1,±2,±5,±7,±8,±10,±11, 12}),

(5) Cay(Z24, {±1,±2,±3,±5,±7,±8,±9,±10,±11}),

(6) Cay(Z24, {±1,±2,±3,±5,±7,±8,±9,±10,±11, 12}).

The first of these graphs appears explicitly in [16, p. 156], and it seems that some (or all)
of the others were also known to the authors of that paper.

Remark 6.2. Several additional days of computer time extended the exhaustive calcula-
tions to order 50. (However, these calculations are certainly not definitive, because they
were performed only once, so their correctness has not been verified.) Lists of the ad-
ditional 67725 nontrivially unstable graphs have been archived at https://arxiv.org/

src/2108.05893/anc/.
We note that the instability of every example that was found is explained by the

instability conditions in Section 3. On the other hand, the calculations uncovered 316
additional examples of nontrivially unstable circulant graphs with no Wilson type: 52 of
order 40, 262 of order 48, and 2 of order 50.
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