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Abstract
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1 Introduction

A finite connected graph Γ with vertex set V (Γ) and path-length distance function ∂ is
called distance-regular if, for any vertices x, y ∈ V (Γ) and any non-negative integers i, j,
the number phij of vertices at distance i from x and distance j from y depends only on i, j
and h := ∂(x, y), and does not depend on the particular choice of x and y. The numbers
phij are called the intersection numbers of Γ.

A distance-regular graph Γ of diameter D (D := max{∂(x, y) | x, y ∈ V (Γ)}) is said
to have classical parameters (D, b, α, β) if its intersection numbers can be expressed in
terms of these four classical parameters (see Subsection 2.4).

Let Fq be the finite field with q elements and V be the vector space of dimension n > 2
over Fq. For an integer D, 1 6 D 6 n − 1, let GD denote the set of all D-dimensional
subspaces of V . The Grassmann graph Jq(n,D) has GD as the vertex set with two vertices
being adjacent if and only if they intersect in a subspace of dimension D−1. Note that the
graphs Jq(n,D) and Jq(n, n−D) are isomorphic (an isomorphism defined by mapping each
subspace to its orthogonal complement). Without loss of generality, we further assume
that n > 2D. The Grassmann graph Jq(n,D) is a distance-regular graph with classical

parameters (D, q, q, q
n−D+1−1
q−1

− 1).
The main result of this paper is as follows. We define µ-graph-regular in Subsection

2.1 and 1-thin, thin in Subsection 2.3. For a natural number q > 2, define the function
χ(q) by:

χ(q) =



13 if q = 2,

10 if q = 3,

9 if q = 4,

8 if q ∈ {5, 6, 7},
7 if q > 8.

(1)

Theorem 1. Let Γ be a 1-thin distance-regular graph with classical parameters
(D, q, q, q

t−1
q−1
− 1) with q > 2, t > D integers. Assume further that Γ is µ-graph-regular

(with parameter `). If D > χ(q), then Γ is the Grassmann graph Jq(D + t− 1, D).

As a thin distance-regular graph with classical parameters (D, b, α, β) and D > 5 is µ-
graph-regular (see Lemma 8), we obtain the following corollary immediately.

Corollary 2 ([16, Lecture 40]). Let Γ be a thin distance-regular graph with classical

parameters (D, q, q, q
t−1
q−1
− 1) with q > 2, t > D integers. If D > χ(q), then Γ is the

Grassmann graph Jq(D + t− 1, D).

Remark 3.

(i) The twisted Grassmann graph J̃q(2D+1, D), see [6], have the same intersection numbers
as the Grassmann graph Jq(2D + 1, D). The Terwilliger algebra T (x) of the twisted
Grassmann graph J̃q(2D + 1, D) depends on the base vertex x. For certain base vertices
x, T (x) is thin and for other base vertices x, T (x) is not even 1-thin.
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(ii) In the survey paper by Van Dam, Koolen and Tanaka [7, Problem 59], it was asked
to classify the thin Q-polynomial distance-regular graphs. This paper shows that the
Grassmann graphs with large diameter are characterized by their intersection numbers
as thin distance-regular graphs. Note that in Koolen, Lee and Tan [13], they discussed a
slightly more restricted problem.

Metsch [14], Gavrilyuk and Koolen [8] showed that the Grassmann graph Jq(n,D) is
uniquely determined by its intersection numbers in many cases. To state the results, we
need to define the function ξ(q) as follows. For a natural number q > 2, the function ξ(q)
is defined by:

ξ(q) =


9 if q = 2,

8 if q = 3,

7 if q ∈ {4, 5, 6},
6 if q > 7.

Theorem 4. Let Γ be a distance-regular graph with classical parameters (D, q, q, q
t−1
q−1
−1)

with q > 2, t > D integers.

(1) (Metsch [14]) If t > max{D + 3, D + 7 − q} and D > 3, then Γ is the Grassmann
graph Jq(D + t− 1, D).

(2) (Gavrilyuk and Koolen [8]) If t = D + 1 and D > ξ(q), then Γ is the Grassmann
graph Jq(2D,D).

Therefore, in view of Theorem 4, in order to show Theorem 1, it suffices to show the
following result.

Theorem 5. Let Γ be a 1-thin distance-regular graph with classical parameters

(D, q, q, q
D+e+1−1
q−1

− 1), where q > 2 and e ∈ {1, 2, 3} are integers. Assume further that

Γ is µ-graph-regular (with parameter `). If D > χ(q), then Γ is the Grassmann graph
Jq(2D + e,D).

This paper is organized as follows. In Section 2, we give the definitions and prelimi-
naries. In Section 3, we give some spectral characterizations of the s-clique extension of
the (t1 × t2)-grid. We will use those results later in the paper to show the main result.
In Section 4, we prepare for the proof of Theorem 5. Of particular interest is a sufficient
condition for a distance-regular graph to contain a Delsarte clique. In Section 5, we give
a proof of Theorem 5.

2 Definitions and preliminaries

The main purpose of this section is to recall some basic terminologies and notation from
algebraic graph theory and algebraic combinatorics. For more comprehensive background
on distance-regular graphs and the Terwilliger algebra, we refer the reader to [2], [7] and
[17].
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2.1 Graphs and their eigenvalues

All graphs considered in this paper are finite, undirected and simple. Let Γ be a graph
with the vertex set V (Γ). For two distinct vertices x and y, we write x ∼ y if they are
adjacent to each other. Assume that Γ is connected. The distance ∂(x, y) between two
vertices x, y ∈ V (Γ) is the length of a shortest path between x and y of Γ. By diameter
of Γ, denoted by D := D(Γ), we mean the maximum distance between any two vertices
of Γ. For each vertex x of Γ, let Γi(x) be the set of vertices of Γ at distance i from x for
0 6 i 6 D. For the sake of simplicity, we denote Γ1(x) by Γ(x). The subgraph induced on
Γ(x) is called the local graph of Γ at x, denoted by ∆(x), and the number |Γ(x)| is called
the valency of x in Γ. In particular, Γ is regular with valency k (or k-regular) if k = |Γ(x)|
holds for all x ∈ V (Γ).

A k-regular graph Γ with v vertices is called edge-regular with parameters (v, k, a)
if any two adjacent vertices have exactly a common neighbors, and is called co-edge-
regular with parameters (v, k, c), if any two nonadjacent vertices have precisely c common
neighbors.

For two vertices x and y of a graph Γ with ∂(x, y) = 2, the subgraph induced on
Γ(x)∩Γ(y) is called the µ(x, y)-graph of Γ. If it does not depend on the choice of x and y,
then we call it the µ-graph. If each µ(x, y)-graph is a regular graph with valency `, then
we say that Γ is µ-graph-regular (with parameter `).

Lemma 6. Let Γ be a graph that is edge-regular with parameters (v, k, a) and µ-graph-
regular with parameter `. Then, for any vertex x of Γ, the local graph ∆(x) of Γ at x is
co-edge-regular with parameters (k, a, `).

Proof. Fix a vertex x of Γ and let y, z be distinct non-adjacent vertices of the local graph
∆(x). Now by the definition of µ-graph-regularity we have |Γ(x) ∩ Γ(y) ∩ Γ(z)| = `, see
Figure 1. This means that in ∆(x) the vertices y and z have exactly ` common neighbors.

`

zy

x

Figure 1: |Γ(x) ∩ Γ(y) ∩ Γ(z)| = `

By the eigenvalues of a graph Γ, we mean the eigenvalues of its adjacency matrix
A := A(Γ). Let θ0 > θ1 > · · · > θD be the distinct eigenvalues of A and mi be the
multiplicity of θi (0 6 i 6 D). Then the set {[θ0]m0 , [θ1]m1 , . . . , [θD]mD} is called the
spectrum of Γ. Remark that two graphs are called cospectral, if they have the same
spectrum. For an eigenvalue θ of Γ, if its eigenspace contains a vector orthogonal to the
all-ones vector, then we say that θ is non-principal. If Γ is a k-regular graph, then all its
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eigenvalues are non-principal unless the graph is connected and then the only principal
eigenvalue is k.

We next recall the so-called interlacing in the following lemma.

Lemma 7 ([4, Section 2.5]). Let N be a real symmetric n × n matrix with eigenvalues
θ1 > . . . > θn. For some m < n, let R be a real n ×m matrix with orthogonal columns
i.e. R>R = I,and set M = R>NR with eigenvalues η1 > . . . > ηm. Then the eigenvalues
of M interlace those of N , that is, θi > ηi > θn−m+i, i = 1, . . . ,m.

The complement Γ of a graph Γ is the graph with the same vertex set as Γ, where
two distinct vertices are adjacent whenever they are nonadjacent in Γ. So, if Γ has the
adjacency matrix A, then the adjacency matrix of Γ is A = J − I − A, where J is the
all-ones matrix and I is the identity matrix. If Γ is a k-regular graph with v vertices
and eigenvalues θ0 = k > θ1 > . . . > θv, then the eigenvalues of the complement Γ are
v − k − 1,−1− θv, . . . ,−1− θ1.

A graph is called clique (or complete) if any two of its vertices are adjacent, and is
called coclique (or empty) if any two of its vertices are nonadjacent.

Let Γ be a k-regular graph with v vertices and smallest eigenvalue θmin. Then the
order of a coclique C of Γ is bounded by

|V (C)| 6 v

1− k
θmin

. (2)

Moreover, equality implies that every vertex outside C is adjacent to exactly−θmin vertices
of C (cf. [2, Proposition 1.3.2 and Proposition 3.7.2]). We call the bound (2) the Hoffman
bound. Note that a coclique of Γ is a clique of Γ, the complement of Γ, so this bound
holds for a clique in the complement of Γ.

2.2 Distance-regular graphs and the Bose-Mesner algebra

A connected graph Γ of diameter D is said to be distance-regular if and only if, for all
integers h, i, j with 0 6 h, i, j 6 D and all vertices x, y ∈ V (Γ) with ∂(x, y) = h, the
number

phij := |{z ∈ V (Γ) | ∂(x, z) = i, ∂(y, z) = j}| = |Γi(x) ∩ Γj(y)|

is independent on the choice of x and y. The constants phij are called the intersection
numbers of Γ. We abbreviate ci = pi1i−1 (1 6 i 6 D), ai = pi1i (0 6 i 6 D), and
bi = pi1i+1 (0 6 i 6 D−1). Observe that Γ is regular with valency k = b0, and ci+ai+bi = k
for 0 6 i 6 D, where we define c0 = bD = 0. The array {b0, b1, . . . , bD−1; c1, c2, . . . , cD} is
called the intersection array of the distance-regular graph Γ.

Let Γ be a distance-regular graph of diameter D. For each integer i with 0 6 i 6 D,
define the ith distance matrix Ai of Γ whose rows and columns are indexed by the vertices
of Γ, by

(Ai)xy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i,
(x, y ∈ V (Γ)).
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Then A := A1 is the adjacency matrix of Γ. Observe that A0 = I; A>i = Ai (0 6 i 6
D);

∑D
i=0Ai = J , the all-ones matrix; and

AiAj =
D∑
h=0

phijAh (0 6 i, j 6 D).

By these facts, we find that {A0, A1, . . . , AD} is a basis for a commutative subalgebraM
of the matrix algebra over R. We callM the Bose-Mesner algebra of Γ. It is known that
A generatesM. Since the algebraM is semi-simple and commutative,M also has a basis
of pairwise orthogonal idempotents E0, E1, . . . , ED (the so-called primitive idempotents
of M) satisfying

E0 =
1

|V (Γ)|
J,

D∑
i=0

Ei = I, E>i = Ei, EiEj = δijEi (0 6 i, j 6 D),

where δij is the Kronecker delta. Since M has two bases {Ai}Di=0 and {Ei}Di=0, there are
real scalars {θj}Dj=0 such that

A =
D∑
j=0

θjEj.

Observe that θj, 0 6 j 6 D are exactly the distinct eigenvalues of A (of Γ), since
AEj = EjA = θjEj.

At the end of this subsection, we recall the Delsarte bound in distance-regular graphs
(cf. [2, Proposition 4.4.6]). Let Γ be a distance-regular graph of diameter D > 2 with
distinct eigenvalues θ0 = k > θ1 > · · · > θD. A clique C of Γ contains at most 1 − k

θD
vertices, i.e.

|V (C)| 6 1− k

θD
. (3)

If a clique C has order that meets the bound with equality, we call it a Delsarte clique of
Γ, and the bound is called the Delsarte bound.

2.3 Q-polynomial distance-regular graphs and the Terwilliger algebra

Let Γ be a distance-regular graph of diameter D with the Bose-Mesner algebra M. Let
◦ denote the entrywise (or Hadamard or Schur) matrix multiplication. Since Ai ◦ Aj =
δijAi (0 6 i, j 6 D), the Bose-Mesner algebra M is closed under ◦. As {Ei}Di=0 is a basis
for M, there are real scalars qhij such that

Ei ◦ Ej =
1

|V (Γ)|

D∑
h=0

qhijEh, (0 6 i, j 6 D).
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In fact, the scalars qhij are nonnegative, which are called the Krein parameters of Γ (cf.[2,
p.49]). We say Γ is Q-polynomial (with respect to the ordering E0, E1, . . . , ED or equiva-
lently with respect to the ordering θ0, θ1, . . . , θD) if for all integers 0 6 h, i, j 6 D, qhij = 0
(resp. qhij 6= 0) whenever one of h, i, j is greater than (resp. equal to) the sum of the other
two.

Assume now that Γ is a Q-polynomial distance-regular graph of diameter D. Fix a
(base) vertex x ∈ V (Γ), and for each i (0 6 i 6 D), define E∗i := E∗i (x) to be the diagonal
matrix whose rows and columns are indexed by V (Γ), by

(E∗i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i,
(y ∈ V (Γ)).

Observe that
∑D

i=0E
∗
i = I and E∗iE

∗
j = δijE

∗
i for 0 6 i, j 6 D. Hence E∗0 , E

∗
1 , . . . , E

∗
D

is a basis for a commutative subalgebra M∗ := M∗(x) of the matrix algebra over R,
which is called the dual Bose-Mesner algebra with respect to the (base) vertex x of Γ.
The matrix algebra generated by the Bose-Mesner algebra M and the dual Bose-Mesner
algebraM∗ is called the Terwilliger (or subconstituent) algebra with respect to x, denoted
by T := T (x). Note that the Terwilliger algebra T depends on the choice of base vertex
x and it is semi-simple.

Let V = RV (Γ) denote the vector space over R of columns whose coordinates are
indexed by V (Γ), and endowed with the inner product 〈, 〉, where 〈u, v〉 = u>v for all
u, v ∈ V. A T -module W is a subspace of V such that Tw ∈ W for any T ∈ T and w ∈ W .
A T -module W is called irreducible if it is non-zero, and contains no T -submodule besides
0,W . Since T is semi-simple, each T -module is an orthogonal direct sum of irreducible
T -modules, and V decomposes into an orthogonal direct sum of irreducible T -modules
(cf. [17]).

Let W be an irreducible T -module. With respect to the ordering E∗0 , E
∗
1 , . . . , E

∗
D

(corresponding to the ordering A0, A1, . . . , AD ), we define the endpoint of W by min{i |
E∗iW 6= 0}, and the diameter of W by |{i | E∗iW 6= 0}| − 1. An irreducible T -module
W is said to be thin if dimE∗iW 6 1 for all i (0 6 i 6 D). Note that there is a unique
irreducible T -module of endpoint 0, called the principal T -module, which is thin and has
basis {E∗i 1 | 0 6 i 6 D}, where 1 is the all-ones vector. The graph Γ is called i-thin if,
for any vertex x of Γ, each irreducible T (x)-module of endpoint at most i is thin. The
graph Γ is called thin if it is i-thin for all i (0 6 i 6 D) (cf. [7, Section 4.3]).

We now recall some facts about irreducible T -modules of endpoint 1, see [16]. Keep-
ing in mind the notation from the above, let us denote Ã := E∗1AE

∗
1 . For notational

convenience, we also set Ã0 = E∗1 and J̃ := E∗1JE
∗
1 . With an appropriate ordering of the

vertices of Γ, one can see that

Ã =

(
N 0
0 0

)
,

where the principal submatrix N is, in fact, the adjacency matrix of ∆(x), the local graph
at x of Γ.
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Let U∗1 be the subspace of E∗1V, which is orthogonal to the all-ones vector 1. Let
W be an irreducible T -module of endpoint 1. Then E∗1W is a one-dimensional subspace
of U∗1 . (Note that E∗1W always has dimension 1 even if W is not thin (see [9, Theorem
4.5])). In particular, any non-zero vector w ∈ E∗1W is an eigenvector of Ã, and W = T w.
Conversely, for an eigenvector w of Ã with E∗1w 6= 0, the subspace W = T w is an
irreducible T -module of endpoint 1. Let a0(W ) denote the corresponding eigenvalue of
Ã. Note that a0(W ) is a non-principal eigenvalue of the local graph ∆(x) at x of Γ.

The following essential lemma says that a thin Q-polynomial distance-regular graph
of diameter D > 5 is µ-graph-regular, and hence each local graph is co-edge-regular,
according to Lemma 6.

Lemma 8 ([16, Lecture 40]). Let Γ be a thin Q-polynomial distance-regular graph of
diameter D > 5. Then Γ is µ-graph-regular.

Note that Corollary 2 follows immediately from Theorem 1 by the above lemma.

2.4 Distance-regular graphs with classical parameters

Recall that the q-ary Gaussian binomial coefficient is defined by[
n

m

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)
. (4)

We say that a distance-regular graph Γ of diameter D has classical parameters (D, b, α, β)
if the intersection numbers of Γ satisfy

ci =
[
i

1

]
b
(1 + α

[
i−1

1

]
b
), (5)

bi = (
[
D

1

]
b
−
[
i

1

]
b
)(β − α

[
i

1

]
b
), (6)

where
[
j

1

]
b

= 1 + b+ b2 + · · · bj−1 for j > 1 and
[

0

1

]
b

= 0. We notice that b 6= 0,−1 by the

following result.

Lemma 9 ([2, Proposition 6.2.1]). Let Γ be a distance-regular graph with classical param-
eters (D, b, α, β) and the diameter D > 3. Then b is an integer such that b 6= 0,−1.

We remark that, if Γ is a distance-regular graph with classical parameters (D, b, α, β),
then Γ is Q-polynomial, see [2, Corollary 8.4.2]. We next recall some facts about the local
graphs of a distance-regular graph with classical parameters.

Proposition 10 ([8, Theorem 3.3]). Let Γ be a distance-regular graph with classical pa-
rameters (D, b, α, β), diameter D > 3 and b 6= 1. For 2 6 i 6 D − 1, let Ti(ζ) be a
polynomial of degree 4 defined by

Ti(ζ) = −(bi − 1)(bi−1 − 1)(ζ − β + α + 1)(ζ + 1)(ζ + b+ 1)(ζ − αbb
D−1 − 1

b− 1
+ 1).

Then, for each vertex x of Γ and a non-principal eigenvalue η of its local graph ∆(x),
Ti(η) > 0 holds.
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Note that Ti(ζ) is independent of i up to a scalar multiple (2 6 i 6 D−1) and is called
the Terwilliger polynomial of Γ. Actually Proposition 10 was first shown by Terwilliger in
his “Lecture note on Terwilliger algebra” (edited by Suzuki) [16]. The explicit formula of
the Terwilliger polynomial was given in [9]. Also note that, for any x ∈ V (Γ), Ti(η) = 0
if and only if W := T (x)w is a thin irreducible T (x)-module of endpoint 1, where w is
an eigenvector of Ã = E∗1(x)AE∗1(x) with eigenvalue η = a0(W ).

The following lemma shows that all possible non-principal eigenvalues of any local
graph of Γ are the roots of a Terwilliger polynomial of Γ, and it will play a key role in
this paper.

Lemma 11 ([9]). Let Γ be a 1-thin distance-regular graph with classical parameters
(D, b, α, β), diameter D > 3 and b 6= 1. Then the possible non-principal eigenvalues
of any local graph of Γ are

β − α− 1, − 1, − b− 1, αb
bD−1 − 1

b− 1
− 1. (7)

Note that these possible non-principal eigenvalues of the local graph ∆(x) at x of Γ
corresponding to thin irreducible T (x)-modules of endpoint 1 are the roots of Terwilliger
polynomial Ti(ζ) for all i (2 6 i 6 D − 1).

At the end of this subsection, we mention some facts about the classical parameters
for a Grassmann graph. By [2, Table 6.1, Theorem 9.3.3] or [8, Result 2.5], we have the
following lemma.

Lemma 12 ([8, Result 2.5]). A Grassmann graph Jq(n,D), n > 2D, has classical pa-
rameters

(D, b, α, β) = (D, q, q,
[
n−D+1

1

]
q
− 1). (8)

A distance-regular graph with these classical parameters has intersection array given by

bj = q2j+1
[
n−D−j

1

]
q

[
D−j

1

]
q
, 0 6 j 6 D − 1,

cj =
[
j

1

]2

q
, 1 6 j 6 D,

and its eigenvalues and their respective multiplicities are given by

θj = qj+1
[
n−D−j

1

]
q

[
D−j

1

]
q
−
[
j

1

]
q
, 0 6 j 6 D,

mj =
[
n

j

]
q
−
[
n

j−1

]
q
, 0 6 j 6 D.

2.5 Partial linear spaces

Recall that a partial linear space is an incidence structure (P ,L, I), where P and L are
sets (whose elements are called points and lines, respectively) and I ⊆ P × L is the

the electronic journal of combinatorics 28(4) (2021), #P4.45 9



incidence relation such that every line is incident with at least two points and there
exists at most one line through any two distinct points. The point graph of the incidence
structure (P ,L, I) is a graph defined with P as its vertex set, with two points being
adjacent, if they are collinear.

The following lemma is from Ray-Chaudhuri and Sprague [15], and is also given in
Theorem 9.3.9 of [2]. It is an important ingredient for our proof of Theorem 5.

Lemma 13 ([2, Theorem 9.3.9]). Let (P ,L,∈) be a partial linear space such that for an
integer q > 2:

(1) each line has at least q2 + q + 1 points;

(2) each point is on more than q + 1 lines;

(3) if P ∈ P , l ∈ L and l is incident with P , then there are exactly q + 1 lines on P
meeting l;

(4) if the points P and P ′ have distance 2 in the point graph Γ, then there are precisely
q + 1 lines l on P such that they are incident with P ′;

(5) the point graph Γ of (P ,L,∈) is connected.

Then q is a prime power, and (P ,L,∈) is isomorphic to (
[
V

D

]
q
,
[

V

D+1

]
q
,⊆) for some vector

space V of dimension n over Fq, where n and D are integers and satisfy 3 6 D 6 n
2
. In

particular, Γ is the Grassmann graph Jq(n,D).

2.6 Walk-regular graphs

A graph G is called walk-regular, if, for all integers r > 0, the number of closed walks of
length r (or closed r-walks) from a given vertex x is independent of the choice of x. Since
this number equals (Ar)xx, it is the same as saying that Ar has a constant diagonal for all
r > 0, where A is the adjacency matrix of G. It is clear that Ar has a constant diagonal
for r = 0, 1, and A2 has a constant diagonal if and only if G is regular.

We now introduce the Hoffman polynomial that is useful to prove Lemma 15.

Lemma 14 ([1, Corollary 3.3]). Let G be a regular connected graph with v vertices and
distinct eigenvalues η0 = a > η1 > · · · > ηd. Then if the polynomial q(η) =

∏d
i=1(η − ηi),

we have

q(A) =
q(a)

v
J, (9)

where A is the adjacency matrix of G and J is the all-ones matrix. The equality (9) is
the so-called Hoffman polynomial of G.

Lemma 15. Let G be a connected co-edge-regular graph with parameters (v, a, µ). If G
has at most five distinct eigenvalues, then G is walk-regular.
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Proof. By the Hoffman polynomial (9), one can check that a connected regular graph
with at most four distinct eigenvalues is walk-regular (also shown in [5]). Therefore, in
order to show this lemma, it suffices to show that G is walk-regular if G is connected and
co-edge-regular and has exactly five distinct eigenvalues.

Let A be the adjacency matrix of G. Since G is connected and co-edge-regular with
parameters (v, a, µ), we obtain that, for any vertex x ∈ V (G),

(A2)xx = a, (10)

(A3)xx = a(a− 1)− (v − a− 1)µ. (11)

This implies that A2 and A3 have constant diagonals. Suppose G has exactly five distinct
eigenvalues η0 = a > η1 > · · · > η4. Then A satisfies the Hoffman polynomial (9):

A4 − (
4∑
i=1

ηi)A
3 + (

∑
16i<j64

ηiηj)A
2 + (

∑
16i<j<k64

ηiηjηk)A+ η1η2η3η4I =

∏4
i=1(a− ηi)

v
J.

(12)

where I is the identity matrix and J is the all-ones matrix. It means that A4 has a constant
diagonal, and thus so does Ar, r = 5, 6, · · · , which implies that G is walk-regular.

We finally mention the following result that will be applied to the proof of Proposi-
tion 20. Let G be a graph with spectrum {[η0]m0 , [η1]m1 , . . . , [ηd]

md}. Then

Tr(Ar) =
d∑
i=0

miη
r
i = the number of closed r-walks in G, (13)

where A is the adjacency matrix of G and Tr(Ar) is the trace of matrix Ar (i.e. the sum
of the diagonal entries of Ar), see [1, Lemma 2.5].

3 Spectral characterizations of the s-clique extension of the (t1×
t2)-grid

In this section, we give a spectral characterization of the s-clique extension of the (t1×t2)-
grid. We will use these results in Section 4.

3.1 Clique extensions of the (t1 × t2)-grid graphs

The Kronecker product M1⊗M2 of two matrices M1 and M2 is obtained by replacing the
(i, j)-entry of M1 by (M1)ijM2 for all i and j. Note that, if τ and η are eigenvalues of M1

and M2 respectively, then τη is an eigenvalue of M1 ⊗M2 (cf. [11, Section 9.7]).
Given graphs G and H with vertex sets X and Y , respectively, their Cartesian product

G�H is the graph with the vertex set X × Y , where (x, y) ∼ (x′, y′) when either x = x′

and y ∼ y′ or x ∼ x′ and y = y′. For the adjacency matrix we have A(G�H) =
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A(G)⊗ I|Y |+ I|X|⊗A(H), where I|X| (resp. I|Y |) is the identity matrix of order |X| (resp.
|Y |), see [4, Section 1.4.6].

A t-clique is a clique with t vertices and is denoted by Kt, where t is a positive integer.
For positive integers t1, t2, the (t1× t2)-grid is the Cartesian product Kt1�Kt2 of Kt1 and
Kt2 . The spectrum of the (t1×t2)-grid is {[t1+t2−2]1, [t1−2]t2−1, [t2−2]t1−1, [−2](t1−1)(t2−1)}
(cf. [12]).

For a positive integer s, the s-clique extension of a graph G is the graph G̃ obtained
from G by replacing each vertex x ∈ V (G) by a clique X̃ with s vertices, such that x̃ ∼ ỹ

(for x̃ ∈ X̃, ỹ ∈ Ỹ ) in G̃ if and only if x ∼ y in G. If G̃ is the s-clique extension of G, then

G̃ has adjacency matrix (A + I|V (G)|) ⊗ Js − Is×|V (G)|, where A is the adjacency matrix
of G and Js is the all-ones matrix of order s and I|V (G)| is the identity matrix of order
|V (G)|. In particular, if G has spectrum

{[η0]m0 , [η1]m1 , . . . , [ηd]
md}, (14)

then it follows that the spectrum of G̃ (cf. [12]) is

{[s(η0 + 1)− 1]m0 , [s(η1 + 1)− 1]m1 , . . . , [s(ηd + 1)− 1]md , [−1](s−1)(m0+m1+···+md)}. (15)

For the rest of this subsection, we assume that G is a graph that is cospectral with
the s-clique extension of the (t1× t2)-grid, where s > 2, t1 > t2 > 1 are integers. By (14)
and (15), the graph G has spectrum

{[s(t1 + t2 − 1)− 1]1, [s(t1 − 1)− 1]t2−1, [s(t2 − 1)− 1]t1−1, [−1](s−1)t1t2 , [−s− 1](t1−1)(t2−1)}.
(16)

By using (12), we obtain

A4 + (4− s(t1 + t2 − 3))A3 + (s2(3− 2(t1 + t2) + t1t2) + 3s(3− t1 − t2) + 6)A2

+ (−s3(t1 − 1)(t2 − 1) + 2s2(2(t1 + t2)− t1t2 − 3) + 3s(t1 + t2 − 3)− 4)A

+ ((s+ 1)(s(t2 − 1)− 1)(s(t1 − 1)− 1))I

= s3(t1 + t2)(t1 + t2 − 1)J. (17)

We will use it in the next subsection. The following lemma shows an upper bound on the
order of a clique of G.

Lemma 16. Let G be a graph that is cospectral with the s-clique extension of the (t1×t2)-
grid, where s > 2, t1 > t2 > 1 are integers. Then, for any clique C of G, we have
|V (C)| 6 st1. Moreover, if the equality holds, then every vertex outside C has exactly s
neighbors in C.

Proof. We will take advantage of the Hoffman bound (see (2)) to prove this lemma, so we
consider a coclique C in the complement graph G of G. (Note that the graph induced on
V (C) in G is a clique of G). It is known that a graph cospectral with a connected k-regular
graph is connected and k-regular. As the s-clique extension of the (t1× t2)-grid is regular
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with valency s(t1 + t2 − 1)− 1, so does G. In terms of the properties of complement, one
easily verify that G is regular with valency s(t1 − 1)(t2 − 1) and with smallest eigenvalue
−s(t1 − 1). Then, by the Hoffman bound, we infer that

|V (C)| 6 st1t2

1 + s(t1−1)(t2−1)
s(t1−1)

= st1.

Moreover, the equality implies that every vertex x /∈ V (C) is nonadjacent to s vertices of
C in G, which also means that x is adjacent to exactly s vertices of C in G.

3.2 Grand cliques in G

As in the above subsection, we assume that G is a graph that is cospectral with the s-clique
extension of the (t1 × t2)-grid, where s > 2, t1 > t2 > 1 are integers. For this subsection,
we further assume that G is co-edge-regular with parameters (st1t2, s(t1 + t2 − 1)− 1, µ).
In Lemma 15, it was shown that G is walk-regular. This implies that (Ar)xx is constant
for any r > 0 and x ∈ V (G), where A is the adjacency matrix of G. By (10), (11) and
(17), we have

(A4)xx =(−s2(t1 − 1)(t2 − 1)(t1 + t2 − 3) + 4s(t1 − 1)(t2 − 1))µ

+ s3(t1(t1 + t2 − 1)2 + (t1 + t2)(t2 − 1)2 + t2 − 1)

− 4s2(t1 + t2 − 1)2 + 6s(t1 + t2 − 1)− 3. (18)

In addition, the parameter µ only depends on the spectrum of G. As G is cospectral with
the s-clique extension of the (t1 × t2)-grid, we find µ = 2s.

Let G(∞) be the local graph of G at vertex ∞. Assume that the vertices of G(∞)
have valencies d1, . . . , da, where a = s(t1 + t2 − 1) − 1. Then, as G is co-edge-regular
and walk-regular, we obtain that the number of walks of length two inside G(∞) is the
same as the number of walks of length two in the local graph of the s-clique extension
of the (t1 × t2)-grid. Using (18), the sum of valencies and the sum of square of valencies
of vertices in G(∞) are given by the following equations, where ε is the number of edges
inside G(∞).

2ε =
a∑
i=1

di = s2((t1 − 1)2 + (t2 − 1)2) + (2s2 − 3s)(t1 + t2 − 2) + s2 − 3s+ 2. (19)

a∑
i=1

(di)
2 = s3((t1 + t2 − 1)2 + t21(t1 − 1) + t22(t2 − 1))− s2((t1 + t2 − 1)2

+ 4(t21 + t22 − 1)) + 8s(t1 + t2 − 1)− 4

= (s− 1)(s(t1 + t2 − 1)− 2)2 + s(t1 − 1)(st1 − 2)2 + s(t2 − 1)(st2 − 2)2. (20)

It is straightforward to show the following lemma that will be used later.
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Lemma 17. Let u, v, p and q be some integers satisfying 0 6 q 6 p 6 u and v 6 u. If
p+ q = u+ v, then p2 + q2 6 u2 + v2 and equality holds if and only if p = u and q = v.

We call a maximal clique in G a grand clique, if it contains at least 19
36
a vertices. The

following proposition shows the existence of grand cliques in G.

Proposition 18. Let G be a co-edge-regular graph with parameters (v, a, µ), that is cospec-
tral with the s-clique extension of the (t1 × t2)-grid, where s > 2, t1 > 2t2 are integers. If

t2 >
36(s+1)6

s2
, then each vertex of G lies on a unique grand clique.

Proof. Note that G is regular with valency a = s(t1 + t2 − 1) − 1, and co-edge-regular
with parameter µ = 2s. Let∞ be a vertex of G and G(∞) be the local graph of G at∞.
As before, let ε be the number of edges inside G(∞). We first obtain a lower bound on
ε. By (19), we obtain

2ε > s2(t1 − 1)2 + s2(t2 − 1)2 (21)

as s > 2. Now we derive an upper bound on ε. Let B be a coclique with maximum order
in G(∞) and with vertex set {x1, x2, . . . , xp}. By interlacing (see Lemma 7), we have
p 6 (s+ 1)2, since the smallest eigenvalue of a complete bipartite graph with parts of size
1 and p is −√p and the smallest eigenvalue of G is −s− 1. We define

R := {y ∼ ∞ | y has at least two neighbors in B}.

Let r be the cardinality of R. Then

r 6 (2s− 1)

(
p

2

)
6 sp(p− 1) 6 s2(s+ 1)2(s+ 2) 6 (s+ 1)5, (22)

as µ = 2s. We also define the sets Ui such that

Ui = {y ∼ ∞ | y has only xi as its neighbor in B} ∪ {xi},

where ui := |Ui|. Note that U :=
⋃
i Ui, then U ∪ R = V (G(∞)). Note further that

any two vertices of Ui are adjacent, because B is maximum. Thus, for every i, the graph
induced on Ui is a clique of G(∞).

Now, inside U , we have at most 1
2
(
∑

i ui(ui − 1) + (p− 1)(2s− 1)
∑

i ui) edges, inside
R, we have at most 1

2
r(r − 1) edges and between U and R, we have at most r(a − r)

edges. Then, we obtain

2ε 6
∑
i

ui(ui − 1) + r(r − 1) + 2r(a− r) + (p− 1)(2s− 1)
∑
i

ui.

Without loss of generality, we may assume that u1 > u2 > . . . > up > 1. Now suppose
that u1 6 19

36
a. Then we obtain

2ε 6 (u1 − 1)
∑
i

ui + 2r(a− 1) + (p− 1)(2s− 1)
∑
i

ui

the electronic journal of combinatorics 28(4) (2021), #P4.45 14



6 (
19

36
a− 1)a+ 2(s+ 1)5a+ (s2 + 2s)(2s− 1)a (as

∑
i

ui = a− r 6 a)

6
19

36
a2 + 3(s+ 1)5a

<
19

36
s2(t1 + t2)2 + 3s(s+ 1)5(t1 + t2) (as a = s(t1 + t2 − 1)− 1 < s(t1 + t2)) (23)

Combining (21), (23), we have

s2(t1 − 1)2 + s2(t2 − 1)2 6 2ε <
19

36
s2(t1 + t2)2 + 3s(s+ 1)5(t1 + t2),

which implies that

19

36
s2(t21 + t22) +

19

18
s2t1t2 + 3s(s+ 1)5(t1 + t2) > s2(t21 + t22)− 2s2(t1 + t2 − 1).

Then, by simplifying we see

38s2t1t2 + 108(s+ 1)6(t1 + t2) > 17s2(t21 + t22) > 17 · 5

2
s2t1t2,

because of (t1 − t2)2 − 1
2
t1t2 >

1
4
t21 − 1

2
t1t2 > 0, as t1 > 2t2. Also, we obtain

24(s+ 1)6

s2
>

t1t2
t1 + t2

>
2

3
t2 (as t1 > 2t2),

and then t2 < 36(s+1)6

s2
, a contradiction. This implies that there exists a grand clique

containing ∞. If a vertex in G lies on more than one grand clique, then the intersection
of their two grand cliques is at least 2 · 19

36
a − a − 1 = 1

18
a − 1 > 2s, since t1 > 2t2 and

t2 >
36(s+1)6

s2
. However, their intersection is at most 2s, a contradiction. This shows that

every vertex of G lies on a unique grand clique.

3.3 A spectral characterization of G

In this subsection, we give the following spectral characterization of the s-clique extension
of the (t1 × t2)-grid.

Theorem 19. Let G be a co-edge-regular graph with parameters (v, a, µ), that is cospectral
with the s-clique extension of the (t1 × t2)-grid, where s > 2, t1 > 2t2 > 2 are integers. If
G has a clique of order st1, then G is the s-clique extension of the (t1 × t2)-grid.

Proof. Let C denote a clique of order st1 in G. From Lemma 16, we know that every
vertex in V (G) − V (C) has exactly s neighbors in V (C). Fix a vertex ∞ ∈ V (C), now
we consider the local graph G(∞) of G at ∞. Let D∞ be the set of the neighbors of
∞ not in V (C). It is easy to obtain |D∞| = s(t2 − 1), since G is regular with valency

the electronic journal of combinatorics 28(4) (2021), #P4.45 15



a = s(t1 + t2 − 1) − 1. For any x ∈ V (G(∞)), let dx denote the valency of x in G(∞).
Choosing x ∈ D∞, we see that dx 6 s(t2 − 1)− 1 + s− 1 = st2 − 2. Hence,∑

x∈D∞

dx 6 s(t2 − 1)(st2 − 2), (24)

with equality, if and only if, the graph induced on D∞ is a clique of order s(t2 − 1). In
addition, we know that∑

x∈V (C)−{∞}

dx = (st1 − 1)(st1 − 2) + s(t2 − 1)(s− 1).

By Equation (19), we deduce that

∑
x∈D∞

dx =
a∑
i=1

di −
∑

x∈V (C)−{∞}

dx = s(t2 − 1)(st2 − 2).

It follows that the equality in (24) holds, which implies that the graph induced on D∞ is
a clique of order s(t2 − 1). Because of∑

x∈D∞

d2
x = s(t2 − 1)(st2 − 2)2,

and, by (20), we have

∑
x∈V (C)−{∞}

d2
x =

a∑
i=1

d2
i −

∑
x∈D∞

d2
x = (s− 1)(s(t1 + t2 − 1)− 2)2 + s(t1 − 1)(st1 − 2)2.

Then ∑
x∈V (C)−{∞}

(dx − (st1 − 2))2 = (s− 1)s2(t2 − 1)2.

It follows that there are s vertices (including ∞) of C adjacent to all of vertices of D∞,
and we infer that these s vertices together with the vertices of D∞ induce a clique with
vertex set C∞. Note that |C∞| = st2.

Next, we fix any x ∈ D∞ and let Ex be the set of the neighbors of x not in C∞. It
is also easy to obtain |Ex| = s(t1 − 1) because x has valency a. For any y, a neighbor of
x, we let dy denote the valency of y in G(x). Fix y ∈ Ex, as G is co-edge-regular with
parameter µ = 2s and y has s neighbors in C, by Lemma 16, we deduce that y has s
neighbors in C∞ as y �∞. This implies that dy 6 s(t1− 1)− 1 + s− 1 = st1− 2. Hence,∑

y∈Ex

dy 6 s(t1 − 1)(st1 − 2), (25)
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with equality, if and only if, the graph induced on Ex is a clique of order s(t1−1). Similar
to the proof for D∞, we check that the equality in (25) holds. This implies the graph
induced on Ex is a clique of order s(t1 − 1). Note that∑

y∈C∞−{x}

(dy − (st2 − 2))2 = (s− 1)s2(t1 − 1)2.

It follows that there are s vertices (including x) in C∞ adjacent to all of vertices of Ex.
We infer that these s vertices together with the vertices of Ex induce a clique of order st1.

Similarly, for any x ∈ V (C), we have Cx, and for any y ∈ Dx, we have Ey. It is easy
to check G is the s-clique extension of the (t1 × t2)-grid.

4 Distance-regular graphs with classical parameters

In this section, we assume that Γ is a distance-regular graph with classical parameters

(D, b, α, β) = (D, q, q,
[
D+e+1

1

]
q
− 1), where q > 2 and e ∈ {1, 2, 3} are integers.

Proposition 20. Let Γ be a 1-thin distance-regular graph with classical parameters

(D, b, α, β) = (D, q, q,
[
D+e+1

1

]
q
− 1),

where q > 2 and e ∈ {1, 2, 3} are integers and D > 5. Assume further that Γ is µ-graph-
regular with parameter `. Let G := ∆(x) be the local graph of Γ at a vertex x ∈ V (Γ).
Then

(i) ` = 2q,

(ii) G is cospectral with the q-clique extension of the (t1 × t2)-grid, where

t1 =
[
D+e

1

]
q
, t2 =

[
D

1

]
q
.

Proof. For integers q > 2 and e ∈ {1, 2, 3}, let t1 =
[
D+e

1

]
q
, t2 =

[
D

1

]
q
. As Γ is µ-graph-

regular with parameter `, we see that G is co-edge-regular with parameters (k, a1, `), where
k is the valency of Γ. By Formulas (5) and (6), one can calculate that k = b0 = qt1t2 and
a1 = b0 − b1 − c1 = q(t1 + t2 − 1)− 1. Let

η0 = a1 = q(t1 + t2 − 1)− 1,

η1 = β − α− 1 = q(t1 − 1)− 1,

η2 = αb
bD−1 − 1

b− 1
− 1 = q(t2 − 1)− 1,

η3 = −1,

η4 = −q − 1.
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Then, by Lemma 11, any eigenvalue of G is in {η0, η1, . . . , η4}, where the multiplicity of
η0 is equal to 1. For 1 6 i 6 4, let mi be the multiplicity of eigenvalue ηi of G, where
mi = 0 if ηi is not an eigenvalue of G. Let α denote the average valency of vertices in the
local graph of G at a fixed vertex. One can check α = a1 − 1 − `(qt1t2−a1−1)

a1
, since G is

co-edge-regular with parameter `. Then, by Formula (13), we obtain
m1 +m2 +m3 +m4 = qt1t2 − 1

m1η1 +m2η2 +m3η3 +m4η4 = −a1

m1η
2
1 +m2η

2
2 +m3η

2
3 +m4η

2
4 = a1(qt1t2 − a1)

m1η
3
1 +m2η

3
2 +m3η

3
3 +m4η

3
4 = qt1t2(a2

1 − a1 − `(qt1t2 − a1 − 1))− a3
1.

(26)

Let fi denote the multiplicity of ηi (0 6 i 6 4) in the q-clique extension of the (t1×t2)-
grid. Note that f0 = 1. By (16) and Formula (13) similarly, we gain that

f1 + f2 + f3 + f4 = qt1t2 − 1

f1η1 + f2η2 + f3η3 + f4η4 = −a1

f1η
2
1 + f2η

2
2 + f3η

2
3 + f4η

2
4 = a1(qt1t2 − a1)

f1η
3
1 + f2η

3
2 + f3η

3
3 + f4η

3
4 = qt1t2(a2

1 − a1 − 2q(qt1t2 − a1 − 1))− a3
1.

(27)

Now, we set m′i = mi − fi for 1 6 i 6 4, and compare the systems of linear equations
(26) and (27) to obtain

m′1 +m′2 +m′3 +m′4 = 0

m′1η1 +m′2η2 +m′3η3 +m′4η4 = 0

m′1η
2
1 +m′2η

2
2 +m′3η

2
3 +m′4η

2
4 = 0

m′1η
3
1 +m′2η

3
2 +m′3η

3
3 +m′4η

3
4 = qt1t2(qt1t2 − a1 − 1)(2q − `).

(28)

It is easy to see the coefficient determinant, denoted by detM , of the system of linear
equations (28) is a Vandermonde determinant, i.e.,

detM = (η4 − η3)(η4 − η2)(η4 − η1)(η3 − η2)(η3 − η1)(η2 − η1).

Let detMi denote a determinant by replacing the i-column of detM by the vector
(0, 0, 0, qt1t2(qt1t2 − a1 − 1)(2q − `))>. Hence, we obtain

detM1 = −qt1t2(qt1t2 − a1 − 1)(2q − `)(η4 − η3)(η4 − η2)(η3 − η2).

Thus, by Cramer’s Rule,

m′1 =
detM1

detM

=
−qt1t2(qt1t2 − a1 − 1)(2q − `)

(η4 − η1)(η3 − η1)(η2 − η1)
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=
−q2t1t2(t1 − 1)(t2 − 1)(2q − `)
−q3t1(t1 − 1)(t1 − t2)

=
t2(t2 − 1)(2q − `)

q(t1 − t2)

=
( q

D−1
q−1

)(qD−1 − 1)(2q − `)
qD(qe − 1)

.

As m′1 ∈ Z>0, we obtain qD divides 2q− `. Since ` 6 c2− 1 = (q+ 1)2− 1 6 q3 (as q > 2)
and D > 5, we obtain that ` = 2q, and m′i = 0 for 1 6 i 6 4, so mi = fi for all i.

Now we give a sufficient condition for a distance-regular graph to have a Delsarte
clique.

Lemma 21. Let Γ be a distance-regular graph with smallest eigenvalue θmin = −m ∈ Z.
If Γ is the point graph of a partial linear space (P ,L,∈) such that |P| > |L|. Then there
exists a Delsarte clique of Γ.

Proof. Let N be the point-line incidence matrix. For x ∈ V (Γ) = P , define τx as the
number of lines through the point x. So NN> = A + T , where > denotes the transpose
and T is a diagonal matrix such that Txx = τx for all x ∈ V (Γ). Assume that τx > m+ 1
for all x ∈ V (Γ). Then

A+ T − (A+ (m+ 1)I)

is positive semidefinite. As |P| > |L|, the matrix NN> = A+ T has an eigenvalue 0 and
this implies that θmin 6 −m − 1, a contradiction. It follows that there exists a vertex x
such that τx 6 m. Hence, by the Delsarte bound, we require

k = |Γ(x)| 6 k

m
·m 6 k, (29)

which shows that each line through x is a Delsarte clique.

Remark 22. The twisted Grassmann graphs J̃q(2D + 1, D) that were discovered by Van
Dam and Koolen [6] are the point graph of a partial linear space (P ,L,∈) with |P| = |L|.
None of the lines in a Delsarte clique, although J̃q(2D + 1, D) contains Delsarte cliques.

5 Proof of Theorem 5

In this section, we completes the proof of Theorem 5.

Proof of Theorem 5. We assume that Γ is a 1-thin distance-regular graph with classical

parameters (D, b, α, β) = (D, q, q,
[
D+e+1

1

]
q
− 1) for some integers q > 2, e ∈ {1, 2, 3} and

D > χ(q), as defined in (1). Assume further that Γ is µ-graph-regular with parameter
`, and thus any local graph of Γ is co-edge-regular with parameters (k, a1, `), where
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k = b0 = q
[
D+e

1

]
q

[
D

1

]
q
, a1 = b0−b1−c1 = q(

[
D+e

1

]
q
+
[
D

1

]
q
−1). Set t1 =

[
D+e

1

]
q
, t2 =

[
D

1

]
q
.

Then, from Proposition 20, any local graph of Γ is cospectral with the q-clique extension
of the (t1 × t2)-grid.

We define a line of Γ as a maximal clique that contains at least 19
36
a1 + 1 vertices. Let

L be the set consisting of all lines in Γ. As D > χ(q) and, by Proposition 18, we obtain
that for any two adjacent vertices x, y ∈ V (Γ), there exists a unique line l ∈ L such that
x, y ∈ l. One can see that (V (Γ),L,∈) is a partial linear space such that Γ is its point
graph. Moreover, the inequality |V (Γ)| > |L| holds, see the following claim.

Claim 23. |V (Γ)| > |L|.

Proof. Let τx denote the number of lines through the point x and σl denote the number
of points on the line l. We have that σl > 19

36
a1 + 1 for any line l by the definition of a

line of Γ, and τx 6 k
19
36
a1

for any vertex x of Γ by the Delsarte bound. We can show that
k

19
36
a1
< 19

36
a1 + 1 holds, since

19

36
a1(

19

36
a1 + 1) =

19

36
(q(t1 + t2 − 1)− 1)(

19

36
(q(t1 + t2 − 1)− 1) + 1)

>
19

36
(q(t1 + t2 − 1)− 1)(

19

36
(q(t1 + t2 − 1))

=
192

362
q2(t1 + t2 − 1)2 − 19

36
q(t1 + t2 − 1)

>
192

362
q2(t21 + t22 + t1(t2 − 1))− 19

36
q(t1 + (t2 − 1))

>
192

362
q2(t21 + t22) (as q > 2 and t1 > 2t2 > 6)

>
192

362
· 2q · 5

2
t1t2 > qt1t2 = k.

Hence, we find that τx < σl holds for any vertex x and line l in Γ. Because

|{(x, l) | x ∈ V (Γ), l ∈ L, x ∈ l}| =
∑

x∈V (Γ)

τx =
∑
l∈L

σl, (30)

we acquire that |V (Γ)| > |L|.

Now, by Lemma 21, we obtain that there exits a Delsarte clique in Γ, say C, which

is a clique containing q
[
D+e

1

]
q

+ 1 = qt1 + 1 vertices. Let x be a vertex of C. Then,

from Theorem 19, ∆(x) is the q-clique extension of the (t1 × t2)-grid. Therefore, for
any neighbor y of x, ∆(y) is again the q-clique extension of the (t1 × t2)-grid. As Γ
is connected, it follows that for any vertex x of Γ, the local graph at x is the q-clique
extension of the (t1× t2)-grid. This implies that Γ is the point graph of the partial linear
space (V (Γ),L,∈), where L is the set of Delsarte cliques of Γ. As every edge lies in a
unique Delsarte clique and any vertex outside a Delsarte clique C has either q+ 1 or none
neighbors in C, it follows by Lemma 13 that Γ is the Grassmann graph Jq(2D + e,D).

This completes the proof of Theorem 5.
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