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Abstract
A di-sk tree is a rooted binary tree whose nodes are labeled by ⊕ or 	, and no

node has the same label as its right child. The di-sk trees are in natural bijection
with separable permutations. We construct a combinatorial bijection on di-sk trees
proving the two quintuples

(LRMAX,LRMIN,DESB, iar, comp) and (LRMAX,LRMIN,DESB, comp, iar)

have the same distribution over separable permutations. Here for a permutation π,
LRMAX(π)/LRMIN(π) is the set of values of the left-to-right maxima/minima of
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π and DESB(π) is the set of descent bottoms of π, while comp(π) and iar(π) are
respectively the number of components of π and the length of the initial ascending
run of π.

Interestingly, our bijection specializes to a bijection on 312-avoiding permuta-
tions, which provides (up to the classical Knuth–Richards bijection) an alternative
approach to a result of Rubey (2016) that asserts the two triples (LRMAX, iar, comp)
and (LRMAX, comp, iar) are equidistributed on 321-avoiding permutations. Rubey’s
result is a symmetric extension of an equidistribution due to Adin–Bagno–Roichman,
which implies the class of 321-avoiding permutations with a prescribed number of
components is Schur positive.

Some equidistribution results for various statistics concerning tree traversal are
presented in the end.
Mathematics Subject Classifications: 05A05, 05A15, 05A19

1 Introduction

The (large) Schröder numbers

Sn =
n∑

i=0

1

i+ 1

(
2i

i

)(
n+ i

n− i

)
are one of the most fundamental integer sequences in mathematics. They arise in many
classical combinatorial enumeration problems [11, 18, 21]. In pattern avoidance, one of
the most important classes of permutations, known as separable permutations, are counted
by the Schröder numbers [17, 22, 20].

There are two distinct ways to define the separable permutations. One is in terms of
pattern avoiding permutations. Let Sn be the set of permutations of [n] := {1, 2, . . . , n}.
A permutation π ∈ Sn is said to avoid a permutation (or a pattern) σ ∈ Sk, k 6 n, if
there exists no subsequence of π that is order isomorphic to σ. Separable permutations
are permutations that avoid both the patterns 2413 and 3142.

Another description of separable permutations is via two elementary operations, called
direct sum and skew sum of permutations. The direct sum π⊕σ and the skew sum π	σ,
of π ∈ Sk and σ ∈ Sl, are permutations in Sk+l defined respectively as

(π ⊕ σ)i =

{
πi, for 1 6 i 6 k;

σi−k + k, for k + 1 6 i 6 k + l.

and

(π 	 σ)i =

{
πi + l, for 1 6 i 6 k;

σi−k, for k + 1 6 i 6 k + l.

For instance, we have 123⊕ 21 = 12354 and 123	 21 = 34521. The following characteri-
zation of separable permutations is folkloric (see [11, p. 57–58]) in pattern avoidance.
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Proposition 1. A permutation is separable if and only if it can be built from the permu-
tation 1 by applying the operations ⊕ and 	 repeatedly.

This characterization induces a natural bijection [17] between separable permutations
and di-sk trees defined below.

Definition 2 (Di-sk trees). A di-sk tree is a rooted binary tree whose nodes are labeled
by ⊕ or 	, and no node has the same label as its right child.

The trees considered in this paper will all be di-sk trees. The main objective of this
paper is to construct a combinatorial bijection on di-sk trees that proves a symmetric
quintuple equidistribution on separable permutations involving two Comtet statistics (see
below), the number of components and the length of the initial ascending run.

For a permutation π = π1π2 · · · πn ∈ Sn, define six statistics

LRMAX(π) := {πi : πj < πi, ∀1 6 j < i};
LRMIN(π) := {πi : πj > πi, ∀1 6 j < i};

DES(π) := {i ∈ [n− 1] : πi > πi+1};
DESB(π) := {πi+1 : i ∈ DES(π)};

iar(π) := min(DES(π) ∪ {n});
comp(π) := |{i : ∀j 6 i, πj 6 i}|;

called the set of values of left-to-right maxima, the set of values of left-to-right minima, the
set of positions of descents, the set of descent bottoms, the length of the initial ascending
run and the number of components of π, respectively. For a (finite) collection of patterns
P , we write Sn(P ) for the set of all permutations in Sn that avoid simultaneously every
pattern contained in P .

Theorem 3. There exists an involution Φ on Sn(2413, 3142) that preserves the triple of
set-valued statistics (LRMAX,LRMIN,DESB) but exchanges the pair (comp, iar). More-
over, Φ restricts to an involution on Sn(312).

The inspiration of Theorem 3 stems from the work of Comtet [4, Ex. VI.14] and
several recent results. The two statistics LRMAX/LRMIN and DESB are respectively
the set-valued extensions of the classical Stirling and Eulerian statistics, since the number
of left-to-right maxima/minima over Sn gives the Stirling numbers of the first kind and
the descent polynomial on Sn is the n-th Eulerian polynomial (see [2, 7, 15]). Note that
comp(π) equals the maximum number of components in an expression of π as a direct sum
of permutations [1]. The statistic comp dates back at least to Comtet [4, Ex. VI.14] and
following [9], any statistic equidistributed with comp over a class of restricted permutations
will be called a Comtet statistic over such class. The statistic iar was considered by
Claesson and Kitaev in [3], but under the different notation lir. It was known that

|{π ∈ Sn(321) : iar(π) = k}| = Cn,n−k = |{π ∈ Sn(321) : comp(π) = k}|, (1)
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where {Cn,k = n−k
n

(
n−1+k

k

)
}06k6n−1 forms the Catalan triangle (see [14, A009766]). Thus,

iar is a Comtet statistic over 321-avoiding permutations.
Recently, Adin, Bagno, and Roichman [1] proved a generalization of (1), which is

equivalent to the equidistribution of (LRMAX, iar) and (LRMAX, comp) on 321-avoiding
permutations. This result was shown to imply that the class of 321-avoiding permutations
with a prescribed number of components is Schur positive. Rubey [16] later found a
symmetric generalization of the Adin–Bagno–Roichman equidistribution via constructing
an involution on Dyck paths and using Krattenthaler’s bijection [12] from Dyck paths to
321-avoiding permutations. His symmetric equidistribution was shown [9] to be equivalent
to the equidistribution of (LRMAX, iar, comp) and (LRMAX, comp, iar) on 321-avoiding
permutations, up to some elementary transformations on permutations. Since the classical
Knuth–Richards bijection (see [3]) between Sn(321) and Sn(312) preserves the triple
(LRMAX, iar, comp) and the fact that DESB(π)∪LRMAX(π) = [n] for π ∈ Sn(312), the
two quadruples

(LRMAX,DESB, iar, comp) and (LRMAX,DESB, comp, iar)

have the same distribution over Sn(312).
On the other hand, Claesson, Kitaev, and Steingrímsson [11, Thm 2.2.48] constructed

a bijection between separable permutations of length n + 1 with k + 1 components and
Schröder paths of length 2n with k horizontals on the x-axis. Combining this bijection
with the recent work in [10, Thm 3.2] justifies iar being a Comtet statistic on separable
permutations.

The above results inspire us to consider similar joint symmetric equidistribution of
the pair (comp, iar) over separable permutations, and eventually discover Theorem 3.
See also [9] for other interesting consequences of Theorem 3. For other studies of pattern
avoiding permutations that emphasize bijective maps, the reader is referred to [3, 6, 13, 19].

The rest of this paper is mainly devoted to the proof of Theorem 3. In the next section,
we transform the involved statistics from separable permutations to di-sk trees, and then
in section 3, we construct a combinatorial bijection on di-sk trees to build the involution
Φ for Theorem 3. In section 4, we discuss some further results from the perspective of tree
traversal, and derive several new Comtet statistics over di-sk trees. Finally, we conclude
our paper by posing several questions for further investigation.

2 From separable permutations to di-sk trees

The set of all di-sk trees with n − 1 nodes is denoted as DTn. For each T ∈ DTn,
we use the inorder (traversal) to compare nodes on T : starting with the root node, we
recursively traverse the left subtree to the parent then to the right subtree if any (see the
first tree in Fig. 6). We call the first (by inorder) node of T the inorder root, abbreviated
as iroot in the sequel, of T (see Fig. 1).

We will apply a natural bijection η : Sn(2413, 3142) → DTn found by Shapiro and
Stephens [17]. The recursive description of η recalled below is from [8]. Let id1 = 1 be the
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Figure 1: The bijection η : Sn(2413, 3142)→ DTn for π = 5 2 3 4 1 9 11 10 6 8 7.

unique permutation of length 1 and we set η(id1) = ∅. For π = π1 . . . πn ∈ Sn(2413, 3142)
with n > 2, find the greatest index i ∈ [n− 1] such that either

min{π1, . . . , πi} > max{πi+1, . . . , πn} or max{π1, . . . , πi} < min{πi+1, . . . , πn}. (2)

In view of Proposition 1, such an index i exists and is unique. We distinguish two cases:

• If the first inequality in (2) holds, then π = ω 	 ρ with ω = (π1 + i − n) · · · (πi +
i − n) ∈ Si(2413, 3142) and ρ = πi+1 · · · πn ∈ Sn−i(2413, 3142). Define η(π) =
(η(ω),	, η(ρ)), the tree with the left subtree η(ω) and the right subtree η(ρ) attached
to the root 	.

• Otherwise, π = ω ⊕ ρ, where ω = π1 · · · πi ∈ Si(2413, 3142) and ρ = (πi+1 −
i) · · · (πn − i) ∈ Sn−i(2413, 3142). Then define η(π) to be the tree with the left
subtree η(ω) and the right subtree η(ρ) attached to the root ⊕.

See Fig. 1 for an example of η for π = 5 2 3 4 1 9 11 10 6 8 7 ∈ S11(2413, 3142). One of the
important features of η was proved in [8].

Lemma 4 (Theorem 2.3 in [8]). The mapping η : Sn(2413, 3142) → DTn is a bijection
such that

i ∈ DES(π) ⇐⇒ the ith node (by inorder) of η(π) is 	 (3)

for each π ∈ Sn(2413, 3142).

For each tree T ∈ DTn, let iop(T ) be the number of initial ⊕-nodes (by inorder) in T .
It follows from (3) that

iar(π)− 1 = iop(η(π)) (4)

for any π ∈ Sn(2413, 3142). But what is comp(π) corresponding to in the di-sk tree η(π)?
Let us consider the spine of T , i.e., the path from the root of T to the iroot of T . Let
top(T ) be the number of top consecutive ⊕-nodes in the spine of T . For instance, the
spine of T in Fig. 1 is ⊕−	−	 (from the top) and so top(T ) = 1.
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Lemma 5. For any permutation π ∈ Sn(2413, 3142), we have

comp(π)− 1 = top(η(π)).

Proof. Recall that comp(π)−1 equals the cardinality of the set {k ∈ [n−1] : ∀j 6 k, πj 6
k}. We need to consider two cases:

• If {k ∈ [n − 1] : ∀j 6 k, πj 6 k} = ∅, then the root of η(π) is a 	-node and so
top(η(π)) = 0 = comp(π)− 1.

• Otherwise, let l be the greatest integer in {k ∈ [n− 1] : ∀j 6 k, πj 6 k}. Clearly, l
is the greatest index smaller than n such that (2) holds. Thus, by the construction
of η we have η(π) = (η(ω),⊕, η(ρ)) assuming that π = ω ⊕ ρ with ω = π1 · · · πl. It
then follows by induction on n that

comp(π)− 1 = comp(ω) = 1 + top(ω) = top(π).

In either case, the assertion is true.

Remark 6. The statistic top on di-sk trees was previously considered by Corteel, Martinez,
Savage and Weselcouch in [5, Corollary 5], where they constructed a bijection from 021-
avoiding inversion sequences of length n with k initial zeros to {T ∈ DTn : top(T ) =
k−1}. On the other hand, Kim and Lin [13] built a bijection from 021-avoiding inversion
sequences to (2413, 4213)-avoiding permutations which transforms positions of ascents to
positions of descents. Combining these two bijections gives

|{T ∈ DTn : top(T ) = k − 1}| = |{π ∈ Sn(2413, 4213) : iar(π) = k}|. (5)

It would be interesting to construct a direct bijection (probably in similar flavor as η)
between DTn and Sn(2413, 4213) that proves (5). See also section 4 for another interpre-
tation of top in terms of tree traversal.

3 The construction of Φ

This section is devoted to the construction of Φ. We begin with an elementary oper-
ation on di-sk tree that will be used frequently during our construction of Φ.

Let T be a di-sk tree and v be an 	-node of T . Whenever there exists an ⊕-node w,
which is not a right child, we introduce the di-sk tree L(v, T ) according to the following
two situations:

• v is the left child of w, or

• v is the right child of an ⊕-node, denoted w′, whose parent is w.
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C
⊕w

A	v

D

B

T L(v, T )

−→
C

	v
B⊕w

D

A

C
⊕w

A⊕w′

	v

D

B

T

−→
C

⊕w′

	v
B

D

⊕w
A

L(v, T )

Figure 2: Two cases to obtain the di-sk tree L(v, T ) from T .

In either case, define L(v, T ) to be the di-sk tree obtained from T by cutting the ⊕-
node w, together with its right subtree (if any), and inserting it as the left child of v.
The original left child of v (if any) becomes the left child of w, while the original right
parent of w (if any) becomes the right parent of v (resp. w′) for the first case (resp. the
second case), keeping the remaining nodes and edges of T unchanged. See Fig. 2 for the
illustration of L(v, T ) in the above two cases. Since the edges we have inserted/deleted
in the construction of L(v, T ) are all left edges, we see that L(v, T ) is still a di-sk tree.
Moreover, both cases are seen to be invertible and if T ′ := L(v, T ), we will denote the
inverse map as L−1(v, T ′) = T .

The reason to introduce the transformation L lies in the following lemma.

Lemma 7. Let π = η−1(T ) and π′ = η−1(L(v, T )) for a di-sk tree T . Then,

DESB(π) = DESB(π′),

LRMAX(π) = LRMAX(π′) and

LRMIN(π) = LRMIN(π′).

Proof. We need to describe the inverse η−1 : DTn → Sn(2413, 3142) of η. For a given
di-sk tree T ∈ DTn, let us add some edges to T so that the out-degree of each node
is exactly two (see the red edges in Fig. 1). There are n new edges to be added to T ,
thus creating n new leaves. The next step of η−1 is to assign the integers in [n] to these
n new leaves so that for each ⊕-node (resp. 	-node) of T , the integers assigned to the
leaves belonging to the left subtree of this node are all smaller (resp. greater) than those
assigned to leaves belonging to the right subtree. Such an assignment is unique and the
permutation η−1(T ) can be derived from reading these n integers by the inorder of this
augmented tree (see Fig. 1).

From the above description of η−1, we see that the transformation L preserves the
assignment of the augmented tree, namely, if a new leaf of T has been assigned an integer
k, then the corresponding new leaf (i.e., the leaf of L(v, T ) added to the corresponding
node under L) receives the same integer k. Notice that an integer is a descent bottom of
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π = η−1(T ) if and only if it is assigned to a leaf appearing immediately after an 	-node by
the inorder of the augmented tree of T . Thus, DESB(π) = DESB(π′) holds. To see that
LRMAX(π) = LRMAX(π′), we divide letters assigned to the augmented tree of T = η(π)
(see Fig. 2) into three subclasses:

I letters assigned to the right subtree A;

II letters assigned to the right subtree B;

III all the remaining letters.

We observe that: 1) all letters in class I are greater than all letters in class II; 2) none of
the letters in class II is a left-to-right maximum. Now π′ is obtained from π by swapping
class I letters with class II letters, therefore the status of being a left-to-right maximum or
not remains the same for each letter in classes I, II, and III. So LRMAX(π) = LRMAX(π′)
as desired. The proof of LRMIN(π) = LRMIN(π′) is similar by noting that none of the
letters in class I is a left-to-right minimum.

Let D̃Tn be the set of trees T ∈ DTn such that the spine of T has at least one 	-node.
The next result contains the main ingredient for our construction of Φ.

Theorem 8. Let D̃T
(k,l)

n := {T ∈ D̃Tn : top(T ) = k, iop(T ) = l}. If k > 1, then there

exists a bijection φ : D̃T
(k,l)

n → D̃T
(k−1,l+1)

n satisfying

(DESB,LRMAX,LRMIN) η−1(T ) = (DESB,LRMAX,LRMIN) η−1(φ(T )) (6)

for any T ∈ D̃T
(k,l)

n .

Proof. For a fixed di-sk tree T ∈ D̃T
(k,l)

n with k > 1, the construction of φ(T ) can be
performed in the following two steps. In the first step, we do the “swing down” on T
(see Step 1 of Fig. 3 and a slow-motion example in Fig. 4), i.e.,

• Find the topmost 	-node, say v1, on the spine of T (since T ∈ D̃Tn, such a v1
always exists). Find the first (by inorder) 	-node, say v (possibly v = v1), of T .

• In T , there is a unique path P from v1 to v. Let v1, v2, . . . , vk−1, vk = v be all
the 	-nodes on the path P in the order we visit them when walking from v1 to v.
Note that by our choice of v, the path P cannot have two consecutive right edges,
making all of the 	-nodes v1, v2, . . . , vk−1, vk = v on P eligible for applying the
transformation L.

• Define the di-sk tree T ′ by

T ′ = L(vk,L(vk−1, . . . ,L(v2,L(v1, T )) · · · )).
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•
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•
•
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•
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−→
Step 2

◦v4
•
◦v5

•
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◦v
• ◦

◦
•
◦
•◦•

◦
•
•

T T ′ φ(T )
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•
•

◦v1
•
α•

◦v2
•
β•

•
•
•

◦v3
•
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◦v4
•
◦v5
•
δ•
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• ◦v′1
◦v′2
•
◦
•◦•

◦
•
•

•
•

◦
•
α•

◦
•
β•

•
•
•

◦
•
γ•

◦
•
◦
•
δ•

◦v

w•
•
◦
◦ •• ◦v′1

◦v′2

•
• ◦
•

Figure 3: An illustration of φ, where each ⊕-node (resp. 	-node) in di-sk trees is replaced
by a solid (resp. hollow) circle, for simplicity.

⊕
	
v1

	
v

⊕
⊕

	
⊕
	
⊕
	

T = η(5 2 3 4 1 9 11 10 6 8 7)

−→

	
v1

⊕

	
v

⊕
⊕

	
⊕
	
⊕
	

5 2 3 4 9 11 10 6 8 7 1

−→

	
v1

	
v

⊕
	

⊕
	
⊕
	

⊕
⊕

T ′ = η(5 9 11 10 6 8 7 2 3 4 1)

Figure 4: An example of the first step: “swing down”.
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v1

	
v

⊕
w

	
⊕
	
⊕
	

⊕
⊕

T ′ = η(5 9 11 10 6 8 7 2 3 4 1)

−→

	
v1

	
v

⊕
⊕
w

	
⊕
	

⊕
⊕
	

φ(T ) = η(5 9 6 8 7 11 10 2 3 4 1)

Figure 5: An example of the second step: “backward shift”.

For the second step, we do the “backward shift” on T ′ to obtain φ(T ) (see the shift
inside the dotted box in Step 2 of Fig. 3 and a concrete example in Fig. 5), i.e.,

• Let w be the left child of v in T ′. Then w must be an ⊕-node according to the
construction of the first step above.

• Let B (possibly empty) be the right subtree of w. If B is empty, then set φ(T ) = T ′.
Otherwise, the root of B is an 	-node according to the definition of di-sk trees, as
w is an ⊕-node. Let P ′ be the spine of B.

• Let v′1, v′2, . . . , v′` be all the 	-nodes in the path P ′ from the top to the bottom. Then
v′1 is the topmost node of P ′, which is also the root of B. For 1 6 i 6 `−1, suppose
the number of ⊕-nodes on P ′ between v′i and v′i+1 is ci. Suppose the number of
⊕-nodes on P ′ below v′` is c`. For instance, for the middle tree T ′ in Fig. 3, we have
c1 = 1 and c2 = 2.

• Introduce L−k(v′, T ′) := L−1(v′,L−k+1(v′, T ′)) recursively for k > 2. Define the
di-sk tree φ(T ) by

φ(T ) = L−c`(v′`,L−c`−1(v′`−1, . . . ,L−c2(v′2,L−c1(v′1, T ′)) · · · )).

By the above construction, we see that the node immediately after (by inorder) w of

φ(T ) is an 	-node and therefore φ(T ) is a di-sk tree in D̃T
(k−1,l+1)

n . We aim to show that
φ is a bijection by defining φ−1 explicitly.

For a di-sk tree T̃ ∈ D̃T
(k−1,l+1)

n with k > 1, l > 0, we use two steps to obtain φ−1(T̃ )
from T̃ as follows. In the first step, we do the “forward shift” on T̃ to obtain a di-sk
tree T̃ ∗, i.e.,

• Find the ⊕-node, say w, immediately before the first 	-node (by inorder), such a
w always exists since iop(T̃ ) = l+ 1 > 1. Trace the unique path from w back to the
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root of T̃ to locate the first 	-node, say v. Such a v always exists since T̃ ∈ D̃Tn.
Let c1 be the number of nodes (necessarily ⊕-nodes) in the path from v to w, with
v and w excluded.

• Let B̃ (possibly empty) be the right subtree of w in T̃ . If B̃ is empty, then v must
be the first 	-node by inorder. In this case, c1 = 0 and we set T̃ ∗ = T̃ . Otherwise,
B̃ is not empty and let us consider the the spine P̃ ∗ of B̃.

• Let v′1, v′2, . . . , v′` be all the 	-nodes in the path P̃ ∗ from the top to the bottom. Then
v′1 and v′` (possibly coincide) are the root and the tail of the path P̃ ∗, respectively.
For 2 6 i 6 `, let ci be the number of ⊕-nodes between v′i−1 and v′i in the path P̃ ∗.

• Introduce Lk(v′, T̃ ) := L(v′,Lk−1(v′, T̃ )) recursively for k > 2. Define the di-sk tree
T̃ ∗ by

T̃ ∗ = Lc`(v′`,Lc`−1(v′`−1, . . . ,Lc2(v′2,Lc1(v′1, T̃ )) · · · )).

We see that T̃ ∗ ∈ D̃Tn and the “forward shift” is clearly inverse to the “backward
shift”. For the second step, we do the “swing up” on T̃ ∗ to obatin φ−1(T̃ ):

• From the construction of the “forward shift”, the 	-node v becomes the parent of
w in T̃ ∗. Let v1 be the topmost 	-node in the spine of T̃ ∗. Such a v1 always exists
since T̃ ∗ ∈ D̃Tn.

• In the tree T̃ ∗, there is a unique path P̃ from v1 to v, which contains no consecutive
right edges. Let v1, v2, . . . , vk−1, vk = v be all the 	-nodes on P̃ in the order we visit
them when walking from v1 to v.

• Define the di-sk tree φ−1(T̃ ) by

φ−1(T̃ ) = L−1(v1,L−1(v2, . . . ,L−1(vk−1,L−1(vk, T̃ ∗)) · · · )).

Since the “swing up” is inverse to the “swing down”, the mapping φ−1 is indeed the
inverse of φ. As every step of the bijection φ involves only the elementary transformation
L, Lemma 7 guarantees that the desired property (6) holds. This ends the proof of the
theorem.

Example 9. As an example of φ, the di-sk tree T ∈ D̃T
(1,0)

11 in Fig. 1 becomes φ(T ) ∈
D̃T

(0,1)

11 after the two steps of φ as depicted in Fig. 4 and Fig. 5. One can check that
η−1(T ) = π = 5 2 3 4 1 9 11 10 6 8 7 and η−1(φ(T )) = π′ = 5 9 6 8 7 11 10 2 3 4 1. The five
concerned statistics of π and π′ are:

(DESB,LRMAX,LRMIN) π = ({1, 2, 6, 7, 10}, {5, 9, 11}, {5, 2, 1}),
(DESB,LRMAX,LRMIN) π′ = ({1, 2, 6, 7, 10}, {5, 9, 11}, {5, 2, 1}),
(comp, iar) π = (2, 1) and (comp, iar) π′ = (1, 2).

Now we are ready to prove our main result, Theorem 3.
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Proof of Theorem 3. The involution Φ is defined recursively using φ. Set Φ(id1) = id1.
For each π = π1π2 · · · πn ∈ Sn(2413, 3142) and n > 2, we need to distinguish two cases as
follows.

• If η(π) ∈ DTn \ D̃Tn, i.e., the spine of η(π) is composed of ⊕-nodes only, hence
π = 1 ⊕ σ, where σ = (π2 − 1)(π3 − 1) · · · (πn − 1) ∈ Sn−1(2413, 3142). Define
Φ(π) = 1⊕ Φ(σ).

• Otherwise, we have η(π) ∈ D̃T
(k,l)

n for some k and l. Let us define

Φ(π) = η−1 ◦ φk−l ◦ η(π).

For instance, if π = 2 4 5 9 6 8 7 11 10 3 1 ∈ S11(2413, 3142), then η(π) ∈ D̃T
(0,3)

11 and so

Φ(π) = η−1 ◦ φ−3 ◦ η(π) = 2 1 4 3 5 9 11 10 6 8 7.

It follows from Lemmas 4, 5 and Theorem 8 that Φ is an involution that preserves the
triple of set-valued statistics (LRMAX,LRMIN,DESB) but exchanges the pair (comp, iar),
which completes the proof of the first statement of Theorem 3.

For the second statement, we observe that π ∈ Sn(312) if and only if each 	-node
of η(π) has no right child. It is clear that the elementary transformation L, which
deletes/inserts left edges only, preserves this kind of property. Consequently, Φ indeed
restricts to an involution on Sn(312).

Remark 10. Since Φ restricts to an involution onSn(312), we get immediately that the two
quintuples (LRMAX,LRMIN,DESB, comp, iar) and (LRMAX,LRMIN,DESB, iar, comp)
have the same distribution over Sn(312). However, as LRMIN(π) = {1, 2, . . . , π1} for
any π ∈ Sn(312) and π1 = min(LRMAX(π)), this result is equivalent to Theorem 1.1 (ii)
of [9].

4 Tree traversal

In retrospect, we note that for each di-sk tree T , the statistic top(T ) also equals the
number of initial ⊕-nodes in T when we use the preorder (i.e., recursively traversing the
parent to the left subtree then to the right subtree) instead of the inorder to traverse T .
Motivated by this new perspective, we investigate in this section the distributions of the
number of initial ⊕-nodes with respect to the following eight types of tree traversal (see
Tab. 1). The first six of which are usually called depth first traversals, while the last two
are called breadth first traversals.

We use st1 ∼S st2 to indicate that the two statistics st1 and st2 are equidistributed
over the set S. For instance, Theorem 3 implies in particular that iar ∼Sn(2413,3142) comp,
or equivalently upon applying the mapping η, we have iop ∼DTn top. We simply write
st1 ∼ st2 when the set S is clear from the context.

Our first result in this section classifies the corresponding eight statistics in Tab. 1
into three equidistribution classes.
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Table 1: Eight types of tree traversal for a di-sk tree T and their associated statistics for
the number of initial ⊕-nodes.

Name inorder right inorder preorder right preorder
Rule Left–Root–Right Right–Root–Left Root–Left–Right Root–Right–Left
Stat iop(T ) riop(T ) top(T ) rtop(T )
Name postorder right postorder level order right level order
Rule Left–Right–Root Right–Left–Root Left–Right–Next level Right–Left–Next level
Stat pop(T ) rpop(T ) lop(T ) rlop(T )

•
◦
•

•
◦
◦
◦

•
•1

2

3

4

5

6

7

8

9

iop(T ) = 2

•
◦
•

•
◦
◦
◦

•
•9

8

7

6

5

4

3

2

1

riop(T ) = 1

•
◦
•

•
◦
◦
◦

•
•3

5

4

2

1

7

8

6

9

top(T ) = 1

•
◦
•

•
◦
◦
◦

•
•7

9

8

6

1

4

5

2

3

rtop(T ) = 1

•
◦
•

•
◦
◦
◦

•
•3

1

2

4

9

6

5

8

7

pop(T ) = 1

•
◦
•

•
◦
◦
◦

•
•7

5

6

8

9

3

2

4

1

rpop(T ) = 2

•
◦
•

•
◦
◦
◦

•
•4

9

7

2

1

5

8

3

6

lop(T ) = 1

•
◦
•

•
◦
◦
◦

•
•6

9

8

3

1

5

7

2

4

rlop(T ) = 1

Figure 6: Eight types of traversal for a di-sk tree T and its associated statistics

Theorem 11. Over the set of di-sk trees DTn, the distributions of the eight statistics in
Tab. 1 group into three classes. Namely, we have two classes

rtop = rlop, and (7)
riop ∼ iop ∼ top ∼ pop ∼ rpop, (8)

where st1 = st2 means that st1(T ) = st2(T ) for each T ∈ DTn. The distribution of lop
over DTn is different from the other seven statistics for n > 5.

Proof. Firstly, it can be quickly checked that the eight statistics have the same distribution
among the two di-sk trees in DT2 and the six di-sk trees in DT3. We next show that
rtop = rlop by induction on n. Take any di-sk tree T ∈ DTn, if the root of T is an 	-node,
then rtop(T ) = rlop(T ) = 0. Otherwise we can write T = (T1,⊕, T2), with T1 and T2 being
the left subtree and the right subtree of T , respectively. Now if T2 is nonempty, then its
root must be an 	-node since T is a di-sk tree, thus we have rtop(T ) = rlop(T ) = 1. If T2
is empty, then we have rtop(T ) = 1 + rtop(T1) = 1 + rlop(T1) = rlop(T ) as well. We have
finished the proof of (7).
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Next, we prove riop ∼ iop via a bijection. Recall the elementary operation reverse-
complement on permutations:

π = π1 · · · πn 7→ rc(π) := (n+ 1− πn) · · · (n+ 1− π1).

It then suffices to note that for each T ∈ DTn,

riop(T ) = iop(η ◦ rc ◦ η−1(T )),

and the fact that Sn(2413, 3142) is closed under the reverse-complement map.
Since we have already proved the symmetry of (iop, top) in Theorem 8, it remains to

show the two equidistributions top ∼ rpop and pop ∼ rpop to finish the proof of (8). The
first one follows from the symmetry of (rpop, top) that will be proved in Theorem 12 using
generating functions, while the second one is proved via a recursively constructed bijection
θ that we define next. Indeed, for each n > 1, we construct a bijection θ : DTn → DTn

satisfying

(pop, rpop)T = (rpop, pop)θ(T ), (9)

for every T ∈ DTn. Let ∅ be the empty tree and we set θ(∅) = ∅. For a di-sk tree
T ∈ DTn with n > 2, suppose T = (T1, r, T2), where r = ⊕ or 	 is the root of T , while
T1 (resp. T2) is the left (resp. right) subtree of T . We consider the following three cases.

• If T2 = ∅, then we define θ(T ) = (θ(T1), r,∅).

• If T2 6= ∅ and T1 = ∅, then we let θ(T ) be the unique di-sk tree in DTn having no
left subtree and θ(T2) as its right subtree.

• Otherwise T1 6= ∅ and T2 6= ∅, then we let θ(T ) be the unique di-sk tree in DTn

having θ(T2) and θ(T1) as its left and right subtrees, respectively.

In all three cases, we can verify that (9) holds true assuming it has been proved for trees
with fewer nodes. It should also be clear how to invert the map θ. The proof is now
completed.

For a di-sk tree T , let omi(T ) be the number of 	-nodes in T .

Theorem 12. For n > 1, the two triples (omi, rpop, top) and (omi, top, rpop) have the
same distribution over DTn. In particular, the pair (rpop, top) is symmetric over DTn.

Proof. We will prove the equidistribution by using generating functions. Let us consider
the generating function

S(x, y) = S(t, x, y; z) := 1 +
∑
n>1

zn
∑

T∈DTn+1

tomi(T )xrpop(T )ytop(T ) = 1 + S⊕(x, y) + S	(x, y),
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where S⊕(x, y) (resp. S	(x, y)) is the generating function for nonempty di-sk trees whose
root is an ⊕-node (resp. 	-node). For the sake of simplicity, we set S = S(1, 1). By the
work in [8], the function S satisfies the algebraic equation

S = tz2S3 + tz2S2 + (1 + t)zS + 1. (10)

On the other hand, by Theorem 8 the two pairs (omi, top) and (omi, iop) are equidistributed
over di-sk trees. Thus, the pair (omi, top) over di-sk trees has the same distribution as
the pair (des, iar − 1) over separable permutations and it follows from [9, Eq. (5.4)] that

S(1, y) =
S

1 + (1− y)zS
. (11)

Let T = (T1, r, T2) be a nonempty di-sk tree, with r = ⊕ or 	 being the label of its
root, T1 and T2 being its left subtree and right subtree, respectively. We need to consider
two cases:

• Case 1: r = ⊕. We further distinguish two cases.

1. T2 = ∅.

a) T1 is a di-sk tree (possibly empty) without any 	-node. This case con-
tributes to S⊕(x, y) the enumerator

zxy

1− zxy
.

b) Otherwise, T1 is a di-sk tree with at least one	-node. This case contributes
to S⊕(x, y) the enumerator

zy

(
S(x, y)− 1

1− zxy

)
.

2. T2 6= ∅. This case contributes to S⊕(x, y) the enumerator

zyS(1, y)S	(x, 1).

• Case 2: r = 	. We further distinguish two cases.

1. T2 is a di-sk tree (possibly empty) without any 	-node. This case contributes
to S	(x, y) the enumerator

tzS(x, 1)

1− zx
.

2. T2 is a di-sk tree with at least one 	-node. This case contributes to S	(x, y)
the enumerator

tzS

(
S⊕(x, 1)− zx

1− zx

)
.
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Combining all the above cases results in a system of functional equations
S(x, y) = 1 + S⊕(x, y) + S	(x, y),

S⊕(x, y) = zxy
1−zxy + zy

(
S(x, y)− 1

1−zxy

)
+ zyS(1, y)S	(x, 1),

S	(x, y) = tzS(x,1)
1−zx + tzS

(
S⊕(x, 1)− zx

1−zx

)
.

(12)

Solving this system of equations for y = 1 (using Maple) yields

S(x, 1) = −(tz2S2 + tz2S + z − 1)/A, (13)
S⊕(x, 1) = (txz2(zx− 1)S2 + tz(1− zx)2S + x(1− z)(1− zx) + tz(1− x))/B, (14)
S	(x, 1) = (z − 1)tz/B, (15)

where

A := (txz3 − tz2)S2 + (txz3 − 2tz2)S + xz2 − tz − xz − z + 1,

B := (1− zx)(tz2(1− zx)S2 + tz2(2− zx)S + tz + zx+ z − xz2 − 1).

It follows from (13) and (11) that

S(x, 1)− S(1, x) =
(z − 1)(tz2S3 + tz2S2 + (1 + t)zS + 1− S)

A(xzS − zS − 1)
= 0,

in view of (10). Equivalently,

S(x, 1) = S(1, x) =
S

1 + (1− x)zS
. (16)

Substituting (16), (14) and (15) into (12) and solving this system of equations (using
Maple) gives an expression for S(x, y), which is a rational function in S, t, z, x and y (too
complicated to be reported here). It turns out that there is a factor

tz2S3 + tz2S2 + (1 + t)zS + 1− S,

which is zero in view of (10), in the numerator of the difference S(x, y) − S(y, x). This
proves S(x, y) = S(y, x), as desired.

In Theorems 8, 11 and 12, we have already proved three symmetries over di-sk trees:

(omi, top, iop) ∼ (omi, iop, top),

(pop, rpop) ∼ (rpop, pop),

(omi, top, rpop) ∼ (omi, rpop, top).

Recall that our proof of riop ∼ iop is essentially the application of the reverse-complement
operation composed with the bijection η. Note that this composed map preserves the
statistics top and omi. This means we get the following symmetry over di-sk trees for free:

(omi, top, riop) ∼ (omi, riop, top).
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Among the remaining six pairs taken from the equidistributed quintuple

riop ∼ iop ∼ top ∼ pop ∼ rpop,

our calculations suggest the following three more symmetric pairs.

Conjecture 13. Over di-sk trees, the following three symmetries hold:

(omi, riop, rpop) ∼ (omi, rpop, riop),

(omi, iop, rpop) ∼ (omi, rpop, iop),

(riop, pop) ∼ (pop, riop).

Although Conjecture 13 may be proved by computing their generating functions sim-
ilarly as the proof of Theorem 12, bijective proofs are preferred.

4.1 Initial 	-nodes in di-sk trees

In the previous section, we have considered eight different types of tree traversal and
their associated statistics for the number of initial ⊕-nodes in di-sk trees. One could also
consider the statistics of the number of initial 	-nodes with respect to the eight types of
tree traversal; see Tab. 2 for the notations of these eight associated statistics. Since ⊕-
nodes and 	-nodes are symmetry in di-sk trees, for a fixed type of traversal, the statistic
of the number of initial ⊕-nodes is equidistributed with the statistic of the number of
initial 	-nodes. For instance, we have iop ∼ iom over DTn. Thus, by Theorem 11 we
have five new Comtet statistics over di-sk trees

riom ∼ iom ∼ tom ∼ pom ∼ rpom.

It would be interesting to investigate systematically the joint distribution for one of the
five Comtet statistics above and one in (8). As one example, in the rest of this paper,
we aim to prove combinatorially that the Comtet pair (top, iom) is symmetric over di-sk
trees.

Table 2: Eight types of tree traversal for a di-sk tree T and their associated statistics for
the number of initial 	-nodes.

Name inorder right inorder preorder right preorder
Rule Left–Root–Right Right–Root–Left Root–Left–Right Root–Right–Left
Stat iom(T ) riom(T ) tom(T ) rtom(T )
Name postorder right postorder level order right level order
Rule Left–Right–Root Right–Left–Root Left–Right–Next level Right–Left–Next level
Stat pom(T ) rpom(T ) lom(T ) rlom(T )

For n > 1 and 0 6 k, l 6 n− 1, let us consider the set

DT(k,l)
n := {T ∈ DTn : top(T ) = k, iom(T ) = l} (17)
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and denote its cardinality by s(k,l)n . Recall that a square matrix is said to be Hankel if it
has constant skew-diagonals. Interestingly, it turns out that the n × n matrix M top,iom

n ,
with entry s(i−1,j−1)n in row i and column j, is upper anti-triangular and Hankel. The first
values of M top,iom

n are

[
0 1
1 0

]
,

1 1 1
1 1 0
1 0 0

 ,


4 4 2 1
4 2 1 0
2 1 0 0
1 0 0 0

 ,


17 16 8 3 1
16 8 3 1 0
8 3 1 0 0
3 1 0 0 0
1 0 0 0 0

 ,


76 69 34 13 4 1
69 34 13 4 1 0
34 13 4 1 0 0
13 4 1 0 0 0
4 1 0 0 0 0
1 0 0 0 0 0

 .

The upper anti-triangular property of M top,iom
n follows from the simple fact that top(T ) +

iom(T ) 6 n− 1 for each T ∈ DTn, while the Hankel property of M top,iom
n is a consequence

of the following result.

Theorem 14. Let DT(k,l)
n be defined in (17). If k > 1, then there exists a bijection

ψ : DT(k,l)
n → DT(k−1,l+1)

n . Consequently, the pair (comp, idr) of double Comtet statistics
is symmetric over Sn(2413, 3142), where idr(π) denotes the length of the initial descending
run of a permutation π.

In order to facilitate our construction of ψ, we define three basic operations, called
complement, insertion, and extraction, for di-sk trees.

Definition 15 (Complement). Given a di-sk tree T ∈ DTn, we reverse the labels of all
of its nodes, i.e., ⊕-nodes become 	-nodes and 	-nodes become ⊕-nodes. This yields a
new di-sk tree in DTn that we call the complement of T . Denote by T the complement
of T . Note that η−1(T ) is the complement of the permutation η−1(T ).

Definition 16 (Insertion and extraction). Given two trees T1, T2, suppose a, b are two
nodes of T1 such that a is the left child of b, and suppose c (resp. d) is the iroot (resp. root)
of T2. We derive a new tree, say T3, by first deleting the edge between a and b, then
attaching the subtree rooted at a to the left of c, and attaching the subtree rooted at
d (now contains a) to the left of b. This operation is illustrated in Fig. 7 (wherein ◦
does not indicate the label) and is called the insertion of T2 into T1 at a, b. We denote
T3 = T1/T2(a, b). Conversely, suppose T3 and T2 (with root d and iroot c) are two trees
such that T2 can be embedded in T3 satisfying

i. d is the left child of certain node b ∈ T3;

ii. if we denote the left child of c in T3 as a, then the two edges ca and bd are the only
edges connected to T2 but not contained in T2.

We derive a new tree, say T1, from T3 by first deleting the edges ca and bd, then connecting
a and b with a left edge. This operation is also illustrated in Fig. 7 and is called the
extraction of T2 from T3. We denote T1 = T3\T2.
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◦
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d
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◦
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b

T1 T2 T3 = T1/T2(a, b)
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◦

◦c
d

=⇒

◦
◦

◦
◦a
c

d

b

Figure 7: Insertion and extraction.

Remark 17. To make the above definition applicable in more situations, we allow either
a or b to be the empty node ∅. We explain here the meaning of such special cases
for the insertion, while the extraction should be understood similarly. The meaning of
T1/T2(∅, b) should be clear. For the case of b = ∅, a must then be the root of T1, and
T1/T2(a,∅) is the tree rooted at d, with a attached to c by a left edge.

Now we are ready for the proof of Theorem 14.

Proof of Theorem 14. For each tree T ∈ DT(k,l)
n , since k > 1, we can write T =

(T1, v, T2) with v = ⊕. We perform the following cut-and-paste procedure to get ψ(T ):

Step 1 Let v1 be the first ⊕-node (by inorder) of T and u1 be its left child (if v1 has no left
child then set u1 = ∅). Now if T2 = ∅, set T ∗ = (∅,	,∅) and jump to Step 3.

Step 2 Otherwise T2 6= ∅ and the root of T2 must be an 	-node since T is a di-sk tree.
Now denote the lowest 	-node on the spine of T2 as v2, and denote the left subtree
(possibly empty) of v2 as T3. We set T ∗ to be the complement of the following
tree

((T\T1)\T3)/T3(v,∅)

Step 3 If v1 coincides with v (see a small example on right side of Fig. 3), then take
ψ(T ) = T1/T

∗(u1,∅). Otherwise, we take ψ(T ) = T1/T
∗(u1, v1).

It should be clear from our construction that ψ(T ) ∈ DT(k−1,l+1)
n indeed. See Fig. 3 (on

the left side) for an illustration of ψ.
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Figure 8: Two examples of ψ.

It remains to show that ψ is invertible. We will construct its inverse ψ−1 explic-
itly. Given a di-sk tree T ∈ DT(k−1,l+1)

n , we perform the following inverse cut-and-paste
procedure to get ψ−1(T ):

Step 1 Since T ∈ DT(k−1,l+1)
n , we have iom(T ) = l + 1, so we can find the (l + 1)-th (by

inorder) node, which is an 	-node and denoted v. Let v2 be the (l+ 2)-th node (by
inorder), which is an ⊕-node. In the special case of l+ 1 = n− 1, we set v2 = ∅. If
v2 is not a descendent of v (including the case v2 = ∅), set T ∗ = (∅, v,∅), T̃ = T ∗,
and jump to Step 3.

Step 2 Otherwise v2 must be a descendent of v. Now starting with v, we find the maximal
chain of consecutive 	-nodes connected by left edges: w1 = v, w2, . . . , wm, such that
wm is the root of T or wm has the right parent which is an ⊕-node. (Note that
wm cannot have an ⊕-node as its left parent, since this will contradict with the fact
that v is the (l+ 1)-th initial 	-node). Let T ∗ (resp. T1) be the tree having wm and
v (resp. w2) as its root and iroot, respectively. In the special case of m = 1, simply
take T1 = ∅. Furthermore, we let T̃ be the complement of the following tree

(T ∗\T1)/T1(∅, v2).

Step 3 Let w be the root of T . If w coincides with v, then take ψ−1(T ) = (T\T ∗)/T̃ (u1,∅),
where u1 is the left child of v in T . Otherwise, we take

ψ−1(T ) = (T\T ∗)/T̃ (w,∅).

It is routine to check that ψ and ψ−1 are inverse to each other and so ψ is indeed a
bijection.

By Lemmas 4 and 5, the pair (comp, idr) of Comtet statistics over Sn(2413, 4213) is
equidistributed with the pair (top, iom) over DTn. Since ψ : DT(k,l)

n → DT(k−1,l+1)
n is a

bijection, the pair (top, iom) is symmetry over DTn and so does the pair (comp, idr) over
Sn(2413, 4213).
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5 Concluding remarks

The main achievement of this paper is the construction of a combinatorial bijection
on di-sk trees that proves the equidistribution of two quintuples

(LRMAX,LRMIN,DESB, iar, comp) and (LRMAX,LRMIN,DESB, comp, iar)

over separable permutations. At this point, we would like to pose several open problems.

Problem 18. Our proof of the symmetry of (rpop, top) in Theorem 12 is purely algebraic,
can one find a direct bijective proof (probably in the same spirit as ψ constructed in
Theorem 14)? Could the three symmetries in Conjecture 13 be proved bijectively?

The three Comtet statistics riop, iop and top in Theorem 11 have interpretations in
terms of natural statistics over separable permutations under the bijection η. This makes
us wonder whether there are natural interpretations of pop and rpop in terms of separable
permutations.

Problem 19. Define explicitly two statistics, say st and st′, for every separable permu-
tation π, such that

st(π)− 1 = pop(η(π)), and st′(π)− 1 = rpop(η(π)).

In view of (4) and (8), such two statistics are (new?) Comtet statistics over separable
permutations. Similar question can be asked for the statistics pom and rpom.

Problem 20. Sitting at the heart of our proof of Theorem 3 is di-sk tree, we need the
mapping η to transform the results back and forth between separable permutations and di-
sk trees. This is reminiscent of Rubey’s proof [16] of the equidistribution of (LRMAX, iar)
and (LRMAX, comp) on 321-avoiding permutations using Dyck paths, where Kratten-
thaler’s bijection plays the role of η. So one may ask, is there a way to bypass the use
of di-sk tree and prove Theorem 3 directly on permutations? This has been done in our
previous work [9] for the case of 321-avoiding permutations.

Many classical permutation statistics, such as Eulerian statistics, Mahonian statistics
or Stirling statistics, have been extensively investigated in the literature (see the excellent
book exposition [11] of Kitaev) not only on permutations avoiding ordinary patterns, but
also on permutations avoiding consecutive patterns or the more general vincular patterns.
It would be interesting to explore systematically the distributions of the two Comtet
statistics, iar and comp, on permutations avoiding vincular patterns.
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