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Abstract

Let H be a complex Hilbert space. Consider the ortho-Grassmann graph Γ⊥k (H)
whose vertices are k-dimensional subspaces of H (projections of rank k) and two
subspaces are connected by an edge in this graph if they are compatible and ad-
jacent (the corresponding rank-k projections commute and their difference is an
operator of rank 2). Our main result is the following: if dimH 6= 2k, then ev-
ery automorphism of Γ⊥k (H) is induced by a unitary or anti-unitary operator; if
dimH = 2k > 6, then every automorphism of Γ⊥k (H) is induced by a unitary or
anti-unitary operator or it is the composition of such an automorphism and the or-
thocomplementary map. For the case when dimH = 2k = 4 the statement fails. To
prove this statement we compare geodesics of length two in ortho-Grassmann graphs
and characterise compatibility (commutativity) in terms of geodesics in Grassmann
and ortho-Grassmann graphs. At the end, we extend this result on generalised
ortho-Grassmann graphs associated to conjugacy classes of finite-rank self-adjoint
operators.

Mathematics Subject Classifications: 05E18, 47B15, 81P10
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1 Introduction

Classic Chow’s theorem [1] states that all automorphisms of Grassmann graphs can be
obtained from semi-linear automorphisms of the associated vector spaces or semi-linear
isomorphisms to the dual vector spaces. Recall that two vertices in the Grassmann graph
formed by k-dimensional subspaces are connected by an edge if the corresponding sub-
spaces are adjacent, i.e. their intersection is (k−1)-dimensional. There are results in spirit
of Chow’s theorem concerning automorphisms of polar Grassmann graphs [2, 8] and ana-
logues for matrix spaces [14]. Methods used to prove Chow-type theorems are based on
a description of maximal cliques and their intersections in the corresponding graph.

Recently, Chow’s theorem was successfully exploited in the discipline known as pre-
server problems related to quantum mechanics which provides various characterisations
of quantum symmetries, i.e. unitary and anti-unitary operators [3, 4, 9]. The Grassman-
nian formed by k-dimensional subspaces of a complex Hilbert space H can be identified
with the conjugacy class of rank-k projections and two such projections are connected
by an edge in the associated Grassmann graph if their difference is an operator of rank
2 (i.e. the smallest possible). The automorphisms of such Grassmann graphs cannot be
characterised as the transformations induced by unitary and anti-unitary operators and
we look for a modification of this graph which will satisfy that condition. Our choice is
so-called ortho-Grassmann graph, where two subspaces are connected by an edge if they
are adjacent and compatible. Then the corresponding projections commute and, as in the
Grassmann graph, their difference is an operator of rank 2.

Recall that projections can be characterised as self-adjoint idempotents in the algebra
of bounded operators. Observables in quantum mechanics are identified with (not nec-
essarily bounded) self-adjoint operators and two bounded observables are simultaneously
testable if and only if the corresponding bounded self-adjoint operators commute (see, for
example, [13, Theorem 4.11]). So, our ortho-adjacency relation is naturally interpreted in
terms of quantum mechanics.

The main result (Theorem 3) states that every automorphism of the ortho-Grassmann
graph can be obtained from a unitary or anti-unitary operator except the case when the
graph consists of 2-dimensional subspaces and dimH = 4. A simple example shows that
the statement fails for this case (Example 5).

In [5] the same statement is proved for the graph formed by 2-dimensional subspaces
of a vector space with an anisotropic symmetric form. Also, [5] contains some deep results
concerning the hard case when the dimension of the vector space is 4.

There is an analogue of our result for the set of all non-isotropic k-dimensional sub-
spaces of a sesquilinear form under the assumption that the dimension of the associated
vector space is not equal to 2k [11]. The method exploited in [11] (a description of maxi-
mal cliques and their intersections) does not work for the case when the graph is formed
by subspaces whose dimension is half of dimH (Section 3.3) and thus we use completely
different reasonings. Our proof is based on the comparison of geodesics of length two in
ortho-Grassmann graphs (Section 4) and a characterisation of compatibility (commuta-
tivity) in terms of geodesics in Grassmann and ortho-Grassmann graphs (Theorem 10).
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In quantum mechanics, rank-one projections, and consequently, 1-dimensional sub-
spaces are identified with pure states [13, Theorem 4.23]. By classic Wigner’s theorem,
all symmetries of pure states are induced by unitary or anti-unitary operators. Observe
that two 1-dimensional subspaces are ortho-adjacent if and only if they are orthogonal,
i.e. for the Grassmannian of 1-dimensional subspaces the ortho-adjacency and orthogo-
nality relations coincide; in this case, our result is Uhlhorn’s version of Wigner’s theorem
[12]. In the general case, the ortho-adjacency relation can be characterised in terms of
principal angles as follows: two subspaces are ortho-adjacent if and only if the principal
angles between them are 0, . . . , 0, π/2 (see, for example, [9, Section 4.4]). Transforma-
tions (not necessarily bijective) of Hilbert Grassmannians preserving the principal angles
between any pair of subspaces are described in [6, 7]. Our result provides a description of
bijections which preserve principal angles of type 0, . . . , 0, π/2.

There is an analogue of Chow’s theorem for conjugacy classes of finite-rank self-adjoint
operators [10]. Using this statement and results from Section 4 we extend the main result
on such classes of operators (Theorem 25).

2 Main result

Let V be a vector space over a field F . For every integer k satisfying 0 < k < dimH
(if H is infinite-dimensional, then for every integer k > 0) we denote by Gk(V ) the
Grassmannian formed by k-dimensional subspaces of V . Two k-dimensional subspaces
of V are called adjacent if their intersection is (k − 1)-dimensional, or equivalently, their
sum is (k + 1)-dimensional. In the case when k = 1 or dimV = k + 1, any two distinct
elements of Gk(V ) are adjacent. The Grassmann graph Γk(V ) is the simple graph whose
vertex set is Gk(V ) and two k-dimensional subspaces of V are connected in this graph by
an edge if they are adjacent.

Recall that a semi-linear automorphism of V is a bijection L : V → V such that

L(x+ y) = L(x) + L(y)

for all x, y ∈ V and there is an automorphism σ of the field F satisfying

L(ax) = σ(a)L(x)

for all a ∈ F and x ∈ V . Every semi-linear automorphism of V induces an automorphism
of Γk(V ). If dimV = 2k and L : V → V ∗ is a semi-linear isomorphism, then the map
sending every k-dimensional subspace X ⊂ V to L(X)0 is an automorphism of Γk(V )
(for a subspace Y of the dual vector space V ∗ the annihilator Y 0 is formed by all x ∈ V
satisfying y∗x = 0 for all y∗ ∈ Y and the dimension of Y 0 is equal to the codimension of
Y ).

Theorem 1 (Chow [1]). Suppose that k is an integer satisfying 1 < k < dimV − 1
(if V is infinite-dimensional, then k is an arbitrary integer greater than 1). Then every
automorphism of Γk(V ) is induced by a semi-linear automorphism of V or a semi-linear
isomorphism of V to V ∗ and the second possibility is realised only in the case when
dimV = 2k.
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Remark 2. In [1] this statement was obtained for finite-dimensional vector spaces only;
but it holds for the general case; see, for example, [9, Section 2.4].

Let H be a complex Hilbert space of dimension not less than 3. Closed subspaces of
H can be naturally identified with projections, i.e. self-adjoint idempotents in the algebra
of all bounded operators. A closed subspace X ⊂ H corresponds to the projection PX
whose image is X. Then Gk(H) coincides with the conjugacy class of rank-k projections
Pk(H). Two k-dimensional subspaces X, Y ⊂ H are adjacent if and only if the difference
of the corresponding projections PX −PY is of rank 2, i.e. of minimal rank (the difference
of two self-adjoint operators from the same conjugacy class cannot be of rank 1). Two
closed subspaces X, Y ⊂ H are called compatible if there is an orthonormal basis of H
such that X and Y are spanned by subsets of this basis; this is equivalent to the fact that
the projections PX and PY commute. We say that k-dimensional subspaces X, Y ⊂ H
are ortho-adjacent if they are adjacent and compatible, i.e.

rank(PX − PY ) = 2 and PXPY = PY PX . (1)

Denote by Γ⊥k (H) the simple graph whose vertex set is Gk(H) and two k-dimensional
subspaces of H are connected by an edge in this graph if they are ortho-adjacent. Then
Γ⊥k (H) can be considered as the graph whose vertex set is Pk(H) and two rank-k projec-
tions PX , PY are connected by an edge if the conditions (1) are satisfied. In contrast to
the Grassmann graph Γk(H), for k = 1 or dimH = k+ 1 the graph Γ⊥k (H) contains pairs
of distinct vertices which are not connected by an edge. In the next section, we show that
this graph is connected.

An invertible linear operator on H is unitary if it preserves the inner product. An
invertible conjugate-linear operator U on H (i.e. satisfying U(x + y) = U(x) + U(y) and
U(ax) = aU(x) for all x, y ∈ H and all scalars a) is called anti-unitary if〈

U(x), U(y)
〉

= 〈x, y〉

for all x, y ∈ H. Unitary and anti-unitary operators induce automorphisms of the graph
Γ⊥k (H). If dimH = n is finite, then the orthocomplementary map sending every k-
dimensional subspace X ⊂ H to the orthogonal complement X⊥ is an isomorphism be-
tween Γ⊥k (H) and Γ⊥n−k(H).

Our main result is the following.

Theorem 3. If dimH 6= 2k (in particular, if H is infinite-dimensional), then every
automorphism of the graph Γ⊥k (H) is induced by a unitary or anti-unitary operator. In
the case when dimH = 2k > 6, every automorphism of Γ⊥k (H) is induced by a uni-
tary or anti-unitary operator or it is the composition of such an automorphism and the
orthocomplementary map.

Remark 4. If X is a k-dimensional subspace of H, then PX⊥ = Id−PX and

PU(X) = UPXU
∗
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for every unitary or anti-unitary operator U on H. Consider Γ⊥k (H) as the graph whose
vertices are rank-k projections. Then Theorem 3 can be reformulated as follows. If
dimH 6= 2k and f is an automorphism of Γ⊥k (H), then there is a unitary or anti-unitary
operator U on H such that

f(P ) = UPU∗ (2)

for all P ∈ Pk(H). If dimH = 2k > 6 and f is an automorphism of Γ⊥k (H), then there is
a unitary or anti-unitary operator U on H such that (2) holds for all P ∈ Pk(H) or we
have

f(P ) = U(Id−P )U∗

for every P ∈ Pk(H).

The above statement fails if dimH = 2k = 4, see Example 5.
Two 1-dimensional subspaces of H are ortho-adjacent if and only if they are orthog-

onal. So, Theorem 3 coincides with Uhlhorn’s version of Wigner’s theorem concerning
bijective transformations of G1(H) preserving the orthogonality relation in both directions
[12]. Therefore, it is sufficient to prove Theorem 3 only for the case when 4 6 2k 6 dimH.
Indeed, if dimH = n is finite and 2k > n, then for every automorphism f of Γ⊥k (H) the
map sending every (n−k)-dimensional subspace X ⊂ H to (f(X⊥))⊥ is an automorphism
of Γ⊥n−k(H); if this automorphism is induced by a unitary or anti-unitary operator, then
f is induced by the same operator.

Our proof of Theorem 3 is based on a characterisation of adjacency in terms of ortho-
adjacency (Section 4) which immediately implies that every automorphism f of Γ⊥k (H)
is an automorphism of Γk(H) (except the case when dimH = 2k = 4). It follows from
Theorem 1 that there is a semi-linear automorphism L : H → H such that one of the
following possibilities is realised:

• f(X) = L(X) for every k-dimensional subspace X ⊂ H,

• dimH = 2k and f(X) = L(X)⊥ for every k-dimensional subspace X ⊂ H.

We cannot immediately assert that L is a scalar multiple of a unitary or anti-unitary
operator. This follows from our characterisation of compatibility in terms of geodesics in
the graphs Γ⊥k (H) and Γk(H) (Theorem 10).

Example 5. Suppose that dimH = 4. Then for any ortho-adjacent 2-dimensional sub-
spaces X, Y ⊂ H the subspaces X, Y ⊥ are also ortho-adjacent (we take any orthonormal
basis of H whose subsets span X, Y and observe that Y ⊥ also is spanned by a subset
of this basis). Let us fix a certain 2-dimensional subspace X ⊂ H and consider the
transformation of G2(H) which transposes X,X⊥ and leaves fixed all other 2-dimensional
subspaces of H. This is an automorphism of Γ⊥2 (H). More generally, we can take any
subset X ⊂ G2(H) such that X⊥ ∈ X for all X ∈ X and the transformation of G2(H)
which sends all X ∈ X to X⊥ and leaves all elements of G2(H) \ X fixed. As above, we
obtain an automorphism of Γ⊥2 (H). Our conjecture is the following: if dimH = 4 and
f is an automorphism of Γ⊥2 (H), then there is a unitary or anti-unitary operator U such
that for every 2-dimensional subspace X ⊂ H we have f(X) = U(X) or f(X) = U(X)⊥.
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3 Grassmann graphs and ortho-Grassmann graphs

3.1 Some elementary properties

Recall that the distance d(v, w) between two vertices v, w in a connected simple graph is
defined as the smallest number m such that there is a path of length m (i.e. a path which
consists of m edges) connecting these vertices. A path connecting v and w is called a
geodesic if its length is d(v, w).

We will use some basic properties of the distance in Grassmann graphs (see, for ex-
ample, [9, Section 2.3]). The Grassmann graph Γk(H) is connected; furthermore, for any
k-dimensional subspaces X, Y ⊂ H the following assertions are fulfilled:

(D1) the distance between X and Y in Γk(H) is equal to k − dim(X ∩ Y );

(D2) every k-dimensional subspace in a geodesic of Γk(H) connecting X with Y contains
X ∩ Y and is contained in X + Y ;

(D3) if the distance between X and Y is equal to m and Z is a k-dimensional subspace of
H such that the distances from Z to X and Y are equal to i and m−i (respectively),
then there is a geodesic in Γk(H) connecting X with Y and containing Z.

If X, Y, Z are mutually adjacent k-dimensional subspaces of H, then at least one of the
following possibilities is realised:

(T1) X ∩ Y ∩ Z is (k − 1)-dimensional,

(T2) X + Y + Z is (k + 1)-dimensional.

Note that there are triples of k-dimensional subspaces X, Y, Z satisfying both (T1) and
(T2). In the case when (T1) fails and (T2) holds, X ∩ Y ∩ Z is (k − 2)-dimensional
and k > 1. If (T1) holds and (T2) fails, then X + Y + Z is (k + 2)-dimensional and
k < dimH − 1. In the case when 1 < k < dimH − 1, there are precisely two types of
maximal cliques in Γk(H):

• the star S(S), S ∈ Gk−1(H), consisting of all k-dimensional subspaces containing S;

• the top Gk(U), U ∈ Gk+1(H).

Every automorphism of Γk(H) preserves types of maximal cliques (stars go to stars and
tops go to tops) or it sends all stars to tops and all tops to stars. The first possibility is
realised if and only if this automorphism is induced by a semi-linear automorphism of H.
See [9, Section 2.4] for the details.

Now, we describe all possible connections in Γ⊥k (H) between two non-compatible ad-
jacent k-dimension subspaces.

Lemma 6. Let X, Y be adjacent k-dimensional subspaces of H and k < dimH − 1.
A k-dimensional subspace Z 6⊂ X + Y is ortho-adjacent to both X, Y if and only if
Z = (X ∩ Y ) + P for some 1-dimensional subspace P orthogonal to X + Y .
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Proof. The condition k < dimH − 1 implies that X + Y is a proper subspace of H. For
every 1-dimensional subspace P ⊂ (X + Y )⊥ the k-dimensional subspace P + (X ∩ Y ) is
ortho-adjacent to both X, Y . Conversely, if Z is a k-dimensional subspace ortho-adjacent
to both X, Y and Z 6⊂ X + Y , then Z contains X ∩ Y as a hyperplane (the case (T1))
and the 1-dimensional orthogonal complement of X ∩ Y in Z is orthogonal to both X, Y ,
and consequently, to X + Y .

Lemma 7. Let X, Y be adjacent k-dimensional subspaces of H with k > 1 and let S be
the 2-dimensional orthogonal complement of X ∩Y in X +Y . A k-dimensional subspace
Z ⊂ X + Y is ortho-adjacent to both X, Y if and only if Z = S + W for some (k − 2)-
dimensional subspace W ⊂ X ∩ Y .

Proof. For every (k − 2)-dimension subspace W ⊂ X ∩ Y the k-dimensional subspace
W + S is ortho-adjacent to both X, Y . Indeed, X, Y,W + S are hyperplanes in X + Y
and W + S contains the 1-dimensional subspaces

X⊥ ∩ (X + Y ) and Y ⊥ ∩ (X + Y ) (3)

orthogonal to X and Y , respectively. If a k-dimensional subspace Z ⊂ X + Y is ortho-
adjacent to both X, Y , then it contains the 1-dimensional subspaces (3), and consequently,
their sum S. This implies that Z intersects X ∩Y in a (k− 2)-dimensional subspace.

Proposition 8. The graph Γ⊥k (H) is connected.

Proof. By Lemmas 6 and 7, for any two non-compatible adjacent k-dimensional subspaces
of H there is a k-dimensional subspace ortho-adjacent to each of them. The required
statement is a consequence of the fact that the Grassmann graph Γk(H) is connected.

The distance between two non-compatible adjacent k-dimensional subspaces of H in
Γ⊥k (H) is equal to 2. The following observation concerns the number of geodesics in Γ⊥k (H)
connecting such subspaces.

Lemma 9. If k-dimensional subspaces X, Y ⊂ H are adjacent and non-compatible, then
the number of geodesics in Γ⊥k (H) connecting X and Y is infinite except the case when
dimH = 2k = 4. In this exceptional case, there are precisely 2 such geodesics.

Proof. If Z is a k-dimensional subspace ortho-adjacent to both X, Y , then one of the
following possibilities is realised:

(1) k < dimH − 1 and Z is the sum of X ∩ Y and a 1-dimensional subspace orthogonal
to X + Y ,

(2) k > 1 and Z is the sum of a (k − 2)-dimensional subspace of X ∩ Y and the 2-
dimensional orthogonal complement of X ∩ Y in X + Y .

If dimH = 2k = 4, then there is precisely one Z satisfying (1) and precisely one satisfying
(2). For the remaining cases there are infinitely many Z satisfying at least one of the
conditions (1), (2).
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3.2 A characterisation of compatibility in terms of geodesics

If X, Y are compatible k-dimensional subspaces of H, then every geodesic of Γk(H) con-
necting X and Y is a geodesic in Γ⊥k (H); furthermore, any two k-dimensional subspaces
in such a geodesic are compatible; see [9, Lemma 4.31].

Theorem 10. Two k-dimensional subspaces X, Y ⊂ H are compatible if and only if every
geodesic of Γk(H) connecting X and Y is a geodesic in Γ⊥k (H).

Proof. By [9, Lemma 4.31], we have to prove the following: if every geodesic of Γk(H)
connecting X and Y is a geodesic in Γ⊥k (H), then X, Y are compatible.

We start from the case when X ∩ Y = 0, i.e. the distance between X and Y in Γk(H)
is equal to k (the property (D1)). We need to show that X and Y are orthogonal. The
subspace X+Y is 2k-dimensional and we denote by X ′ the k-dimensional subspace which
is the orthogonal complement of X in X + Y . Let us take any 1-dimensional subspace
P ⊂ Y and a (k − 1)-dimensional subspace N ⊂ X. The k-dimensional subspace P +N
is adjacent to X and the distance between P + N and Y in Γk(H) is equal to k − 1
(the property (D1)). By the property (D3), there is a geodesic of Γk(H) which connects
X with Y and contains P + N . By our assumption, this is a geodesic in Γ⊥k (H) and
P + N is ortho-adjacent to X. Therefore, P + N contains a 1-dimensional subspace Q
orthogonal to X, in other words, P + N intersects X ′ precisely in Q. Suppose that Q is
distinct from P . We choose a (k − 1)-dimensional subspace M ⊂ X such that P + M
does not contain Q (such subspace exists, since the intersection of all P +N , where N is
a (k− 1)-dimensional subspace of X, coincides with P and P 6= Q by assumption). Then
P +M intersects X ′ in a 1-dimensional subspace Q′ distinct from Q. The 2-dimensional
subspace Q′+Q is contained in the intersection of X ′ and P +X. Since X is a hyperplane
of P + X, the subspace Q′ + Q has a non-zero intersection with X which is impossible.
This contradiction means that P = Q. So, we have established that every 1-dimensional
subspace P ⊂ Y is contained in X ′. Therefore, Y = X ′, and consequently, X is orthogonal
to Y .

Suppose that dim(X ∩ Y ) = m and 0 < m < k − 1 (the case when X and Y are
adjacent is trivial). Then

dim(X + Y ) = 2k −m
and the distance between X and Y in Γk(H) is equal to k−m (the property (D1)). Denote
by V the orthogonal complement of X ∩ Y in X + Y . The dimension of this subspace is
equal to 2(k −m). The intersection of the (k −m)-dimensional subspaces

X ′ = X ∩ V and Y ′ = Y ∩ V

is zero and the distance between them in Γk−m(H) is equal to k −m. If

X ′ = Z ′0, Z
′
1, . . . , Z

′
k−m = Y ′ (4)

is a geodesic in Γk−m(H), then each Z ′i is contained in V (the property (D2)) and

X = Z0, Z1, . . . , Zk−m = Y with Zi = Z ′i + (X ∩ Y ), i ∈ {0, 1, . . . , k −m} (5)
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is a geodesic in Γk(H). By our assumption, (5) is a geodesic in Γ⊥k (H) which implies
that Zi−1 and Zi are ortho-adjacent for every i ∈ {1, . . . , k −m}. The latter guarantees
that Z ′i−1 and Z ′i are ortho-adjacent for every i ∈ {1, . . . , k −m}, i.e. (4) is a geodesic in
Γ⊥k−m(H). So, every geodesic of Γk−m(H) connecting X ′ and Y ′ is a geodesic in Γ⊥k−m(H).
Applying arguments from the previous paragraph, we establish that X ′ and Y ′ are or-
thogonal. This means that X and Y are compatible.

As an application of Theorem 10, we prove the following statement which will be
exploited to prove Theorem 3.

Lemma 11. Suppose that 4 6 2k 6 dimH and f is a bijective transformation of Gk(H)
which is an automorphism of both Γk(H) and Γ⊥k (H). Then f is induced by a unitary
or anti-unitary operator or it is the composition of a bijection induced by a unitary or
anti-unitary operator and the orthocomplementary map. The second possibility is realised
only in the case when dimH = 2k.

Proof. If f sends stars to stars and tops to tops, then f is induced by a semi-linear
automorphism of H; otherwise, this property holds for the composition of f and the
orthocomplementary map (since the orthocomplementation transfers stars to tops and
tops to stars). Therefore, there is a semilinear automorphism U of H such that one of
the following possibilities is realised:

• f(X) = U(X) for all X ∈ Gk(H),

• dimH = 2k and f(X) = U(X)⊥ for all X ∈ Gk(H).

We need to show that U is a scalar multiple of a unitary or anti-unitary operator (since
U and aU induce the same transformation of Gk(H) for every non-zero scalar a). It is
sufficient to consider the first case (in the second case, we replace f by the composition
of f and the orthocomplementary). Since f is an automorphism of both Γ⊥k (H) and
Γk(H), Theorem 10 guarantees that f is compatibility preserving in both directions.
Two k-dimensional subspaces of H are orthogonal if and only if they are compatible and
the distance between them in Γk(H) is equal to k. This means that f is orthogonality
preserving in both directions and U sends orthogonal vectors to orthogonal vectors which
implies that U is a scalar multiple of a unitary or anti-unitary operator [9, Proposition
4.2].

3.3 Remarks

It was pointed out above that it is sufficient to prove Theorem 3 only for the case when
4 6 2k 6 dimH. If dimH 6= 2k, then Theorem 3 is a direct consequence of Lemma 11
and the following statement.

Lemma 12 (Lemma 4.37 in [9]). If 2 < 2k < dimH, then every ortho-adjacency pre-
serving injective transformation of Gk(H) is adjacency preserving.

Remark 13. For k = 2 Lemma 12 is proved in [5].
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In [11], an analogue of Theorem 3 is proved for the set of all non-isotropic k-dimensional
subspaces of a sesquilinear form under the assumption that the dimension of the associated
vector space is distinct from 2k. Methods used to prove Lemma 12 as well as methods
exploited in [11] are based on some properties of maximal cliques in ortho-Grassmann
graphs.

Every maximal clique of Γ⊥k (H) is the intersection of a star or a top (a maximal
clique of Γk(H)) with the set of all k-dimensional subspaces spanned by subsets of an
orthonormal basis of H such that the (k−1)-dimensional or (k+1)-dimensional subspace
associated with the star or the top (respectively) is also spanned by a subset of this basis
[9, Section 4.6]. Such a clique will be called an ortho-star or an ortho-top, respectively.
Every ortho-top contains precisely k+1 elements; an ortho-star contains precisely n−k+1
elements if dimH = n is finite, and it is infinite if H is infinite-dimensional [9, Lemma
4.30]. In this way ortho-stars can be easily distinguished from ortho-tops, but not in the
case when dimH = 2k and they have the same number of elements.

If 2 < 2k < dimH, then every ortho-adjacency preserving injective transformation of
Gk(H) sends ortho-stars to subsets of ortho-stars. This observation is a crucial tool in
the proof of Lemma 12. Similarly, transformations considered in [11] send ortho-stars to
ortho-stars and ortho-tops to ortho-tops.

It was conjectured in [11] that the method used to prove Chow’s theorem can be mod-
ified for the case when dimH = 2k. The key argument is the following: if the intersection
of a star and a top is non-empty, then the number of elements in this intersection is greater
than the number of elements in the intersection of two distinct stars or the intersection
of two distinct tops. Consequently, if one star goes to a top under an automorphism of
the Grassmann graph, then all stars go to tops and all tops go to stars.

Now, we explain why the same arguments do not work for ortho-stars and ortho-tops
in the case when dimH = 2k. The intersection of two distinct maximal cliques of Γ⊥k (H)
depends on the relations between the associated (k−1)-dimensional or (k+1)-dimensional
subspaces and orthonormal bases. A direct verification shows that the following assertions
are fulfilled:

• The number of elements in the intersection of two distinct ortho-stars associated to
the same (k− 1)-dimensional subspace can take any value m ∈ {0, 1, . . . , k− 1} and
the same holds for the intersection of two distinct ortho-tops corresponding to the
same (k + 1)-dimensional subspace.

• The intersection of two ortho-stars associated to distinct (k − 1)-dimensional sub-
spaces is empty or consists of one element and the same holds for the intersection
of two ortho-tops corresponding to distinct (k + 1)-dimensional subspaces.

• The number of elements in the intersection of an ortho-star and an ortho-top can
take any value m ∈ {0, 1, 2}.

Consider ortho-stars S1,S2 associated to distinct (k− 1)-dimensional subspaces and such
that S1 ∩ S2 is one element. If S1 goes to an ortho-top T under an automorphism of
Γ⊥k (H), then this automorphism sends S2 to an ortho-star or to an ortho-top intersecting
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T precisely in one element. Therefore, to claim that an automorphism of Γ⊥k (H) either
preserves or exchanges two types of maximal cliques, we need different arguments.

Our proof of Theorem 3 is based on a characterisation of adjacency in terms of ortho-
adjacency and do not depend on the relation between dimH and k.

4 A characterization of adjacency in terms of ortho-adjacency
and proof of Theorem 3

In this section, we investigate geodesics of length 2 in the ortho-Grassmann graph Γ⊥k (H).
If dimH = n is finite, then the orthocomplementary map is an isomorphism between
Γ⊥k (H) and Γ⊥n−k(H). So, we assume that 4 6 2k 6 dimH without loss of generality.

Let X and Y be distinct k-dimensional subspaces of H at distance 2 in Γ⊥k (H). Then
X, Y are adjacent and non-compatible (this case was considered in Subsection 3.1) or the
distance between X and Y in Γk(H) is equal to 2 and X ∩ Y is (k− 2)-dimensional. The
following example concerns the second case.

Example 14. Suppose that X, Y are compatible k-dimensional subspaces of H whose
intersection is (k − 2)-dimensional and consider an orthonormal basis of H such that X
and Y are spanned by subsets of this basis. There is a k-dimensional subspace spanned
by a subset of this basis and ortho-adjacent to both X, Y .

In the case whenX∩Y is (k−2)-dimensional, the existence of a k-dimensional subspace
ortho-adjacent to both X, Y does not imply that X and Y are compatible. We give an
example for k = 2, but the general case is similar.

Example 15. Let us take any 2-dimensional subspace Z ⊂ H. Consider a 1-dimensional
subspace P ⊂ Z and the 1-dimensional subspace Q = Z ∩ P⊥ which is the unique 1-
dimensional subspace of Z orthogonal to P . Let X be a 2-dimensional subspace containing
Q and orthogonal to P (since dimH > 4, such a subspace is not unique). Similarly, we
take a 1-dimensional subspace P ′ ⊂ Z distinct from P,Q, the 1-dimensional subspace
Q′ = Z ∩ P ′⊥ (which is also distinct from P,Q) and any 2-dimensional subspace Y
containing Q′ and orthogonal to P ′. We can choose X, Y such that X ∩ Y = 0 and X, Y
are non-orthogonal. Then X, Y are non-compatible; on the other hand, each of X, Y is
ortho-adjacent to Z.

Lemma 16. Let X and Y be compatible k-dimensional subspaces of H whose intersection
is (k − 2)-dimensional. Then for every k-dimensional subspace Z ⊂ H ortho-adjacent to
both X, Y there are precisely two k-dimensional subspaces of H ortho-adjacent to each of
X, Y, Z.

Proof. Since X, Y, Z are mutually compatible, there is an orthonormal basis B of H such
that each of these subspaces is spanned by a subset of B. Observe that the (k − 2)-
dimensional subspace X ∩ Y and the 2-dimensional subspaces

X ′ = X ∩ (X ∩ Y )⊥ and Y ′ = Y ∩ (X ∩ Y )⊥
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are also spanned by subsets of B. Since X,Z, Y is a geodesic in Γ⊥k (H), the subspace Z
contains X∩Y and intersects X ′ and Y ′ in 1-dimensional subspaces P and Q, respectively.
Denote by P ′ and Q′ the 1-dimensional subspaces which are the orthogonal complements
of P and Q in X ′ and Y ′, respectively. Each of the 1-dimensional subspaces P, P ′, Q,Q′

contains a vector from B. The k-dimensional subspaces

Z1 = P ′ + (X ∩ Y ) +Q and Z2 = P + (X ∩ Y ) +Q′

are ortho-adjacent to X, Y, Z and spanned by subsets of B.
Suppose that Z ′ is a k-dimensional subspace ortho-adjacent to X, Y, Z. Then sub-

spaces X, Y, Z, Z ′ are mutually compatible and there is an orthonormal basis B′ such
that each of these subspaces is spanned by a subset of B′. The subspaces X ∩ Y,X ′, Y ′
are also spanned by vectors from B′ and each of the 1-dimensional subspaces P, P ′, Q,Q′

contains a vector from B′. As above, we establish that Z ′ contains X ∩ Y , the subspaces
X ′ ∩ Z ′, Y ′ ∩ Z ′ are 1-dimensional and

Z ′ = (X ′ ∩ Z ′) + (X ∩ Y ) + (Y ′ ∩ Z ′).

Since X ′ ∩ Z ′ is a 1-dimensional subspace of X ′ containing a vector from B′, it coincides
with P or P ′. Similarly, Y ′∩Z ′ coincides with Q or Q′. Since Z and Z ′ are ortho-adjacent,
we obtain that Z ′ is Z1 or Z2.

Lemma 17. Suppose that X and Y are k-dimensional subspaces of H whose intersection
is (k−2)-dimensional and there are two ortho-adjacent k-dimensional subspaces Z,Z ′ ⊂ H
such that each of these subspaces is ortho-adjacent to both X, Y . Then X and Y are
compatible.

Proof. First, we show that the (k − 1)-dimensional subspace Z ∩ Z ′ is contained in X
or Y . If Z ∩ Z ′ is not contained in X, then Z and Z ′ intersect X in distinct (k − 1)-
dimensional subspaces whose sum coincides with X. Similarly, Z ∩ Z ′ 6⊂ Y implies that
Z and Z ′ intersect Y in distinct (k−1)-dimensional subspaces whose sum is Y . Then the
(k + 1)-dimensional subspace Z + Z ′ contains both X, Y and dim(X + Y ) < k + 2 which
contradicts the assumption that X ∩ Y is (k − 2)-dimensional.

Without loss of generality, we can assume that Z∩Z ′ is a (k−1)-dimensional subspace
of X. We have

dim(X ∩ Y ) = k − 2 and dim(X + Y ) = k + 2,

which means that the orthogonal complement of X ∩ Y in X + Y is 4-dimensional. We
denote this subspace by M . The subspaces

X ′ = X ∩M and Y ′ = Y ∩M

are 2-dimensional. Since X,Z, Y and X,Z ′, Y are geodesics in Γ⊥k (H), each of Z,Z ′

contains X ∩ Y and is contained in X + Y which implies that

S = Z ∩M and S ′ = Z ′ ∩M
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are distinct 2-dimensional subspaces. Recall that Z∩Z ′ is a (k−1)-dimensional subspace
of X containing X ∩ Y , and consequently,

Z ∩ Z ′ ∩M = S ∩ S ′

is a 1-dimensional subspace of X ′.
Our next step is to show that S and S ′ are compatible to both X ′, Y ′. We will use

the following fact [9, Lemma 1.14]: if a closed subspace A ⊂ H is compatible to closed
subspaces B,C ⊂ H, then A is also compatible to B ∩ C, B + C and B⊥. Since Z is
compatible to X ∩ Y and X + Y , it is compatible to

M = (X + Y ) ∩ (X ∩ Y )⊥.

Then Z is compatible to X ′ = X ∩M . So, X ′ is compatible to Z and M (the latter
follows from the fact that X ′ ⊂ M) and, consequently, it is compatible to S = Z ∩M .
Similarly, we establish that X ′ is compatible to S ′ and Y ′ is compatible to both S, S ′.

Using the fact that S, S ′ are compatible to both X ′, Y ′, we establish that X ′ and Y ′

are orthogonal which immediately implies that X and Y are compatible.
It was noted above that S ∩ S ′ is a 1-dimensional subspace of X ′. We denote this

subspace by P and write Q for the unique 1-dimensional subspace of X ′ orthogonal to P .
Since X ′ and S are compatible 2-dimensional subspaces, Q is orthogonal to S. Similarly,
it is orthogonal to S ′. Then Q is orthogonal to S + S ′. Since

Z = (X ∩ Y ) + S and Z ′ = (X ∩ Y ) + S ′

are ortho-adjacent to Y = (X ∩ Y ) + Y ′, the subspaces S and S ′ intersect Y ′ in 1-
dimensional subspaces P1 and P2, respectively. These subspaces are distinct (otherwise,
they coincide with S ∩ S ′ and X ′ ∩ Y ′ 6= 0 which is impossible). Therefore, Y ′ = P1 + P2

is contained in S + S ′, and consequently, Q is orthogonal to Y ′.
Now, we show that P is orthogonal to Y ′. Denote by Qi the 1-dimensional subspace

of Y ′ orthogonal to Pi, i = 1, 2. We have Q1 6= Q2, since P1 6= P2. Then Q1 is orthogonal
to S (since S and Y ′ are compatible) and, for the same reasons, Q2 is orthogonal to S ′.
This implies that both Q1, Q2 are orthogonal to P = S ∩ S ′, and hence, Y ′ = Q1 +Q2 is
orthogonal to P . Then X ′ = P +Q is orthogonal to Y ′ and we get the claim.

By assumption, we have 4 6 2k 6 dimH and distinguish the following three cases:

• k 6 dimH − 4 which means that k > 4 or k = 3, dimH > 7 or k = 2, dimH > 6.

• k = dimH − 3 which means that dimH = 2k = 6 or k = 2, dimH = 5.

• k = dimH − 2 which means that dimH = 2k = 4.

We need the following clarification of Lemma 9.

Lemma 18. For non-compatible adjacent k-dimensional subspaces X, Y ⊂ H the follow-
ing assertions are fulfilled:
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(1) If k 6 dimH − 4, then there are infinitely many k-dimensional subspaces Z ⊂ H
ortho-adjacent to both X, Y and such that there are infinitely many k-dimensional
subspaces Z ′ ⊂ H ortho-adjacent to X, Y, Z.

(2) If k = dimH − 3, then there are infinitely many k-dimensional subspaces Z ⊂ H
ortho-adjacent to both X, Y and such that there is precisely one Z ′ ⊂ H ortho-adjacent
to X, Y, Z.

(3) If dimH = 2k = 4, then there are precisely two 2-dimensional subspaces ortho-
adjacent to both X, Y ; these subspaces are orthogonal.

Proof. (1). Since k 6 dimH − 4 and X + Y is (k + 1)-dimensional, we have

dim(X + Y )⊥ > 3

and for every 1-dimensional subspace P ⊂ (X+Y )⊥ there are infinitely many 1-dimensio-
nal subspaces Q ⊂ (X + Y )⊥ orthogonal to P . For any such P and Q the k-dimensional
subspaces

P + (X ∩ Y ), Q+ (X ∩ Y ), X, Y (6)

are mutually ortho-adjacent.
(2). When k = dimH − 3, then the subspace (X + Y )⊥ is 2-dimensional and for

any 1-dimensional subspace P ⊂ (X + Y )⊥ there is a unique 1-dimensional subspace
Q ⊂ (X + Y )⊥ orthogonal to P . As above, the k-dimensional subspaces (6) are mutually
ortho-adjacent. The k-dimensional subspace S+W , where S is the orthogonal complement
of X ∩ Y in X + Y and W is a (k − 2)-dimensional subspace of X ∩ Y (see Lemma 7),
is not adjacent to P + (X ∩ Y ). So, Q + (X ∩ Y ) is the unique k-dimensional subspace
ortho-adjacent to X, Y, P + (X ∩ Y ).

(3). Suppose that dimH = 2k = 4. By Lemma 9, there are precisely two 2-dimensional
subspaces ortho-adjacent to both X, Y : one of them is the sum of X ∩ Y and (X + Y )⊥

and the second is the orthogonal complement of X ∩ Y in X + Y .

For k 6 dimH − 3 we can characterise adjacency in terms of ortho-adjacency.

Lemma 19. Let X and Y be k-dimensional subspaces of H such that the distance between
X, Y in Γ⊥k (H) is equal to 2. Then the following assertions are fulfilled:

(1) In the case when k 6 dimH − 4, the subspaces X, Y are adjacent and non-compatible
if and only if there are infinitely many k-dimensional subspaces Z ⊂ H ortho-adjacent
to both X, Y and such that there are infinitely many k-dimensional subspaces Z ′ ⊂ H
ortho-adjacent to X, Y, Z.

(2) In the case when k = dimH − 3, the subspaces X, Y are adjacent and non-compatible
if and only if there are infinitely many k-dimensional subspaces Z ⊂ H ortho-adjacent
to both X, Y and such that there is precisely one Z ′ ⊂ H ortho-adjacent to X, Y, Z.
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Proof. (1). If X, Y are adjacent and non-compatible, then the required condition holds
by the statement (1) of Lemma 18. Conversely, suppose that there are infinitely many
k-dimensional subspaces Z ⊂ H ortho-adjacent to both X, Y and such that there are
infinitely many k-dimensional subspaces Z ′ ⊂ H ortho-adjacent to X, Y, Z. If X, Y
are not adjacent, then their intersection is (k − 2)-dimensional. Since there is a pair
of ortho-adjacent k-dimensional subspaces of H which are ortho-adjacent to both X, Y ,
Lemma 17 implies that X and Y are compatible. Then, by Lemma 16, for every k-
dimensional subspace Z ⊂ H ortho-adjacent to both X, Y there are precisely two k-
dimensional subspaces of H ortho-adjacent to X, Y, Z which contradicts our assumption.
So, X, Y are adjacent. Since the distance between X and Y in Γ⊥k (H) is equal to 2, they
are non-compatible.

(2). We use the same arguments and the statement (2) of Lemma 18 instead of the
statement (1).

Now, we can prove Theorem 3. Let f be an automorphism of Γ⊥k (H). If k > 3 or
dimH > 5 and k = 2, then f is an automorphism of Γk(H) by Lemma 19 and the required
statement follows from Lemma 11.

Remark 20. Suppose that dimH = 2k = 4. In terms of ortho-adjacency, as it is seen by
Example 5, the adjacency relation cannot be characterised while the orthogonality rela-
tion can be as follows: 2-dimensional subspaces X, Y ⊂ H are orthogonal if and only if for
every 2-dimensional subspace Z ⊂ H ortho-adjacent to both X, Y there are precisely two
2-dimensional subspaces of H ortho-adjacent to X, Y, Z (we use Lemma 16 and arguments
from the proof of Lemma 19). Therefore, if dimH = 4, then every automorphism f of
Γ⊥2 (H) is orthogonality preserving in both directions; since two 2-dimensional subspaces
of H are compatible if and only if they are ortho-adjacent or orthogonal, f is compat-
ible preserving in both directions. Compatibility preserving transformations of Hilbert
Grassmannians are determined except the case when dimH = 2k is equal 4 or 6 (see [9,
Chapter 5]).

Remark 21. Let V be a vector space (over a field) equipped with an anisotropic symmetric
form. The ortho-Grassmann graph formed by 2-dimensional subspaces of V is investigated
in [5]. If dimV > 5, then every graph automorphism is induced by an orthogonality
preserving semilinear automorphism of V . The main result of [5] concerns the case when
dimV = 4. As a simple consequence, we obtain the following: if V is a real Hilbert space of
dimension 4 and f is a graph automorphism, then there is an orthogonal operator O such
that for every 2-dimensional subspace X ⊂ H we have f(X) = O(X) or f(X) = O(X)⊥.
Algebraic arguments used in [5] do not work in our case (the inner product on complex
Hilbert spaces is Hermitian).

5 Generalised ortho-Grassmann graphs associated to conjugacy
classes of finite-rank self-adjoint operators

Recall that two operators A and B on H are unitary conjugate if there is a unitary
operator U on H such that B = UAU∗. For example, any two rank-m projections are
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unitary conjugate and Pm(H) is the conjugacy class formed by all such projections. Let
C be a conjugacy class consisting of finite-rank self-adjoint operators on H. This class
is completely determined by the spectrum σ = {a1, . . . , ak} of operators from C (each
eigenvalue ai is real) and the set d = {n1, . . . , nk}, where ni is the dimension of the
eigenspaces corresponding to the eigenvalue ai. The eigenspaces of every operator from
C are mutually orthogonal, their sum is H and the eigenspace corresponding to every
non-zero ai is finite-dimensional. If one of ai is zero, then the kernels of operators from
C are non-trivial. If H is infinite-dimensional, then 0 ∈ σ and the kernels are infinite-
dimensional (since operators from C are of finite rank and their kernels are the orthogonal
complements of the images).

In what follows, the conjugacy class C will be denoted by G(σ, d) and called the (σ, d)-
Grassmannian. For example, if σ = {0, λ}, where λ is a non-zero real number, and
d = {dimH−m,m}, then G(σ, d) is the conjugacy class λPm(H) formed by all λ-multiples
of rank-m projections. If dimH = n is finite and d = {n}, then G(σ, d) consists of a unique
operator which is a scalar multiple of the identity.

If A ∈ G(σ, d) and Xi is the eigenspace of A corresponding to ai, then

A =
k∑
i=1

aiPXi .

Let S(d) be the group of all permutations δ on {1, . . . , k} such that nδ(i) = ni (the group
is trivial if all ni are mutually distinct). For every permutation δ ∈ S(d) the operator

δ(A) =
k∑
i=1

aiPXδ(i)

belongs to G(σ, d). For example, if dimH = 2m, σ = {0, 1} and d = {m,m}, then
G(σ, d) = Pm(H) and S(d) coincides with S2; furthermore, if δ is the non-trivial element
of S(d), then for every projection PX ∈ Pm(H) we have δ(PX) = PX⊥ .

Operators A,B ∈ G(σ, d) are called adjacent if the following conditions are satisfied:

(A1) the rank of A−B is equal to 2,

(A2) the kernel and the image of A−B are invariant to both A,B;

see [10] for the details. This concept admits a simple interpretation in terms of eigenspaces.
If H is infinite-dimensional, then 0 ∈ σ and the kernels of operators from G(σ, d) are
infinite-dimensional, but their codimension is finite. Two closed subspaces of the same
finite codimension are called adjacent if their orthogonal complements are adjacent, and
we say that these subspaces are ortho-adjacent if the orthogonal complements are ortho-
adjacent. For every i ∈ {1, . . . , k} denote by Xi and Yi the eigenspaces of A and B
(respectively) corresponding to the eigenvalue ai. Then A and B are adjacent if and only
if there are distinct i, j ∈ {1, . . . , k} such that the following assertions are fulfilled:
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• Xi and Xj are adjacent to Yi and Yj, respectively1;

• Xt = Yt for all t 6= i, j, and consequently, Xi +Xj = Yi + Yj.

In this case, the operators A,B are said to be (i, j)-adjacent. For example, rank-m
projections PX and PY are adjacent if and only if the m-dimensional subspaces X and Y
are adjacent; furthermore, PX and PY are adjacent and commute if and only if X and
Y are ortho-adjacent. If A and B commute, then each of these operators commute with
A− B which immediately implies (A2). We say that A,B are commutatively adjacent if
they commute and satisfy (A1). This means that A,B are (i, j)-adjacent for some distinct
i, j ∈ {1, . . . , k}; furthermore, Xi and Xj are ortho-adjacent to Yi and Yj, respectively
(it is well-known that two compact self-adjoint operators commute if and only if their
eigenspaces are mutually compatible).

The generalised Grassmann graph Γ(σ, d) is the simple graph whose vertex set is G(σ, d)
and two operators are connected by an edge if they are adjacent. If G(σ, d) = Pm(H), then
Γ(σ, d) = Γm(H). The graph Γ(σ, d) is connected [10]. Any other Γ(σ′, d) is isomorphic
to Γ(σ, d). Indeed, if σ′ = {a′1, . . . , a′k}, then the correspondence

k∑
i=1

aiPXi →
k∑
i=1

a′iPXi (7)

defines an isomorphism between these graphs. In particular, if k = 2 (i.e. there are
precisely two eigenvalues for operators from G(σ, d)), then Γ(σ, d) can be identified with
the Grassmann graph Γm(H), where m is n1 or n2 (at least one of n1, n2 is finite). For
every unitary or anti-unitary operator U on H the transformation sending every A ∈
G(σ, d) to UAU∗ is an automorphism of Γ(σ, d) preserving each type of adjacency and for
every non-identity δ ∈ S(d) the transformation sending every A ∈ G(σ, d) to δ(A) is an
automorphism of Γ(σ, d) which does not preserve all types of adjacency. The following is
an analogue of Chows’s theorem concerning automorphisms of Γ(σ, d).

Theorem 22 ([10]). Suppose that k > 3 and ni > 1 for all i ∈ {1, . . . , k}. Then for
every automorphism f of Γ(σ, d) there are a unitary or anti-unitary operator U on H and
a permutation δ ∈ S(d) such that

f(A) = Uδ(A)U∗

for all A ∈ G(σ, d). In particular, every automorphism of Γ(σ, d) preserving each type of
adjacency is induced by a unitary or anti-unitary operator on H.

Remark 23. The above statement fails for k = 2 (since Γ(σ, d) is identified with Γm(H),
m ∈ {n1, n2}).

1Since Xj and Yj are the orthogonal complements of Xi and Yi (respectively) in Xi + Xj = Yi + Yj ,
the subspaces Xi and Yi are adjacent if and only if Xj and Yj are adjacent.

the electronic journal of combinatorics 28(4) (2021), #P4.49 17



Denote by Γc(σ, d) the simple graph whose vertex set is G(σ, d) and two operators
are connected by an edge if they are commutatively adjacent. Then Γc(σ, d) = Γ⊥m(H) if
G(σ, d) = Pm(H). Any other Γc(σ′, d) is isomorphic to Γc(σ, d) (if σ′ = {a′1, . . . , a′k}, then
(7) is a graph isomorphism). If k = 2, then Γc(σ, d) is identified with the ortho-Grassmann
graph Γ⊥m(H), where m is n1 or n2.

Proposition 24. The graph Γc(σ, d) is connected.

Proof. Proposition 1 gives the claim for k = 2. Suppose that k > 3 and A,B ∈ G(σ, d) are
non-commutative and (i, j)-adjacent for some i, j ∈ {1, . . . , k}. For every t ∈ {1, . . . , k}
denote by Xt and Yt the eigenspaces of A and B (respectively) corresponding to at. Then
Xt = Yt for all t 6= i, j and Xi, Xj are adjacent to Yi, Yj, respectively. We write V
for the (ni + nj)-dimensional subspace Xi + Xj = Yi + Yj and take any ni-dimensional
subspace Zi ⊂ V ortho-adjacent to both Xi, Yi. Let Zj be the orthogonal complement of
Zi in V . The n2-dimensional subspace Zj is ortho-adjacent to both Xj, Yj. Consider the
operator C ∈ G(σ, d) whose eigenspace corresponding to at with t 6= i, j is Xt = Yt and
the eigenspaces corresponding to ai and aj are Zi and Zj, respectively. This operator is
commutatively (i, j)-adjacent to both A,B. The connectedness of Γc(σ, d) follows from
the fact that Γ(σ, d) is connected.

Theorem 3 can be generalised as follows.

Theorem 25. Suppose that k > 2 and ni > 1 for all i ∈ {1, . . . , k}. Also, we require that
there is at most one i such that ni = 2. Then for every automorphism f of Γc(σ, d) there
are a unitary or anti-unitary operator U on H and a permutation δ ∈ S(d) such that

f(A) = Uδ(A)U∗

for all A ∈ G(σ, d).

If k = 2, then Γc(σ, d) is identified with Γ⊥m(H), m ∈ {n1, n2} and Theorem 25 follows
from Theorem 3 (see Remark 4). If k = 2 and n1 = n2 = 2, then dimH = n1 + n2 = 4,
the graph Γc(σ, d) is identified with Γ⊥2 (H) and the statement fails by Example 5.

We prove Theorem 25 for k > 3 in the next section. We will use a modification of
arguments from Section 4 to investigate geodesics of length 2 in Γc(σ, d).

6 Proof of Theorem 25

Suppose that k > 3, ni > 1 for all i ∈ {1, . . . , k} and there is at most one i such that
ni = 2.

Let A and B be operators from G(σ, d) such that the distance between them in Γc(σ, d)
is equal to 2. For every i ∈ {1, . . . , k} we denote by Xi and Yi the eigenspaces of A and
B (respectively) corresponding to the eigenvalue ai. Consider any C ∈ G(σ, d) commuta-
tively adjacent to both A,B. There are precisely two eigenspaces of C distinct from the
corresponding eigenspaces of A and the same holds for B. Therefore, there are at most
four indices i such that Xi 6= Yi (we have Xi 6= Yi for at least two i, otherwise A = B).

We start from the case when Xi 6= Yi for precisely two indices i.
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Lemma 26. Suppose that Xi 6= Yi, Xj 6= Yj, and Xt = Yt for t 6= i, j. If C ∈ G(σ, d) is
commutatively adjacent to both A,B, then it is commutatively (i, j)-adjacent to A and B.

Proof. For every t ∈ {1, . . . , k} we denote by Zt the eigenspace of C corresponding to
at. Suppose that A,C are commutatively (i′, j′)-adjacent and {i, j} 6= {i′, j′}. If we have
{i, j} ∩ {i′, j′} = ∅, then

Zi = Xi 6= Yi, Zj = Xj 6= Yj, Zi′ 6= Xi′ = Yi′ , Zj′ 6= Xj′ = Yj′ ,

that is Zt 6= Yt for four indices t which means that B,C are not adjacent. Therefore,
{i, j}∩{i′, j′} is one-element. Without loss of generality we assume that i 6= i′ and j = j′,
i.e. A,C are commutatively (i′, j)-adjacent. Then

Zi′ 6= Xi′ = Yi′ and Zi = Xi 6= Yi,

and, since B,C are commutatively adjacent, they are commutatively (i, i′)-adjacent.
So, A,C are commutatively (i′, j)-adjacent and B,C are commutatively (i, i′)-adja-

cent. This implies that Xi = Zi is ortho-adjacent to Yi and Xj is ortho-adjacent to Zj =
Yj. Then A,B are commutatively (i, j)-adjacent which contradicts our assumption.

As in Lemma 26, we suppose that Xi 6= Yi, Xj 6= Yj and Xt = Yt if t 6= i, j. For every
C ∈ G(σ, d) commutatively adjacent to both A,B the eigenspaces corresponding to ai and
aj are ortho-adjacent to Xi, Yi and Xj, Yj (respectively) and the eigenspace corresponding
to at, t 6= i, j coincides with Xt = Yt. Denote by Vij the (ni + nj)-dimensional subspace
Xi + Xj = Yi + Yj. Recall that at least one of ni, nj is finite. If ni is finite, then the
distance between Xi and Yi in Γ⊥ni(Vij) is equal to 2 and one of the following possibilities
is realised:

(1) Xi, Yi are adjacent and non-compatible,

(2) dim(Xi ∩ Yi) = ni − 2.

Since Xj, Yj are the orthogonal complements of Xi, Yi in Vij, the same holds for the index
j (if nj =∞, then the possibility (2) is written as follows: the codimension of Xj ∩ Yj in
both Xj, Yj is equal to 2). In the case (1), the operators A,B are non-commutative and
adjacent. Since both ni, nj are not less than 2 and at least one of them is not less than 3,
we have

dimVij = ni + nj > 5

and
min{ni, nj} 6 ni + nj − 3.

Lemma 19 implies the following.

Lemma 27. If Xi 6= Yi, Xj 6= Yj and Xt = Yt for t 6= i, j, then the following assertions
are fulfilled:
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(1) In the case when min{ni, nj} 6 ni + nj − 4, the operators A,B are adjacent and
non-commutative if and only if there are infinitely many C ∈ G(σ, d) commutatively
adjacent to both A,B and such that there are infinitely many C ′ ∈ G(σ, d) commuta-
tively adjacent to A,B,C.

(2) In the case when min{ni, nj} = ni + nj − 3, the operators A,B are adjacent and
non-commutative if and only if there are infinitely many C ∈ G(σ, d) commutatively
adjacent to both A,B and such that there is precisely one C ′ ∈ G(σ, d) commutatively
adjacent to A,B,C.

Lemma 28. If Xi 6= Yi for three or four indices i, then the number of operators in G(σ, d)
commutatively adjacent to both A,B is finite.

Proof. Suppose that Xi 6= Yi precisely for i ∈ {1, 2, 3, 4}. If C ∈ G(σ, d) is commutatively
adjacent to both A,B, then it is (s, t)-adjacent to A for some s, t ∈ {1, 2, 3, 4} and (s′, t′)-
adjacent to B for {s′, t′} = {1, 2, 3, 4} \ {s, t} (otherwise there is i ∈ {1, 2, 3, 4} such that
Xi = Yi). This means that the eigenspace of C corresponding to aj with j ∈ {s′, t′} is
Xj, the eigenspace of C corresponding to aj, j ∈ {s, t} is Yj and the eigenspaces of C
associated to the remaining at are Xt = Yt. So, there are at most six operators C ∈ G(σ, d)
commutatively adjacent to both A,B.

Consider the case when Xi 6= Yi precisely for i ∈ {1, 2, 3}. Suppose that C ∈ G(σ, d)
is (s, t)-adjacent to A and (s′, t′)-adjacent to B. If t 6∈ {1, 2, 3}, then the eigenspace of C
corresponding to at is distinct from Xt = Yt, and consequently, t ∈ {s′, t′}. Without loss
of generality we assume that t = t′. Then for j ∈ {1, 2, 3} \ {s, s′} we have Xj = Yj which
is impossible. So, s, s′, t, t′ belong to {1, 2, 3}. This means that C is (s, j)-adjacent to B
or (t, j)-adjacent to B for {s, t, j} = {1, 2, 3}.

If C is (s, j)-adjacent to B, then the eigenspace of C corresponding to at is Yt. Since
C is (s, t)-adjacent to A, the eigenspace of C corresponding to aj is Xj. Then Xj, Yt are
orthogonal and the eigenspace of C corresponding to as is the orthogonal complement of
Xj + Yt in

X1 +X2 +X3 = Y1 + Y2 + Y3.

Therefore, there is at most one C ∈ G(σ, d) which is (s, t)-adjacent to A and (s, j)-adjacent
to B. Similarly, there exists at most one C ∈ G(σ, d) which is (s, t)-adjacent to A and
(t, j)-adjacent to B.

Since there are precisely three distinct 2-element subsets of {1, 2, 3}, we can get at
most six operators C ∈ G(σ, d) commutatively adjacent to both A,B.

Combining Lemmas 27 and 28, we obtain the following characterisation of adjacency
in terms of commutative adjacency.

Lemma 29. Suppose that the distance between A,B ∈ G(σ, d) in Γc(σ, d) is equal to
2. Then A,B are adjacent and non-commutative if and only if one of the following
possibilities is realized:

(1) There are infinitely many C ∈ G(σ, d) commutatively adjacent to both A,B and such
that there are infinitely many C ′ ∈ G(σ, d) commutatively adjacent to A,B,C.
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(2) There are infinitely many C ∈ G(σ, d) commutatively adjacent to both A,B and such
that there is precisely one C ′ ∈ G(σ, d) commutatively adjacent to A,B,C.

Lemma 29 shows that every automorphism of Γc(σ, d) is an automorphism of Γ(σ, d)
and Theorem 22 gives the claim.
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[10] M. Pankov, K. Petelczyc, M. Żynel, Generalized Grassmann graphs associated to con-
jugacy classes of finite-rank self-adjoint operators, Linear Algebra Appl. 627 (2021),
1-23.
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