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Abstract

We confirm Jones’ Conjecture for subcubic graphs. Namely, if a subcubic planar
graph does not contain k + 1 vertex-disjoint cycles, then it suffices to delete 2k
vertices to obtain a forest.

Mathematics Subject Classifications: 05C10, 05C38, 05C69

1 Introduction

We investigate the connection between the maximum number of vertex-disjoint cycles in
a graph and the minimum number of vertices whose deletion results in a cycle-free graph,
i.e. a forest. A cycle packing of a (multi)graph G is a set of vertex disjoint cycles that
appear in G as subgraphs. We denote the maximum size of a cycle packing of G by cp(G).

∗This research is a part of projects that have received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme, Grant Agreements
677651 and 714704.
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A feedback vertex set of a (multi)graph G is a set S of vertices such that G−S is a forest.
We denote an arbitrary minimum feedback vertex set of G as FV S(G) and denote its size
by fvs(G).

Erdős and Pósa [4] showed that there is a constant c such that for any graph G,
fvs(G) 6 c · cp(G) log cp(G), and that this upper-bound is tight for some graphs. This
seminal result led to rich developments. Two main directions: determining which struc-
tures can replace “cycles” there (free to increase the bounding function), and improving
the bounding functions. Most notably, in the first line of research, Cames van Bante-
burg et al. [1] proved that “cycle” can directly be replaced with “minor of a given planar
graph”, which was earlier showed by Robertson and Seymour [9] with a worse bounding
function.

We focus on the second line of research, and are interested in the best possible bound
in the original theorem, when restricted to the specific case of planar graphs. A drastic
improvement is then possible, and we were motivated by the following elusive conjecture.

Conjecture 1 (“Jones’ Conjecture”1, Kloks, Lee and Liu [5]). Every planar graph G
satisfies fvs(G) 6 2 · cp(G).

Note that Conjecture 1 is tight for wheels or for the dodecahedron. Currently, the
best known bound is that every planar graph G satisfies fvs(G) 6 3 · cp(G), as proved
independently by Chappel et al. [2], Chen et al. [3], and Ma et al. [7].

In his PhD Thesis, Munaro [8] considered the case of subcubic graphs and made
significant progress. Here we complete the case, and prove that Jones’ Conjecture holds
for subcubic graphs.

Theorem 2. Every subcubic planar multigraph G satisfies fvs(G) 6 2 · cp(G).

2 Proof of Theorem 2

2.1 Notation

A multigraph is simple if it has no loops or multi-edges. In this case, we simply refer to
it as a graph.

Let G = (V,E) be a (multi)graph. For W ⊆ V , we denote by G[W ] the subgraph of
G induced by W , and by G−W the subgraph of G induced by V \W . If W = {v}, then
we denote G− v = G−W . For F ⊆ E, we denote G− F = (V,E \ F ). If F = {e}, then
we denote G − e = G − F . For W ∩ V = ∅, G + W is the disjoint union of G and a set
W of isolated vertices. If W = {v}, then we denote G+ v = G+W . For F a set of pairs
of edges with F ∩ E = ∅, we denote G + F = (V,E ∪ F ). If F = {e}, then we denote
G + e = G + F . Graph is called cubic if all of its vertices have degree exactly 3. Graph
is called subcubic all of its vertices have degree at most 3.

A (multi)graph is k-connected if it has at least k + 1 vertices and the removal of
at most k − 1 vertices leaves the graph connected. A (multi)graph is k-edge-connected

1http://www.openproblemgarden.org/op/jones_conjecture
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if the removal of at most k − 1 edges leaves the graph connected. Note that a subcubic
(multi)graph with at least k+1 vertices is k-connected if and only if it is k-edge-connected.
In a connected (multi)graph, a separating edge or bridge is an edge the removal of which
disconnects the graph.

A (multi)graph is essentially 4-edge-connected if the removal of at most three edges
does not yield two components with at least two vertices each. A (multi)graph is cyclically
4-edge-connected if the removal of at most three edges does not yield two components that
both contain a cycle. For a cubic (multi)graph, these last two notions are equivalent.

2.2 Proof

We proceed by contradiction. Let G be a counter-example to Theorem 2 with the min-
imum number of vertices. To obtain a contradiction, we first argue that G is a simple
graph that is essentially 4-edge-connected, as follows.

Lemma 3. The multigraph G is an essentially 4-edge-connected simple graph.

Proof. While Claims 4, 5, 6 are known and easy properties of a minimum counter-example
to Jones’ conjecture on subcubic graphs (see e.g. [8]), we include their proofs because we
believe they may constitute a useful warm-up. The uninterested reader may skip them.

First the result is easily checked on small multigraphs, so we can assume that G has at
least 4 vertices. Hence, for k 6 3, G is k-connected if and only if it is k-edge connected.

Claim 4. The multigraph G is cubic.

Proof. Suppose G has a vertex v with degree at most 1. Then G − v satisfies Jones’
Conjecture by minimality of G. As no cycle of G contains v, fvs(G − v) = fvs(G) and
cp(G− v) = cp(G), therefore G also satisfies Jones’ Conjecture, a contradiction.

Suppose G has a vertex v with degree 2, and let u and w be the two neighbors of v.
Then G′ = G− v + uw satisfies Jones’ Conjecture, so fvs(G′) 6 2 · cp(G′). The cycles of
G are in bijection with the cycles of G′, by exchanging the edges uv and vw and an edge
uw when appropriate. Hence cp(G) = cp(G′). Moreover, if S is a feedback vertex set of
G that does not contain v, then S is a feedback vertex set of G′, and if S is a feedback
vertex set of G that contains v, then (S \ {v}) ∪ {u} is a feedback vertex set of G′. Thus
fvs(G) 6 fvs(G′) 6 2 · cp(G′) = cp(G), and G satisfies Jones’ Conjecture, a contradiction.
Hence G is cubic. y

Claim 5. The multigraph G is 2-connected.

Proof. Suppose that G is not 2-connected. As G is cubic, that means that G is not 2-
edge-connected. Let e be a separating edge of G. Both components G1 and G2 of G− e
verify Jones’ Conjecture by minimality of G. Since e is separating, it is not in any cycle
of G. The union of any feedback vertex set of G1 and any feedback vertex set of G2 is a
feedback vertex set of G, so fvs(G) 6 fvs(G1) + fvs(G2). The union of any cycle packing
of G1 and any cycle packing of G2 is a cycle packing of G, so cp(G) > cp(G1) + cp(G2).
Therefore G satisfies Jones’ Conjecture, a contradiction. y
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Claim 6. The multigraph G is 3-connected.

Proof. Assume that it is not 3-connected, and thus not 3-edge-connected. Let e = u1u2
and e′ = v1v2 be a 2-edge-cut, where u1 and v1 are in the same connected component of
G− {e, e′}, which we denote G1. Let G2 be the other connected component of G− {e, e′}.
We write G′1 = G1 + {u1v1} and G′2 = G2 + {u2v2}. Note that this may lead to a double
(or even triple) edge. See Figure 1 for an illustration. By minimality of G, we know that
G1, G2, G

′
1 and G′2 all satisfy Jones’ Conjecture.

G1

u1

v1

e

e′

G2

u2

v2

G

G1

u1

v1

G′1

G2

u2

v2

G′2

Figure 1: The graphs G, G′1, and G′2 in Claim 6.

Note that since G′1 = G1 +{u1v1}, cp(G1) 6 cp(G′1) 6 cp(G1)+1. We first argue that
cp(G′1) = cp(G1) + 1. Assume for a contradiction that cp(G′1) = cp(G1). Note that for
any feedback vertex set S1 of G′1, either u1 ∈ S1 or v1 ∈ S1 or u1 and v1 are in distinct
components of G1−S1, so fvs(G) 6 fvs(G′1)+fvs(G2). Thus, fvs(G) 6 fvs(G′1)+fvs(G2) 6
2 cp(G′1) + 2 cp(G2) = 2 cp(G1) + 2 cp(G2) 6 2 cp(G), a contradiction.

By symmetry, cp(G′2) = cp(G2) + 1. Therefore, every cycle packing of G′1 contains the
edge u1v1 and every cycle packing of G′2 contains the edge u2v2. We can thus combine
a cycle packing of G′1 and a cycle packing of G′2 by making a single cycle out of those
two cycles. So cp(G) = cp(G1) + cp(G2) + 1. However, if S1 is a feedback vertex set of
G1 and S2 is a feedback vertex set of G2, then S1 ∪ S2 ∪ {u1} is a feedback vertex set
of G. Therefore fvs(G) 6 fvs(G1) + fvs(G2) + 1 6 2 cp(G1) + 2 cp(G2) + 1 < 2 cp(G),
a contradiction. Therefore G is 3-connected. y

In particular since G is cubic, Claim 6 implies that G is a simple graph.

Claim 7. The graph G is essentially 4-edge-connected.

Proof. Assume that G is not essentially 4-edge-connected, and thus not cyclically 4-edge-
connected. Consider a non-trivial 3-edge-cut {eA, eB, eC}. Let G1 and G2 be the two
components of G \ {eA, eB, eC}. For i ∈ {1, 2}, we define GABC

i as the graph obtained
from G by contracting G3−i into a single vertex x. See Figure 2 for an illustration. We
define GAB

i (resp. GAC
i , GBC

i ) as the graph obtained from Gi by connecting with an edge
vertices from Gi incident to eA and eB (resp. to eA and eC for GAC

i or to eB and eC for
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GBC
i ). Again, this may lead to a double edge. Note that for both values of i, all of Gi,

GAB
i , GAC

i , GBC
i and GABC

i have fewer vertices than G, and thus satisfy Jones’ Conjecture.

G1 G2

G

eA

eB

eC

G1

GABC
1

eA

eB

eC

G2

eA

eB

eC

GABC
2

Figure 2: The graphs G, GABC
1 , and GABC

2 .

First note that for both values of i, fvs(G) 6 fvs(GABC
i ) + fvs(G3−i). In order to prove

that let us assume without loss of generality that i = 1. Then remove FV S(G2) from
G. What remains from G2 after deleting FV S(G2) is a forest that could hypothetically
create connections between vertices from G1 incident to eA, eB, eC . However if we are
given any tree T and its three vertices u, v, w ∈ V (T ) then Puv ∩ Pvw ∩ Pwu 6= ∅ (in
fact it is always a single vertex), where Puv, Pvw, Pwu are sets of vertices on unique paths
between corresponding vertices, so it is possible to break the connections between all
three pairs of these vertices by removing a single vertex of T . Because of that we see that
fvs(G−FV S(G2)) 6 fvs(GABC

1 ) what leads to fvs(G) 6 fvs(GABC
1 )+fvs(G2). Therefore we

see that fvs(G) 6 fvs(GABC
i )+fvs(G3−i) 6 fvs(G1)+fvs(G2)+1 6 2 cp(G1)+2 cp(G2)+1.

We also have cp(G) > cp(G1) + cp(G2), yet fvs(G) > 2 cp(G).
It follows that for both values of i:

fvs(GABC
i ) = fvs(Gi) + 1 (1)

fvs(Gi) = 2 cp(Gi) (2)

And that:
fvs(G) = fvs(G1) + fvs(G2) + 1 (3)

cp(G) = cp(G1) + cp(G2) (4)

We are now ready for a closer analysis.

(i) For any i and for any x ∈ {A,B,C},

fvs(G) 6 fvs(GABC−x
i ) + max

y 6=x
fvs(GABC−y

3−i ).

the electronic journal of combinatorics 28(4) (2021), #P4.5 5



Indeed, take without loss of generality i = 1 and x = C. Let us consider a minimum
feedback vertex set S of GAB

1 . Note that in G1 \ S, there is no path between the
vertex incident to eA and the vertex incident to eB or at least one of them is in S.
As a consequence, either vertex incident to eC is in S or one of them, say the vertex
incident to eA, is either in S or is not in the same component as the vertex incident
to eC . For any minimum feedback vertex set S ′ of GBC

2 , we observe that S ∪ S ′ is
a feedback vertex set of G, hence the conclusion. In particular, by combining with
(3), if fvs(GABC−x

i ) = fvs(Gi) then fvs(GABC−y
3−i ) = fvs(G3−i) + 1 for some y 6= x.

(ii) For every i ∈ {1, 2} and for every x ∈ {A,B,C}, if fvs(GABC−x
i ) = fvs(Gi) + 1,

then cp(GABC−x
i ) = cp(Gi) + 1. That follows from (2), since GABC−x

i satisfies Jones’
Conjecture.

(iii) For every x ∈ {A,B,C},

either cp(GABC−x
1 ) = cp(G1) or cp(GABC−x

2 ) = cp(G2).

Indeed, suppose not. Then both cp(GABC−x
1 ) = cp(G1) + 1 and cp(GABC−x

2 ) =
cp(G2) + 1, for say x = C. Then for i ∈ {1, 2}, in every cycle packing of GAB

i

there is a cycle containing eA and eB. By taking a cycle packing of GAB
1 and a cycle

packing of GAB
2 , we obtain a cycle packing of G (combining two cycles into one). So

cp(G) > cp(G1) + cp(G2) + 1, a contradiction with (4).

It follows from (1) and (2) that cp(GABC
i ) = cp(Gi) + 1 for both values of i. Note that

a maximum cycle packing of GABC
i uses two edges out of {eA, eB, eC}. It follows that for

some zi ∈ {A,B,C}, it holds that cp(GABC−zi
i ) = cp(Gi) + 1.

We assume without loss of generality that z1 = C. Note that from (iii), cp(GAB
2 ) =

cp(G2), hence z2 6= C, and fvs(GAB
2 ) = fvs(G2) by (ii). We assume without loss of

generality z2 = A. By symmetry, cp(GBC
1 ) = cp(G1) and fvs(GBC

1 ) = fvs(G1). From (i)
applied with i = 1 and x = A, there is y ∈ {B,C} such that fvs(GABC−y

2 ) = fvs(G2) + 1.
Note that y 6= C, so y = B and fvs(GAC

2 ) = fvs(G2) + 1. We derive from (ii) that
cp(GAC

2 ) = cp(G2) + 1, hence cp(GAC
1 ) = cp(G1) by (iii). Again from (ii), we obtain

fvs(GAC
1 ) = fvs(G1).

Therefore fvs(GAB
2 ) = fvs(G2), fvs(GBC

1 ) = fvs(G1), and fvs(GAC
1 ) = fvs(G1). Now,

(i) applied with i = 2 and x = C yields a contradiction. y

The conclusion follows directly from Claim 7.

To obtain the desired contradiction, we combine Lemma 3 with the following very
convenient theorem from Munaro [8]:

Theorem 8 (Theorem 3.4.10 in [8]). If G is a simple subcubic graph which is a counter-
example to Jones’ Conjecture and which has the minimum number of vertices, then G is
not cyclically 4-edge-connected.
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The main ingredient of the proof of Theorem 8 is an explicit formula for the minimum
size of a feedback vertex set in a simple cubic cyclically 4-edge-connected graph. In [8], this
formula is deduced using properties of the maximum genus of such a graph. In the next
section, we include a more direct proof that, despite relying on the same combinatorial
backbone — the matroid matching problem — is more self-contained and highlights the
key properties of highly connected cubic graphs that allows us to compute the minimum
size of a feedback vertex set.

3 An alternative proof of Theorem 8

As argued with Claim 4 in the proof of Lemma 3, to prove Theorem 8 it suffices to handle
simple cubic graphs that are cyclically 4-edge-connected. That is, we henceforth assume
G is a simple planar cyclically 4-edge-connected cubic graph and our goal is to prove that
fvs(G) 6 2 cp(G).

Instead of directly comparing fvs(G) and cp(G), we bound the value of each of them
by a function of the number of vertices n. Note that the dual graph of G is also planar,
hence it admits an independent set of size df

4
e, where f is the number of faces in the

plane embedding of G. Note that an independent set in the dual of G is a cycle packing
in G. (In fact, it is a face packing, that is, a cycle packing where every cycle is a face.)
Therefore, G satisfies cp(G) > df

4
e. By Euler’s formula, f = n

2
+ 2, because G is cubic.

So cp(G) > dn
8

+ 1
2
e. That 2 cp(G) > fvs(G) then follows from Theorem 9 below.

Theorem 9. Every simple cyclically-4-edge-connected cubic graph G with n vertices sat-
isfies fvs(G) = dn+1

4
e.

Equivalently, we need to argue that in such a graph, the maximum number of vertices
in an induced forest is b3n−1

4
c. To look for a largest induced forest in G, we rephrase the

question as a matroid matching problem in the line graph of G. To this end, we need a
few definitions.

Let H be a multigraph. A ν-pair in H is a pair of edges of H with a common endpoint.
A ν-graph is a pair (H,V) where H is a multigraph and V is a partition of E(H) into
ν-pairs. A cactus in (H,V) is a set X ⊆ V such that

⋃
F∈X F is a forest. Let β(H,V) be

the maximum size of a cactus in (H,V).
Let G be a graph as in Theorem 9 and let L(G) be the line graph of G. Construct

a ν-graph (H,V) as follows. Take V (H) = V (L(G)) = E(G). For every v ∈ V (G), let
e1, e2, e3 be the three edges of G incident with v; the line graph L(G) features a triangle
e1e2e3. Pick arbitrarily two edges of this triangle, say e1e2 and e2e3, add them to E(H)
and add them as a ν-pair Fv to V . The following observation is straightforward.

Lemma 10. For every X ⊆ V (G), G[X] is a forest if and only if
⋃

v∈X Fv induces a
forest in H.

Hence, the question of determining the maximum size of an induced forest in G is
equivalent to the question of computing β(H,V).
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To achieve this goal, we rely on a min-max formula by Lovász [6], following an expo-
sition of Szigeti [10]. Let (H,V) be a ν-graph. Let P = {V1, . . . , V`} be a partition of
V (H) and let Q = {U1, . . . , Uk} be a partition of V . For every 1 6 i 6 k, let P (Ui) be
the set of those indices 1 6 j 6 ` for which there is a ν-pair in Ui where one or both of
the edges have an endpoint in Vj. Define

val(P ,Q) = |V (H)| − `+
k∑

i=1

⌊
|P (Ui)| − 1

2

⌋
.

It is not difficult to observe that, for fixed P and Q, val(P ,Q) is an upper bound on
β(H,V). Lovász proved that some choice of P and Q actually yields a tight upper
bound [6, 10].

Theorem 11. For every ν-graph (H,V) there exist partitions P and Q such that

val(P ,Q) = β(H, ν).

Recall that in our setting V (H) = E(G), so P = {V1, V2, . . . , V`} is actually a partition
of E(G). Furthermore, every ν-pair Fv ∈ V corresponds to a vertex v ∈ V (G). By
somewhat abusing the notation, we henceforth treat Q = {U1, U2, . . . , Uk} as a partition
of V (G). With this notation, P (Ui) is the set of indices j such that Vj contains an edge
(of G) incident with a vertex of Ui (which is a subset of V (G)).

Consider now the following pair of partitions (P0,Q0):

• P0 is the finest partition of E(G): each Vi is a singleton set and ` = |E(G)| = 3n
2

.

• Q0 is the coarsest partition of V (G): k = 1 and U1 = V (G).

Since n is even due to G being cubic,

val(P0,Q0) =

⌊ 3n
2
− 1

2

⌋
=

⌊
3n− 2

4

⌋
=

⌊
3n− 1

4

⌋
.

We conclude that β(H, ν) 6
⌊
3n−1

4

⌋
and it remains to argue that the minimum of val(·, ·)

is attained for the pair (P0,Q0).
To this end, pick a pair (P ,Q) of partitions that:

• minimizes val(P ,Q),

• subject to the above, maximizes `, and

• subject to the above, minimizes k.

It remains to show that P = P0 and Q = Q0. We prove this in two steps.

Lemma 12. P = P0, that is, P partitions E(G) into singletons.
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Proof. Assume the contrary. Let P = {V1, V2, . . . , V`} and w.l.o.g. assume |V`| > 1. Pick
e ∈ V`. Consider a partition P ′ = {V ′1 , . . . , V ′`+1} where V ′i = Vi for i < `, V ′` = V` \ {e}
and V ′`+1 = {e}; that is, we split V` into V ′` = V` \ {e} and V ′`+1 = {e}. By the choice of
P and Q,

val(P ,Q) < val(P ′,Q). (5)

Let P (Ui) be the set of those indices j ∈ [`] for which Vj contains an edge incident
with a vertex in Ui. Similarly, let P ′(Ui) be the set of those indices j ∈ [` + 1] for which
V ′j contains an edge incident with a vertex in Ui. Clearly, P (Ui)4P ′(Ui) ⊆ {`, `+ 1}.

Let uv = e, and let a, b ∈ [k] be such that u ∈ Ua and v ∈ Ub, where a and b are
not required to be distinct. Observe that if i ∈ [k] \ {a, b}, then P (Ui) = P ′(Ui). For
i ∈ {a, b}, it holds that `+ 1 ∈ P ′(Ui), ` ∈ P (Ui) and, as P has ` sets Vj, `+ 1 /∈ P (Ui).
Hence |P ′(Ui)| = |P (Ui)|+ 1 if ` ∈ P ′(Ui) and |P ′(Ui)| = |P (Ui)| if ` /∈ P ′(Ui).

From the above observations it in particular follows that

val(P ′,Q)− val(P ,Q) = −1 +
∑

i∈{a,b}

(⌊
|P ′(Ui)| − 1

2

⌋
−
⌊
|P (Ui)| − 1

2

⌋)
(6)

Further, for i ∈ {a, b} it holds that |P ′(Ui)| − |P (Ui)| ∈ {0, 1} and hence⌊
|P ′(Ui)| − 1

2

⌋
−
⌊
|P (Ui)| − 1

2

⌋
∈ {0, 1}. (7)

Observe that (6) and (7) imply that the only possibility for (5) to hold is that a 6= b and
both of the following equalities hold:⌊

|P ′(Ua)| − 1

2

⌋
−
⌊
|P (Ua)| − 1

2

⌋
= 1,⌊

|P ′(Ub)| − 1

2

⌋
−
⌊
|P (Ub)| − 1

2

⌋
= 1.

The above implies that |P (Ua)| is even and |P ′(Ua)| = |P (Ua)| + 1, hence ` ∈ P ′(Ua).
Similarly we infer that |P (Ub)| is even, |P ′(Ub)| = |P (Ub)|+ 1, and ` ∈ P ′(Ub).

Consider now a partition Q′ of V (G) that is created from Q by merging Ua and Ub

into one set U ′. Let P ′(U ′) be the set of those indices j ∈ [` + 1] for which there is an
edge of V ′j that is incident with a vertex in U ′; that is, P ′(U ′) = P ′(Ua) ∪ P ′(Ub). Recall
that both ` and `+ 1 are elements of P ′(Ua) and P ′(Ub), and thus

|P ′(U ′)| 6 |P ′(Ua)|+ |P ′(Ub)| − 2 = |P (Ua)|+ |P (Ub)|.

Consequently, as both |P (Ua)| and |P (Ub)| are even,⌊
|P ′(U ′)| − 1

2

⌋
6

⌊
|P (Ua)|+ |P (Ub)| − 1

2

⌋
=

⌊
|P (Ua)| − 1

2

⌋
+

⌊
|P (Ub)| − 1

2

⌋
+ 1.

We infer that val(P ′,Q′) 6 val(P ,Q) while |P ′| > |P|, a contradiction to the choice of P
and Q. This finishes the proof of the lemma.
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Lemma 13. If P = P0, then Q = Q0, that is, Q partitions V (G) into one set.

Proof. Assume the contrary, k > 2. By the assumption P = P0, we can treat P (Ui) as
the set of edges of E(G) incident with at least one vertex of Ui. By reordering the sets Ui

if necessary, we can assume that for some 0 6 r 6 k it holds that |P (Ui)| is even if and
only if i 6 r. Furthermore, let δ(Ui) be the set of edges of G having exactly one endpoint
in Ui. Since G is cyclically-4-edge-connected, δ(Ui) > 3 for every i ∈ [k] and, furthermore,
δ(Ui) > 4 for every i ∈ [r]. Then, as G is cubic,

2val(P ,Q) = 2
k∑

i=1

⌊
|P (Ui)| − 1

2

⌋

= 2
r∑

i=1

(
|P (Ui)|

2
− 1

)
+ 2

k∑
i=r+1

(
|P (Ui)|

2
− 1

2

)

= −k − r +
k∑

i=1

|P (Ui)|

= −k − r + |E(G)|+ 1

2

k∑
i=1

δ(Ui)

> −k − r +
3n

2
+

1

2
(3k + r)

=
3n

2
+

1

2
(k − r) > 3n

2
.

Hence val(P ,Q) > d3n
4
e > val(P0,Q0) while |Q| > |Q0|, a contradiction.

As we argued, Lemmas 12 and 13 finish the proof of Theorem 9, which in turn implies
Theorem 8.

4 Conclusion

Through a non-trivial combination of elementary tricks and using a nice preliminary result
of [8], we were able to close the case of Jones’ Conjecture for subcubic graphs.

The obvious question is whether this can be at all used to solve the whole conjecture.
The reduction we have for subcubic graphs extends easily to the general setting, in the
sense that a smallest counter-example to Jones’ Conjecture is essentially 4-edge-connected.
It is not difficult to argue in a similar way that such a graph is 3-vertex-connected.
However, a much harder question is whether it is essentially 4-vertex-connected. While it
still seems possible, such a result using our approach would require additional tricks. Note
that being in the general setting also gives us more leeway regarding possible reductions
(no need to shy away from increasing the maximum degree, as long as there are fewer
vertices).
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A second obstacle to generalization is that even assuming that a smallest counter-
example is essentially 4-vertex-connected, Theorem 8 only deals with the subcubic case.
Another argument must then be devised.

A different approach would be not to aim for the conjectured bound of 2 but simply
for any bound better than the existing one of 3. Unfortunately, this does not seem
conceptually much easier. Let us emphasize this: a simple discharging argument yields
fvs(G) 6 3 cp(G) for every planar graph G, while even significant effort fails to grant a
factor of (3− ε) instead of 3.

To highlight how little we understand around Jones’ Conjecture, we conclude by pos-
ing the following stronger conjecture. Note that the example of many nested disjoint
cycles shows that the embedding cannot be fixed. Also note that the simple discharging
argument mentioned above does not imply the following conjecture with a factor of 3
instead of 2.

Conjecture 14. For every planar graph G,

fvs(G) 6 2 · fp(G),

where fp(G) is the maximum size of a face-packing of G, i.e., a cycle-packing where, for
some embedding of G, every cycle bounds a face.
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