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Abstract

We study cellular automata whose rules are selected uniformly at random. Our
setting are two-neighbor one-dimensional rules with a large number n of states. The
main quantity we analyze is the asymptotic distribution, as n→∞, of the number of
different periodic solutions with given spatial and temporal periods. The main tool
we use is the Chen-Stein method for Poisson approximation, which establishes that
the number of periodic solutions, with their spatial and temporal periods confined
to a finite range, converges to a Poisson random variable with an explicitly given
parameter. The limiting probability distribution of the smallest temporal period for
a given spatial period is deduced as a corollary and relevant empirical simulations
are presented.

Mathematics Subject Classifications: 60K35, 37B15, 68Q80

1 Introduction

We investigate one-dimensional cellular automata (CA), a class of temporally and spatially
discrete dynamical systems, in which the update rule is selected uniformly at random,
and thereafter applied deterministically. Our focus is the asymptotic behavior of the
probability that such randomly chosen CA has a periodic solution with fixed spatial and
temporal periods, as n, the number of states, goes to infinity. This complements the work
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in [6], where the limiting behavior of the longest temporal period with a given spatial
period is explored. We assume the simplest nontrivial setting of two-neighbor rules.

The (spatial) configuration at time t of a one-dimensional CA with number of
states n is a function ξt that assigns to every site x ∈ Z its state ξt(x) ∈ Zn =
{0, 1, . . . , n − 1}. The evolution of spatial configurations is given by a local 2-neighbor
rule f : Z2

n → Zn that updates ξt to ξt+1 as follows:

ξt+1(x) = f(ξt(x− 1), ξt(x)), for all x ∈ Z.

We abbreviate the rule assignment f(a, b) = c as ab 7→ c. We give a rule by listing its
values for all pairs in reverse alphabetical order, from (n− 1, n− 1) to (0, 0).

Given ξ0, the update rule determines the trajectory ξt, t ∈ Z+ = {0, 1, . . .}, or,
equivalently, the space-time configuration, which is the map (x, t) 7→ ξt(x) from Z×Z+

to Zn. By convention, a picture of this map is a painted grid, in which the temporal axis
is oriented downward, the spatial axis is oriented rightward, and each state is given as a
different color. To give an example, a piece of the space-time configuration is presented
in Figure 1. In this figure, we have three states, i.e., n = 3, and the rule is 021102022,
i.e., 22 7→ 0, 21 7→ 2, 20 7→ 1, 12 7→ 1, 11 7→ 0, 10 7→ 2, 02 7→ 0, 01 7→ 2 and 00 7→ 2.

Figure 1: A piece of the space-time configuration of a 3-state rule. In the space-time
configuration, 0, 1 and 2 are represented by white, red and black cells, respectively.

The space-time configuration in Figure 1 exhibits periodicity in both space and time.
In the literature [3], such a configuration is called doubly or jointly periodic. Since these
are the only objects we study, we simply refer to such a configuration as a periodic
solution (PS). To be precise, start with a periodic spatial configuration ξ0, such that
there is a σ > 0 satisfying ξ0(x) = ξ0(x+σ), for all x ∈ Z. Run a CA rule f starting with
ξ0. If we have ξτ (x) = ξ0(x), for all x ∈ Z and that σ and τ are both minimal, then we
have found a periodic solution of temporal period τ and spatial period σ.

A tile is any rectangle with τ rows and σ columns within this space-time configuration.
We interpret a tile as a configuration on a discrete torus; we will not distinguish between
spatial and temporal translations of a PS, and therefore between either rotations of a tile.
The tile of a PS is by definition unique and we will identify a PS with its tile. As an
example, in Figure 1, we start with the initial configuration ξ0 = 120∞ = . . . 120120120 . . .
(we give a configuration as a bi-infinite sequence when the position of the origin is clear
or unimportant). After 2 updates, we have ξ2(x) = ξ0(x), for all x ∈ Z, thus the PS has

temporal period 2 and spatial period 3. Its tile is
1 2 0
2 1 1

. A key role in our analysis

is played by a special class of tiles, which are called simple tiles (see Section 3); in such
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a tile, the number of implied rule assignments is no larger than the number of states it
contains, and it turns out that, in our setting, such tiles are the most likely.

CA that exhibit temporally periodic or jointly periodic behavior have been explored
to some degree in the literature, and we give a brief review of some highlights. The
foundational work is commonly considered to be [14]. That paper, together with its
successors [10, 11], focuses on algebraic methods to investigate additive CA, but also lays
the foundation for more general rules. More recent papers on temporal periodicity of
additive binary rules include [4] and [15]. The literature on non-additive rules is more
scarce, but includes notable works [2] and [3] on the density of periodic configurations,
which use both rigorous and experimental methods. A method of finding temporally
periodic trajectories is discussed in [21], which reiterates the utility of the relation between
periodic configurations and cycles on graphs induced by the CA rules, introduced in [14].
This approach is useful in the present paper as well. Papers investigating long temporal
periods of CA also include [18, 17], as well as our companion papers [6, 8]. To mention
another take on periodicity, the paper [5] introduces robust PS, which are those that
expand into any environment with positive speed, and investigates their existence in all
range 2 (i.e., 3-neighbor) binary CA; see [7] for results on robust PS for uniformly random
rules.

We now present a formal setting to investigate PS from uniformly selected random
rules, which, to our knowledge, have not been explored before. Our rule space Ωn consists
of nn

2
rules and we assign a uniform probability P to each rule f , therefore P({f}) = 1/nn

2
.

Let Pτ,σ,n be the random set of PS with temporal period τ and spatial period σ of such
a uniformly chosen CA rule. The main quantity we are interested in is the number of
periodic solutions of fixed pair of periods τ and σ, |Pτ,σ,n|, as n → ∞. In particular, we
will determine limP (Pτ,σ,n 6= ∅), the limiting probability that a random CA rule has a
PS with given temporal and spatial periods. In the following theorem, we prove that this
limit is in (0, 1) for any τ and σ. Define

λτ,σ =
1

τσ

∑
d

∣∣gcd(τ,σ)

ϕ(d)d, (1)

where ϕ, the Euler totient function, is given by

ϕ(d) = |{k : 1 6 k 6 d, gcd(k, d) = 1}|.

We denote by Poisson(λ) a Poisson random variable with expectation λ, and by dTV the
total variation distance.

Theorem 1. For any fixed integers τ > 1 and σ > 1, |Pτ,σ,n| converges weakly to
Poisson(λτ,σ). In particular, P (Pτ,σ,n 6= ∅)→ 1− exp (−λτ,σ) as n→∞.

In fact, our proof given in Section 4 provides an upper bound on the total variation
distance: dTV(|Pτ,σ,n|,Poisson (λτ,σ)) = O(1/n).
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(a) 012200210 (b) 021102120 (c) 100112122 (d) 101201021

Figure 2: Pieces of PS for σ = 4 and 3-state rules, 012200210, 021102120, 100112122
and 101201021, with temporal period τ = 1, 2, 3 and 4, respectively. (See the discussion
before Corollary 20.) These temporal periods are the smallest in each case, as verified
by Algorithm 8 in Section 2.3. Algorithm 11 in Section 2.4 shows that σ = 4 is not the
minimal spatial period of PS given the corresponding temporal period τ = 1, 2 and 3 in
the first three rules, while for the last rule σ = 4 is also the minimal spatial period of PS
for temporal period τ = 4.

We also prove a more general result that concerns the number of PS with a range of
periods. Assume S ⊂ N× N is finite, and define PS,n = PS,n(f) =

⋃
(τ,σ)∈S Pτ,σ,n and

λS =
∑

(τ,σ)∈S

λτ,σ. (2)

The following theorem shows that the random variables |PS1,n| and |PS2,n| are asymptot-
ically independent for finite disjoint S1 and S2.

Theorem 2. For any fixed finite set S ⊂ N×N, |PS,n| converges weakly to Poisson(λS).
In particular, P (PS,n 6= ∅)→ 1− exp (−λS) as n→∞.

We define the random variable

Yσ,n = min{τ : Pτ,σ,n 6= ∅}

to be the smallest temporal period of a PS with spatial period σ of a randomly selected
n-state rule. Figure 2 provides four examples of rules f , with Y4,3(f) = 1, 2, 3 and 4. As
a consequence of Theorem 2, for a given σ > 0, the random variable Yσ,n is stochastically
bounded, in the sense of the following corollary. In fact, Theorem 2 provides an explicit
formula for the limiting distribution referred to in the statement.

Corollary 3. The random variable Yσ,n converges weakly to a nontrivial distribution (that
is, one not concentrated on a single number) as n→∞.

We now briefly discuss the relation between this corollary and the main results of [6]
and [8]. In [6], we consider a more general setting of CA rules with r neighbors, that is,
ξt updates to ξt+1 according to the rule f : Zrn → Zn, so that

ξt+1(x) = f(ξt(x− r + 1), . . . , ξt(x)), for all x ∈ Z.
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We remark that results analogous to Theorems 1 and 2 can be proved for general r > 2
with the methods of the present paper, but we restrict to the case r = 2 to minimize
inessential technical and notational issues. Fix a spatial period σ and an r. Let Xσ,n =
max{τ : Pτ,σ,n 6= ∅} be the largest temporal period of a PS with spatial period σ of
a uniformly chosen random r-neighbor rule. In the case when σ 6 r, we prove that
Xσ,n/n

σ/2 converges in distribution to a nontrivial limit, as n → ∞. We also provide
empirical evidence that the same result holds when σ > r, although in that case we
do not have a rigorous proof even for r = 2. At least for r = σ = 2, therefore, the
shortest temporal period is stochastically bounded while the longest is on the order of n.
Moreover, it is not hard to see that the maxima of the random variables Y2,n and X2,n are
both n2− n. More generally, in [8] and [13], we construct rules f with Yσ,n(f) > C(σ)nσ.
That is, the maximum of the random variable Yσ,n is of the same order as its upper bound
nσ −O(nσ/2), guaranteed by the pigeonhole principle.

In the next section, we collect our main tools: tiles of PS; circular shifts; oriented
graphs induced by a rule; and the Chen-Stein method. As already announced, we devote
Section 3 to the key class of tiles, the simple tiles. We prove the main results in Section
4 and conclude with a discussion and several unsolved problems in Section 5.

2 Preliminaries

2.1 Tiles of a PS

We recall that the spatial and temporal periods σ and τ are assumed to be minimal, so
a tile cannot be divided into smaller identical pieces. We now take a closer look into
properties of tiles.

If we choose an element in a tile T to be placed at the position (0, 0), T may be
expressed as a matrix T = (ai,j)i=0,...,τ−1,j=0,...,σ−1. We always interpret the two subscripts
modulo τ and σ. The matrix is determined up to a space-time rotation, but note that
two different rotations cannot produce the same matrix due to the minimality of σ and
τ . We say that ai,j is an element in T , and write ai,j ∈ T , when we want to refer to the
element of the matrix at the position (i, j), and use the notation rowi and colj to denote
the ith row and jth column of a tile T , again after we fix a0,0. All the properties we now
introduce are independent of the chosen rotation (as they must be, to be meaningful).

Let T1 and T2 be two tiles and ai,j, bk,m be elements in T1 and T2, respectively. We say
that T1 and T2 are orthogonal, and denote this property by T1 ⊥ T2, if (ai,j, ai,j+1) 6=
(bk,m, bk,m+1) for i, j, k,m ∈ Z+. It is important to observe that in this case the two
assignments ai,jai,j+1 7→ ai+1,j+1 and bk,mbk,m+1 7→ bk+1,m+1 occur independently.

We say that T1 and T2 are disjoint, and denote this property by T1 ∩ T2 = ∅, if
ai,j 6= bk,m, for i, j, k,m ∈ Z+. Clearly, every pair of disjoint tiles is orthogonal, but not
vice versa.

Let s(T ) = |{ai,j : ai,j ∈ T}| be the number of different states in the tile. Furthermore,
let p(T ) = |{(ai,j, ai,j+1) : ai,j, ai,j+1 ∈ T}| be the assignment number of T ; this is the
number of assignments of the rule f specified by T . Clearly, p(T ) > s(T ), so we define
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` = `(T ) = p(T ) − s(T ) to be the lag of T . A tile is simple if its lag is 0. Simple tiles
play a crucial role in our arguments and will be addressed further in Section 3. We record
a few immediate properties of a tile in the following Lemma.

Lemma 4. Let T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 be the tile of a PS with periods τ and σ. Then
T satisfies the following properties:

1. Uniqueness of assignment: if (ai,j, ai,j+1) = (ak,m, ak,m+1), then ai+1,j+1 = ak+1,m+1.

2. Aperiodicity of rows: each row of T cannot be divided into smaller identical pieces.

Proof. Part 1 is clear since T is generated by a CA rule. Part 2 follows from part 1 and
the assumption that the spatial period of T is minimal.

By contrast, we remark that there may exist periodic columns in a tile of a PS. For
example, note that the first column in Figure 2(d) has period 2 rather than 4 = τ .

2.2 Circular shifts

In this section, we introduce circular shifts, operation on Zσ
n (or Zτ

n), the set of words of
length σ (or τ) from the alphabet Zn. They will be useful in Section 3.

Definition 5. Let Zσn consist of all length-σ words. A circular shift is a map π : Zσn →
Zσn, given by an i ∈ Z+ as follows: π(a0a1 . . . aτ−1) = aiai+1 . . . ai+σ−1, where the subscripts
are modulo σ. The order of a circular shift π is the smallest k such that πk(A) = A for
all A ∈ Zσn, and is denoted by ord(π) = σ/ gcd(i, σ). Circular shifts on Zτn will also appear
in the sequel and are defined in the same way.

Lemma 6. Let π be a circular shift on Zσn and let A ∈ Zσn be an aperiodic length-σ word
from alphabet Zn. Then: (1) ord(π)

∣∣ σ; and (2) for any d
∣∣ σ,

| {B ∈ Zσn : A = π(B) for some π with ord(π) = d} | = ϕ(d).

Proof. Note that the σ circular shifts form a cyclic group of order σ. Moreover, ord(π) of
a circular shift is its order in the group, thus (1) follows. To prove (2), observe that the
circular shifts of order d generate a cyclic subgroup and the number of them is ϕ(d). As
A is aperiodic, the cardinality in the claim is the same.

We say that two words A and B of length σ are equal up to a circular shift if
B = π(A) for some circular shift π. For example, words 0123 and 2301 are not equal, but
are equal up to a circular shift.
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2.3 Directed graph on configurations

Connections between directed graphs on periodic configurations and cycles are well-
established [14, 20, 12, 21], as they are useful for analysis of PS with a fixed spatial
period.

Definition 7. Let A = a0 . . . aσ−1 and B = b0 . . . bσ−1 be two words from alphabet Zn.
We say that A down-extends to B, if f(ai, ai+1) = bi+1, for all i > 0, where (as usual)
the indices are modulo σ.

If A down-extends to B, then π(A) also down-extends to π(B), for any circular shift π
on Zσn. Therefore, we can define, for a fixed σ, the spatial digraph on equivalence classes
of words equal up to circular shifts, which has an arc from A to B if A down-extends to
B (where we identify the equivalence class with any of its representatives). See Figure 3
for the spatial digraph of the 3-state rule 021102022. For instance, there is an arc from
122 to 210 as 12 7→ 1, 22 7→ 0 and 21 7→ 2. The following algorithm and self-evident
proposition determine the PS in Figure 1 from the length-2 cycle 120↔ 211 in Figure 3.

Algorithm 8. Input: Spatial digraph Dσ,f of f and spatial period σ.
Step 1: Find all the directed cycles in Dσ,f .
Step 2: For each cycle A0 → A1 → · · · → Aτ−1 → A0, form the tile T by placing
configurations A0, A1, . . . , Aτ−1 on successive rows.
Step 3: If the spatial period of T is minimal, output T .

Proposition 9. All PS of spatial period σ of f are obtained by Algorithm 8.

We remark that Step 3 in Algorithm 8 is necessary, as, for instance, the cycle 000↔ 222
in Figure 3 results in a PS of spatial period 1 instead of 3. In the same vein, the periods
of configurations are non-increasing, and may decrease, along any directed path on the
spatial digraph. For example, in Figure 3, the configuration 100 down-extends to 222,
thus the period is reduced from 3 to 1 and then remains 1. These period reductions play
a crucial role in our companion paper [6].

122 210 022 101

100222000111

002 120 211

Figure 3: Spatial digraph of the 3-state rule 021102022 and spatial period σ = 3.

2.4 Directed graph on labels

In this subsection, we fix the temporal period τ , instead of the spatial period σ, and
obtain another digraph induced by the rule. The construction below is an adaption of
label trees from [5].
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Definition 10. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two words from alphabet Zn,
which we call labels of length τ . (While it is best to view them as vertical columns, we
write them horizontally for reasons of space, as in [5].) We say that A right-extends to
B if f(ai, bi) = bi+1, for all i ∈ Z+, where (as usual) the indices are modulo τ . We form
the temporal digraph associated with a given τ by forming an arc from a label A to a
label B if A right-extends to B.

A label A = a0 . . . aτ−1 right-extends to B if and only if we preserve the temporal
periodicity from a column A to the column B to its right. This fact is the basis for
the Algorithm 11 below, which gives all the PS with temporal period τ . The temporal
digraph of same rule as in Figure 3 and temporal period τ = 2 is presented in Figure 4.
For example, we have the arc from label 12 to 10 as 11 7→ 0, 20 7→ 1. Either of the two
3-cycles in the digraph generates the PS in Figure 1.

Algorithm 11. Input: Temporal digraph Dτ,f of f with period τ .
Step 1: Find all the directed cycles (in which we allow multiple visits to the same vertex)
in Dτ,f .
Step 2: For each cycle A0 → A1 → · · · → Aσ−1 → A0, form the tile T by placing
configurations A0, A1, . . . , Aσ−1 on successive columns.
Step 3: If both spatial and temporal periods of T are minimal, then output T .

Proposition 12. All PS of temporal period τ of f can be obtained by the Algorithm 11.

Again, Step 3 is necessary due to the same reason as Section 2.3. However, note
the differences between the two graphs: the out-degrees in Figure 4 are between 0 and
3, and the temporal periods are not necessarily non-decreasing along a directed path.
For example, 00 right-extends to 02. We also note that lifting the label digraph to one
on equivalence classes, although possible, makes cycles more obscure and is thus less
convenient.

02 12 21 20

10

01

00 11 22

Figure 4: Temporal digraph of the 3-state rule 021102022 and temporal period τ = 2.
We remark again that the vertex labels are, in fact, columns, but are represented as rows
in the text, so we keep that representation in the figure.

2.5 Chen-Stein method for Poisson approximation

The main tool we use to prove Poisson convergence is the Chen-Stein method [1]. We
need the following setting for our purposes. Let Ii, for i ∈ Γ be indicators of a finite
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family of events, which is indexed by Γ, pi = E(Ii), W =
∑

i∈Γ Ii, λ =
∑

i∈Γ pi = EW ,
and Γi = {j ∈ Γ : j 6= i, Ii and Ij are not independent}. We quote Theorem 4.7 from
[16].

Lemma 13. We have

dTV(W,Poisson(λ)) 6 min(1, λ−1)

[∑
i∈Γ

p2
i +

∑
i∈Γ,j∈Γi

(pipj + E (IiIj))

]
.

In our applications of the above lemma, all deterministic and random quantities depend
on the number n of states, which we make explicit by the subscripts. In our setting, we
prove that dTV(Wn,Poisson(λn)) = O(1/n) and that λn → λ as n→∞, for an explicitly
given λ, which implies that Wn converges to Poisson(λ) in distribution; see Theorems 1
and 2. In the proofs, we also need the following well-known result.

Lemma 14. Let X1, Y1, X2, Y2 be integer valued random variables, such that X1, Y1 are
defined on the same probability space, and so are X2, Y2. Then

dTV(X1 + Y1, X2 + Y2) 6 dTV(X1, X2) + dTV(Y1, Y2).

3 Simple tiles

We recall that a tile T is simple if its lag vanishes: `(T ) = p(T )− s(T ) = 0. It turns out
that simple tiles provide the dominant contribution to |Pτ,σ,n|, thus this class of tiles is of
central importance. For example, consider the tiles

T1 =
0 1 2 3
2 3 0 1

, T2 =
0 1 2 1
2 1 0 1

.

Then T1 is simple, as s(T1) = p(T1) = 4, but T2 is not, as s(T2) = 3 and p(T2) = 4.
Naturally, we call a PS simple if its tile is simple.

We denote by P(`)
τ,σ,n as the set of PS whose tile T has lag `. Thus the set of simple PS

is P(0)
τ,σ,n. The following lemma addresses ramifications of repeated states in simple tiles.

Lemma 15. Assume T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 is a simple tile. Then

1. the states on each row of T are distinct;

2. if two rows of T share a state, then they are circular shifts of each other;

3. the states on each column of T are distinct; and

4. if two columns of T share a state, then they are circular shifts of each other.
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Proof. Part 1 : When σ = 1, each row contains only one state, making the claim trivial.
Now, assume that σ > 2 and that ai,j = ai,k for some i and j 6= k. We must have
ai,j+1 = ai,k+1 in order to avoid p(T ) > s(T ). Repeating this procedure for the remaining
states on rowi shows that this row is periodic, contradicting part 2 of Lemma 4.
Part 2 : If ai,j = ak,m, for i 6= k, then the states to their right must agree, i.e., ai,j+1 =
ak,m+1, in order to avoid p(T ) > s(T ). Repeating this observation for the remaining states
on rowi and rowk gives the desired result.
Part 3 : Assume a column contains repeated state, say ai,j = ak,j for some i, j and k. By
part 2, rowi is exactly the same as rowk, so that the temporal period of this tile can be
reduced, a contradiction.
Part 4 : Assume that ai,j = ak,m, for j 6= m. Then ai,j+1 = ak,m+1 by parts 1 and 2. So,
ai+1,j+1 = ak+1,m+1 by part 1 in Lemma 4. So, ai+1,j = ak+1,m, again by parts 1 and 2.
Now, repeating the previous step for ai+1,j = ak+1,m gives the desired result.

We revisit the remark following Lemma 4: a tile may have periodic columns, but such
a tile cannot be simple.

Suppose a tile T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 is simple. We will take a closer look at
circular shifts of rows, so we fix a row, say the first row row0. (We could start with any
row, but we pick the first one for concreteness.) Let

i = min{k = 1, 2, . . . , τ − 1 : rowk = π(row0), for some circular shift π : Zσ → Zσ}

be the smallest i such that rowi is a circular shift of row0, and let i = 0 if and only if T
does not have circular shifts of row0 other than this row itself. Then this circular shift
satisfies row(j+i) mod τ = π(rowj), for all j = 0, . . . , τ − 1 and i is determined by the tile
T ; we denote this circular shift by πrT . We denote by πcT the analogous circular shift for
columns.

Lemma 16. Assume the tile T of a PS is simple, and let d1 = ord (πrT ) and d2 = ord (πcT ).
Then d1 and d2 are equal and divide gcd(τ, σ).

Proof. Fix an element as a0,0. By Lemma 15, parts 1 and 2, a0,0 appears in d1 rows of T .
It also appears in d2 columns by Lemma 15, parts 3 and 4. As a consequence, d1 = d2.
The divisibility follows from Lemma 6.

For illustration, consider the following tile with τ = 4 and σ = 6. Let

T3 =

0 1 2 3 4 5
6 7 8 9 10 11
3 4 5 0 1 2
9 10 11 6 7 8

.

Observe that s(T3) = p(T3) = 12, thus T3 is a simple tile. Also note that d = d1 =
ord(πrT3) = d2 = ord(πcT3) = 2, and that d divides gcd(τ, σ) and s(T3) = τσ/d. This is no
coincidence, as proved in the next lemma.
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Lemma 17. An integer s 6 n is the number of states in a simple tile

T = (ai,j)i=0,...,τ−1,j=0,...,σ−1

of some PS if and only if there exists d
∣∣ gcd(τ, σ), such that s = τσ/d.

Proof. Let T = (ai,j)i=0,...,τ−1,j=0,...,σ−1. Assume that s(T ) = s and let d = ord (πrT ). Then
by Lemma 15, parts 1 and 2, the first τ/d rows of T contain all states that are in T . As
a result, s = τσ/d and d = ord (πrT )

∣∣ gcd(τ, σ).
Now assume that d

∣∣ gcd(τ, σ). Then there exists a circular shift π : Zσ → Zσ, such
that ord (π) = d. To form a simple tile T with s(T ) = τσ/d states, construct a rectangle
of τ/d rows and σ columns using τσ/d different states in the first τ/d rows of T . Let
rowτ/d be defined by π(row0) and the subsequent rows are all automatically defined by
the maps that are assigned in the first τ/d rows, by Lemma 4, part 1.

The above lemma gives the possible values of s(T ) for a simple tile T and the next
one enumerates the number of simple tiles of PS containing s different states.

Lemma 18. The number of simple tiles of PS with temporal periods τ and spatial period
σ containing s states is ϕ(d)

(
n
s

)
(s− 1)!, where d = τσ/s.

Proof. As in the proof of Lemma 17, if s(T ) = s = τσ/d, then d = ord(πrT ). Moreover,
there are

(
n
s

)
(s − 1)! ways to form the first τ/d rows of T . Then, to uniquely determine

T , we need to select a circular shift π : Zσ → Zσ with ord (π) = d and define rowτ/d to
be π(row0). By Lemma 6, there are ϕ(d) ways to do so.

Consider two different simple tiles T1 and T2 under the rule. As the final task of this
section, we seek a lower bound on the combined number of values of the rule f assigned
by T1 and T2, in terms of the number of states. If s(T1) = s1, then p(T1) > s1, i.e., there
are at least s1 values assigned by T1. If there are s′2 states in T2 that are not in T1, then
there are at least s′2 additional values to assign. Therefore, a lower bound of the number
of values to be assigned in T1 and T2 is s1 + s′2. The next lemma states that we can
increase this lower bound by at least 1 when T1 ∩ T2 6= ∅. This fact plays an important
role in the proofs of Theorem 1 and Theorem 2.

Lemma 19. Let T1 and T2 be two different simple tiles (for two different PS) for the
same rule but possibly different periods. If T1 and T2 have at least one state in common,
then there exist ai,j ∈ T1 and bk,m ∈ T2 such that ai,j = bk,m and ai,j+1 6= bk,m+1.

Proof. As T1 and T2 have at least one state in common, we may pick ai,j ∈ T1 and
bk,m ∈ T2, such that ai,j = bk,m. If ai,j+1 6= bk,m+1, then we are done. Otherwise, we repeat
this procedure for ai,j+1 and bk,m+1 and see if ai,j+2 = bk,m+2. We repeat this procedure
until we find two pairs such that ai,j+q = bk,m+q and ai,j+q+1 6= bk,m+q+1. If we fail to do
so, then rowi in T1 and rowk in T2 must be equal, up to a circular shift. This implies that
T1 and T2 must be the same since they are tiles for same rule, a contradiction.
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4 Proofs of main results

We will give a separate proof of Theorem 1 first, for transparency, and then we show how
to adapt the argument to prove the stronger result,Theorem 2.

Proof of Theorem 1. Recalling the definition of P(`)
τ,σ,n before Lemma 15, we begin with

the decomposition

|Pτ,σ,n| = |P(0)
τ,σ,n|+

τσ∑
`=1

|P(`)
τ,σ,n|. (3)

For ` > 1,

P(|P(`)
τ,σ,n| > 0) 6 E(|P(`)

τ,σ,n|) =
τσ∑
s=1

(
n

s

)
g(`)
τ,σ(s)

1

ns+`
= O

(
1

n`

)
, (4)

where g
(`)
τ,σ(s) counts the number of τ × σ tiles that contain s different states and lag is `.

Note that the number of states s is fixed and does not depend on n. Here, 1/ns+` is the
probability of such a tile (determined by a PS), as there are s + ` assignments to make
by a random map, and each assignment occurs independently with probability 1/n. It
follows that, with δ0 the point-mass at 0,

dTV

(
τσ∑
`=1

|P(`)
τ,σ,n|, δ0

)
= O

(
1

n

)
. (5)

To find the distributional limit of |P(0)
τ,σ,n| as n → ∞, let 1 = d1 < . . . < du = gcd(σ, τ)

be the common divisors of τ and σ and sj = τσ/dj, for j = 1, . . . , u, be the possible
numbers of states in simple tiles. We index the simple tiles that have sj states in an

arbitrary way, so that T
(j)
k be the kth simple tile that has sj states. Here k = 1, . . . , Nj

and Nj = ϕ(dj)
(
n
sj

)
(sj − 1)! is the number of simple tiles with sj states (by Lemma 18).

Let I
(j)
k be the indicator random variable that T

(j)
k is a tile determined by a PS. Let

Wn =
∑u

j=1

∑Nj

k=1 I
(j)
k . Then Wn = |P(0)

τ,σ,n| and

λn = EWn =
u∑
j=1

Nj∑
k=1

EI(j)
k =

u∑
j=1

ϕ(dj)

(
n

sj

)
(sj − 1)!

1

nsj

n→∞−−−→
u∑
j=1

ϕ(dj)
1

sj

=
u∑
j=1

ϕ(dj)
dj
τσ

=
1

τσ

∑
d

∣∣gcd(τ,σ)

ϕ(d)d = λτ,σ.
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We next show that dTV(Wn,Poisson(λn)) = O(1/n). As orthogonal tiles have independent
assignments, Lemma 13 implies that

dTV(Wn,Poisson(λn))

6 min(1, λ−1
n )

∑
j,k

(
EI(j)

k

)2

+
∑
j,k,i,m

T
(i)
m 6⊥T

(j)
k

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

) . (6)

To bound
∑

j,k

(
EI(j)

k

)2

, fix a j ∈ {1, . . . , u} and note that

Nj∑
k=1

(
EI(j)

k

)2

= ϕ(dj)

(
n

sj

)
(sj − 1)!

(
1

nsj

)2

= O
(

1

nsj

)
. (7)

It follows that
∑

j,k

(
EI(j)

k

)2

= O
(
1/nlcm(τ,σ)

)
→ 0, as n→∞. It remains to bound the

sum over j, k, i,m in (6). For a fixed i, j ∈ {1, . . . , u},
Nj∑
k=1

Ni∑
m=1

T
(i)
m 6⊥T

(j)
k

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

)

6
Nj∑
k=1

Ni∑
m=1

T
(i)
m ∩T

(j)
k 6=∅

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

)

=

Nj∑
k=1

min(si,sj)∑
h=1

Ni∑
m=1

|T (i)
m ∩T

(j)
k |=h

EI(j)
k EI(i)

m +

Nj∑
k=1

min(si,sj)∑
h=1

Ni∑
m=1

|T (i)
m ∩T

(j)
k |=h

EI(j)
k I(i)

m ,

(8)

where the inequality holds because two tiles that share an assignment have to share at
least one state. Label the two triple sums on the last line of (8) S

(1)
ij and S

(2)
ij . Now, fix

also an h ∈ {1, . . . ,min(si, sj)}. We first compute

Nj∑
k=1

Ni∑
m=1

|T (i)
m ∩T

(j)
k |=h

EI(j)
k EI(i)

m = ϕ(dj)

(
n

sj

)
(sj − 1)!ϕ(di)

(
sj
h

)(
n− sj
si − h

)
(si − 1)!

1

nsj
1

nsi

= O
(

1

nh

)
,

and therefore S
(1)
ij = O (1/n). Next, we estimate

Nj∑
k=1

Ni∑
m=1

|T (i)
m ∩T

(j)
k |=h

EI(j)
k I(i)

m 6 ϕ(dj)

(
n

sj

)
(sj − 1)!ϕ(di)

(
sj
h

)(
n− sj
si − h

)
(si − 1)!

1

nsj
1

nsi−h
1

n
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= O
(

1

n

)
,

and therefore S
(2)
ij = O (1/n). The inequality and the three powers of n above are justified

as follows: 1/nsj as there are sj states in T
(j)
k , thus at least as many assignments; 1/nsi−h

as there are si − h states in T
(i)
m that are not in T

(j)
k , thus at least as many assignments;

and 1/n by Lemma 19, as T
(i)
m and T

(j)
k have h > 1 states in common and so there is at

least one additional assignment. It follows that dTV(Wn,Poisson(λn)) is bounded above
by a constant times

1

nlcm(τ,σ)
+
∑
i,j

(
S

(1)
ij + S

(2)
ij

)
= O

(
1

n

)
,

which, together with (3), (5), and Lemma 14, gives

dTV(|Pτ,σ,n|,Poisson(λn)) = O
(

1

n

)
,

and ends the proof.

We now give the proof of Theorem 2, which mainly adds some notational complexity
to the previous proof.

Proof of Theorem 2. Again, we begin with the decomposition

|PS,n| = |P(0)
S,n|+

∑
`>1

|P(`)
S,n|,

where P(`)
S,n is the set of PS with periods (τ, σ) ∈ S whose tile has lag `. Note that the

summation is finite since S is. For ` > 1, as in (4),

P(|P(`)
S,n| > 0) 6 E(|P(`)

S,n|) = O
(

1

n`

)
.

As a consequence,

dTV

(∑
`>1

|P(`)
S,n|, δ0

)
= O

(
1

n

)
.

This reduces the proof to finding the distributional limit of |P(0)
S,n| as n → ∞. We adopt

the notation u, dj, sj, T
(j)
k and I

(j)
k from the proof of Theorem 1, for a fixed σ and τ . The

dependence of these quantities on σ and τ will be suppressed from the notation, as the
periods are taken from a finite range and thus do not affect the computation that follows.
Now, Wn =

∑
(τ,σ)

∑u
j=1

∑Nj

k=1 I
(j)
k = |P(0)

S,n| and

Λn =
∑
(τ,σ)

u∑
j=1

Nj∑
k=1

EI(j)
k →

∑
(τ,σ)∈S

λτ,σ = λS ,
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as n→∞. It remains to show that dTV(Wn,Poisson(Λn)) = O(1/n). From Lemma 13,

dTV(Wn,Poisson(Λn))

6 min(1,Λ−1
n )

∑
(τ,σ)

∑
j,k

(
EI(j)

k

)2

+
∑
(τ,σ)

∑
j,k

∑
(τ ′,σ′)

∑
i,m

T
(i)
m 6⊥T

(j)
k

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

) . (9)

To bound the double sum in (9), observe that, for a fixed (τ, σ), the sum over j, k is
O
(
1/nlcm(τ,σ)

)
by (7). As minτ,σ lcm(τ, σ) > 1, the double sum in (9) is O(1/n).

To bound the quadruple sum in (9), fix a (τ, σ) for I
(j)
k , a (τ ′, σ′) for I

(i)
m , and

i, j ∈ {1, . . . , u}. Then the sum over the remaining indices is bounded by S
(1)
ij + S

(2)
ij ,

exactly as in (6), except that now S
(1)
ij and S

(2)
ij also depend on the periods. The argu-

ments that give S
(1)
ij = O(1/n) and S

(2)
ij = O(1/n) remain equally valid, and again imply

dTV(Wn,Poisson(Λn)) = O (1/n). The proof is now concluded in the same fashion as the
proof of Theorem 1.

The proof of Corollary 3 is now straightforward.

Proof of Corollary 3. Note that

P(Yσ,n 6 y) = P(|P[1,y]×{σ},n| > 0)→ 1− exp
(
−λ[1,y]×{σ}

)
,

as n→∞, where λ[1,y]×{σ} =
∑y

τ=1 λτ,σ.

For σ = 1, 2, 3 and 4, the corresponding λτ,σ are

λτ,1 =
1

τ
, λτ,2 =

{
3
2τ
, 2 | τ

1
2τ
, 2 - τ

, λτ,3 =

{
7
3τ
, 3 | τ

1
3τ
, 3 - τ

, λτ,4 =


11
4τ
, τ = 0 mod 4

3
4τ
, τ = 2 mod 4

1
4τ
, τ = 1, 3 mod 4

.

In Figure 5, we present computer simulations to test how close the distribution of Yσ,n is
to its limit for moderately large n for the above four σ’s. To compute Yσ,n(f), for every
f in the samples, we apply Algorithm 8.

5 Discussion and open problems

In this paper, we initiate the study of periodic solutions for one-dimensional CA with
uniformly randomly selected rules. Our main focus is the limiting probability distribution
of the number of PS when the number of states grows to infinity, and we show (Corollary
3) that the smallest temporal period of PS with a given spatial period σ is stochastically
bounded.

the electronic journal of combinatorics 28(4) (2021), #P4.51 15



(a) σ = 1, n = 100 (b) σ = 2, n = 100

(c) σ = 3, n = 60 (d) σ = 4, n = 20

Figure 5: Lengths of the smallest temporal periods of PS with spatial periods σ = 1 to
σ = 4 and various n. In each case, a histogram from a random sample from 10,000 rules
is compared to the theoretical limiting distribution as n→∞, given by Corollary 3.

By a similar argument, we can also obtain an analogous result in which we fix the
temporal period instead of the spatial period. Define another random variable

Y ′τ,n = min{σ : Pτ,σ,n 6= ∅},

which is the smallest spatial period of a PS given a temporal period τ . For example, for the
four rules in Figure 2, we may verify that, by Algorithm 11, Y ′1,3(012200210 ) = 1 (0→ 0),
Y ′2,3(021102120 ) = 2 (12 → 21 → 12), Y ′3,3(100112122 ) = 3 (102 → 021 → 210 → 102)
and Y ′4,3(101201021 ) = 4 (0101 → 2012 → 1010 → 0122 → 0101), with one cycle that
generates the minimal PS given parenthetically for each case.

Corollary 20. The random variable Y ′τ,n converges to a nontrivial distribution as n→∞.

Perhaps the most natural generalization of Theorem 2 would relax the condition that
S is finite. The first case to consider surely is when S is a Cartesian product with one
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factor equal to N. For example, it is clear that P(PN×N,n 6= ∅) = P(PN×{1},n 6= ∅) = 1, as
any constant initial configuration eventually generates a PS with spatial period 1.

Now, consider a general σ > 2. Let ξ0 be a periodic configuration of spatial period
σ. Under any CA rule f , ξ1 maintains the spatial periodicity, hence ξt eventually enters
into a PS, whose spatial period is however a divisor of σ, not necessarily σ itself. For this
reason, we cannot reach an immediate conclusion about limP(PN×{σ},n 6= ∅), as n→∞.
We also refer the readers to [6], in which the reduction of temporal periods is explored in
more detail.

For a fixed temporal period τ , the matter is even less clear as a rule may not have a
PS with temporal period that divides τ . For a trivial example with τ odd and n = 2,
consider the “toggle” rule that always changes the current state and thus ξt+1 = 1−ξt and
any initial state results in temporal period 2. Thus we formulate the following intriguing
open problem.

Question 21. Let τ, σ ∈ N. What are the behaviors of P(P{τ}×N,n 6= ∅) and P(PN×{σ},n 6=
∅), as n→∞ ?

Another natural question addresses the case when σ and τ increase with n.

Question 22. For positive real numbers a, b, c, d, α, β, γ and δ, what is the asymptotic
behavior of P (PI1×I2,n 6= ∅), where I1 = [anα, bnβ] and I2 = [cnγ, dnδ]?

A wider topic for further research is to investigate how different the behavior of the
shortest temporal period changes if we choose a random rule uniformly from a subset of
the set of all rules. There are, of course, many possibilities for such a subset, and we
selected two natural ones below. In each case, we keep the same notation Yn,σ for the
resulting smallest temporal period of a PS with spatial period σ.

A rule is left permutative if the map ψb : Zn → Zn given by ψb(a) = f(a, b) is a
permutation for every b ∈ Zn. Permutative rules, such as the famous Rule 30 [19, 9], are
good candidates for generation of long temporal periods.

Question 23. Let L be the set of all (n!)n permutative rules. Choosing one of these rules
uniformly at random from L, what is the asymptotic behavior of Yn,σ?

Our final question concerns the most widely studied special class of CA, the additive
rules [14]. Such a rule is given by f(a, b) = αa+ βb, for some α, β ∈ Zn.

Question 24. Let A be the set of all n2 additive rules. Again, what is the asymptotic
behavior of Yn,σ if a rule from A is chosen uniformly at random?
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