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Abstract

A classic result of Marcus and Tardos (previously known as the Stanley-Wilf
conjecture) bounds from above the number of n-permutations (σ ∈ Sn) that do
not contain a specific sub-permutation. In particular, it states that for any fixed
permutation π, the number of n-permutations that avoid π is at most exponential
in n. In this paper, we generalize this result. We bound the number of avoidant
n-permutations even if they only have to avoid π at specific indices. We consider a
k-uniform hypergraph Λ on n vertices and count the n-permutations that avoid π at
the indices corresponding to the edges of Λ. We analyze both the random and de-
terministic hypergraph cases. This problem was originally proposed by Asaf Ferber.

When Λ is a random hypergraph with edge density α, we show that the ex-
pected number of Λ-avoiding n-permutations is bounded (both upper and lower) as

exp(O(n))α−
n
k−1 , using a supersaturation version of Füredi-Hajnal.

In the deterministic case we show that, for Λ containing many size L cliques, the

number of Λ-avoiding n-permutations is O
(
n log2+ε n

L

)n
, giving a nontrivial bound

with L polynomial in n. Our main tool in the analysis of this deterministic case is
the new and revolutionary hypergraph containers method, developed in [1] and [8].

Mathematics Subject Classifications: 05A05, 05A16, 05C65

1 Introduction

Formally, the notion of pattern avoidance is defined as follows.

Definition 1.1. An n-permutation σ contains a k-permutation π iff there exist integers
1 6 x1 < x2 < · · ·xk 6 n such that

π(i) < π(j)⇔ σ(xi) < σ(xj)
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for all i, j. Otherwise, we say σ avoids π.

In the late 1980s/early 1990s, Richard P. Stanley and Herbert Wilf independently
conjectured that for every permutation π, there exists a constant cπ such that the number
of n-permutations avoiding π < cnπ for all n. As there are n! = e(1−o(1))n logn) permutations,
this bound is non-trivial. This conjecture was later proven by Marcus and Tardos [6] in
2003.

To generalize this result, we first generalize our notion of pattern avoidance in order
to account for avoidance only at specific index sets.

Definition 1.2. Let Λ be a k-uniform hypergraph on vertex set {1, 2, · · · , n}. We say an
n-permutation σ Λ-contains a k-permutation π iff there exist integers 1 6 x1 < x2 <
· · ·xk 6 n such that

π(i) < π(j)⇔ σ(xi) < σ(xj)

for all i, j AND {x1, · · · , xk} ∈ E(Λ). Otherwise, we say σ Λ-avoids π.

In this paper, we analyze the generalized Λ-avoidance problem for both random hy-
pergraphs and fixed hypergraphs, a problem originally posed by Asaf Ferber [2]. When
Λ is a random hypergraph with edge density α, we show that, for every permutation
fixed k ∈ Z+ and π ∈ Sk, the number of Λ-avoiding n-permutations is exp(O(n))α−

n
k−1 in

expectation. We also show that, for fixed Λ, the number of n-permutations Λ-avoiding π

is O
(
n log2+ε n

L

)n
for all ε > 0, as long as Λ is k-uniform and satisfies the following:

Λ contains a collection of L-vertex cliques where each of the n vertices belongs
to at least δ(Λ) > 1 cliques in the collection and at most ∆(Λ) = O(1).

We see that, for L = nΩ(1), this bound is a non-negligible improvement on the n(1−o(1))n

total n-permutations.
A few years after the proposal of Stanley-Wilf, in 1992, Zoltán Füredi and Péter

Hajnal proposed a similar conjecture [4] that extended the notion of pattern-avoiding
permutations to pattern-avoiding matrices. Essentially, a 0-1 matrix A of size n × n
contains a 0-1 matrix P of size k × k if there exists a k × k submatrix of A that has
1-entries at all the locations where P has 1-entries. Formally,

Definition 1.3. For a 0-1 matrix A of size n × n and a k × k 0-1 matrix P , we say that
A contains P iff there exist row indices 1 6 x1 < x2 < · · ·xk 6 n and column indices
1 6 y1 < y2 < · · · yk 6 n such that

Pij = 1⇒ Axiyj = 1

for all i, j. Otherwise, we say A avoids P . We note that, for A to contain P , we don’t
require that P be a submatrix of A, but that the 1-entries of P be present in a submatrix
of A.

The Füredi-Hajnal conjecture states that, if a 0-1 matrix A of size n × n avoids
a permutation matrix Pπ, it has < cPn 1-entries for some constant cP in terms of π.
Progress was first made on these conjectures by Martin Klazar in 2000 [5], who showed
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that the Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture. Then, in 2004,
Adam Marcus and Gábor Tardos proved the Füredi-Hajnal conjecture [6]. Combined
with Klazar’s arguments, a proof of the Stanley-Wilf conjecture was finally achieved.

This notion of pattern-avoiding matrices parallels that of pattern-avoiding permuta-
tions, as a permutation σ contains a permutation π if and only if the permutation matrix
Pσ contains the permutation matrix Pπ. The notion of Λ-avoidance can also be extended
to this matrix context, where A must only avoid P on submatrices whose columns corre-
spond to an edge in Λ. Viewing pattern avoidance in this matrix context was the key to
proving the Stanley-Wilf conjecture and will be one of the main insights in our analysis.

2 Main Results

When Λ is a random hypergraph, we will prove the following bound.

Theorem 2.1. Let k ∈ Z with k > 1, and take π ∈ Sk. Then there is some constant
C = C(π) such that if Λ is the k-uniform Erdős-Rényi random hypergraph on n vertices
with edge probability α ∈ (0, 1], then the expected number of σ ∈ Sn that Λ-avoid π is at
most

exp(Cn)α−
n
k−1 .

Furthermore, for α > n/
(
n
k

)
, this bound is sharp to within an exponential factor; that is,

up to a modification in C (making it potentially negative).

Remark 2.2. When α = n/
(
n
k

)
, note that this theorem gives a lower bound of exp(Cn) ·n!.

Thus n! is correct to an exponential factor when α < n/
(
n
k

)
(the answer can only increase

when α decreases). Thus, we have successfully managed to bound the expectation within
an exponential for all values of α.

As we will see in Section 3, due to linearity of expectation, Theorem 2.1 reduces
to bounding the number of permutations containing few copies of π, for which we will
require bounds on the maximal number of ones in a 0-1 matrices containing few copies
of the permutation matrix Aπ. Both of these bounds may be of independent interest as
they give sharp approximations up to respectively an exponential and a constant.

Theorem 2.3. Let k ∈ Z+, π ∈ Sk, and let Aπ be the k × k permutation matrix corre-
sponding to π. There exist constants C = C(π) and C ′ = C ′(π) > 0 such that if M is a
0-1 matrix of size n × n containing a ones, with Cn 6 a 6 n2, then M contains at least
C ′ a

2k−1

n2k−2 copies of Aπ. Furthermore, for a in the given range, this bound is sharp to within
a constant factor (depending on π), in the sense that for any a one can always find an M
that attains this lower bound to within a constant factor.

Remark 2.4. This theorem can be thought of as a ‘supersaturation’ version of Füredi-
Hajnal. Indeed, while Füredi-Hajnal states that with > Cn ones at least one copy of Aπ
is forced, Theorem 2.3 gives a bound on the number of copies of Aπ that are forced by
any number of ones. We will see in Section 4 how to prove Theorem 2.3 by bootstrapping
Füredi-Hajnal.
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In a similar but more complicated way to the deduction of Stanley-Wilf from Füredi-
Hajnal, we will be able to show the following.

Theorem 2.5. Let k ∈ Z+, k > 1 and π ∈ Sk. There exists some constant C = C(π)
and c = c(π), C > c ∈ R such that for all m,n ∈ Z>0 with m 6

(
n
k

)
, letting Sn(m,π) be

the number of permutations in Sn containing at most m copies of π, we have that

exp(cn) ·max

(
1,
(m
n

) n
k−1

)
6 Sn(m,π) 6 exp(Cn) ·max

(
1,
(m
n

) n
k−1

)
.

Remark 2.6. Notice that c is potentially negative, and thus the lower bound in Theorem
2.5 is only nontrivial if m > n. Further note that the theorem simply reduces to Stanley-
Wilf when m = 0.

In Section 3, we will make the easy deduction of Theorem 2.1 as a corollary of Theorem
2.5. In Section 4, we will prove Theorem 2.3 by bootstrapping Füredi-Hajnal. Finally, in
Section 5 we will prove Theorem 2.5.

Remark 2.7. It is natural to ask whether in addition to the expectation result in Theorem
2.1, one can also derive a concentration result on the number of σ that Λ-avoid π. However,
this at least does not seem to us to be obvious. For example, if one tries computing the
variance of the random variable (in order to for example apply Chebyshev’s inequality),
one immediately runs into difficulties, which we will now describe.

Notice that the expected number of σ that Λ-avoid π is a sum of indicator random
variables, one for each σ ∈ Sn, which are 1 if and only if that σ Λ-avoids π. In a variance
computation, we would need to compute the covariance of these indicators for σ and σ′.
This computation involves simultaneously keeping track of the number of copies of π in σ
and σ′, along with the number of index sets (of size k) at which σ and σ′ simultaneously
contain a copy of π. The interaction of these three quantities seems difficult to deal with.

Of course, Markov’s inequality combined with Theorem 2.1 shows that an upper bound
of the type given in Theorem 2.1 holds with probability 1−e−n. However, since this bound
potentially involves changing the constant C, it is quite weak, and given the difficulties
above it seems like proving stronger bounds will likely require new ideas.

We will also consider the case when Λ is a fixed graph with particular structure. In
particular, we will show the following.

Theorem 2.8. For every permutation π and any ε > 0, the number of n-permutations

Λ-avoiding π is O
(
n log2+ε n

L

)n
as long as Λ is k-uniform and satisfies the following:

Λ contains a collection of L-vertex cliques where each of the n vertices belongs to at
least δ(Λ) > 1 cliques in the collection and at most ∆(Λ) = O(1).

In Sections 6 to 10, we will prove Theorem 2.8. The main tool in our analysis will be
the hypergraph containers method. The containers method enables us to distribute the
vertices of a hypergraph into containers such that every independent set in the hypergraph
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belongs to one of the containers. We can apply this method recursively, breaking each
container down further into more containers in a branching fashion, to bound the total
number of independent sets in a hypergraph.

We will set up a hypergraph whose vertices represent the 1-entries in a matrix and
whose edges represent the entries in a submatrix containing Pπ with columns ∈ E(Λ).
In this context, independent sets correspond to Λ-avoiding matrices. Using the hyper-
graph containers method, we bound the number of permutation-matrix independent sets,
utilizing Füredi-Hajnal to show that the conditions needed to apply the method hold.

In Section 6 we introduce this fixed Λ case. We motivate the constraint that Λ contains
cliques of size poly(n) by demonstrating that Λ with maximal clique of constant size can
contain Θ(nk) edges and still be avoided by almost all n-permutations. In Section 7, we
establish the matrix/hypergraph formulation of the problem. In Section 8, we formally
introduce the hypergraph containers lemma and investigate the necessary conditions to
apply the lemma in a recursive branching fashion. In Sections 9 and 10, we verify that
these conditions are met using two additional lemmas, completing the proof of Theorem
2.8.

Many of the arguments in these sections parallel those presented in a paper [3] by Asaf
Ferber, Gweneth Anne McKinley, and Wojciech Samotij. Additionally, the application of
the hypergraph container lemma in a recursive branching fashion is adopted from a paper
[7] by Morris and Saxton.

Lastly, in Section 11, we will compare Theorems 2.1 and 2.8 and summarize our results.

3 Linearity of Expectation

Fix an integer k > 1 and suppose Λ is a random k-uniform hypergraph on [n] with each
edge chosen independently at random with edge probability α ∈ (0, 1]. In this case, we
may simplify the problem by making use of linearity of expectation. In particular, let us
define

Avn,Λ(π) := {σ ∈ Sn : σ Λ-avoids π}.

Then by linearity of expectation, we have that

EΛ[|Avn,Λ(π)|] =
∑
σ∈Sn

Pr[σ Λ-avoids π].

This latter probability is simply the probability that none of the copies of π in σ correspond
to edges of Λ, which is (1− α)# of copies of π in σ. Therefore,

EΛ[|Avn,Λ(π)|] =
∑
σ∈Sn

(1− α)# of copies of π in σ. (1)

Thus bounds on the number of permutations containing few copies of π, as given in
Theorem 2.5, will give us bounds on our desired quantity EΛ[|Avn,Λ(π)|]. We now make
this argument rigorous.
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Deduction of Theorem 2.1 from Theorem 2.5. We first prove the upper bound. By (1),

EΛ[|Avn,Λ(π)|] =
∑
σ∈Sn

(1− α)# of copies of π in σ

6

(nk)∑
m=0

(1− α)m · |{σ ∈ Sn : σ contains at most m copies of π}|.

By Theorem 2.5, there exists C = C(π) such that this is at most

(nk)∑
m=0

(1− α)m exp(Cn)·max

(
1,
(m
n

) n
k−1

)
=

n∑
m=0

(1− α)m exp(Cn)

+

(nk)∑
m=n+1

(1− α)m exp(Cn)
(m
n

) n
k−1

6 (n+ 1) exp(Cn) +
exp(Cn)

n
n
k−1

(nk)∑
m=n+1

(1− α)mm
n
k−1

6 (n+ 1) exp(Cn) +

(
n

k

)
exp(Cn)

n
n
k−1

· max
m∈R+

(1− α)mm
n
k−1

6 exp((C + k)n)

(
1 + n−

n
k−1 · max

m∈R+
(1− α)mm

n
k−1

)
6 exp((C + k)n)

(
1 + n−

n
k−1 · max

m∈R+
e−αmm

n
k−1

)
,

where we are simply bounding our sum by its number of terms times its maximum term,
and using the trivial bounds

(
n
k

)
6 nk < (en)k = ekn, n + 1 6 kn < ekn for n > 1 and

k > 2, and 1−α 6 e−α. Now, by taking the logarithm and differentiating with respect to
m, we see that e−αmm

n
k−1 is maximized when −α+ n

(k−1)m
= 0, or rearranging, m = n

(k−1)α
.

Substituting, we have that

max
m∈R+

e−αmm
n
k−1 =

(
n

e(k − 1)α

) n
k−1

.

Putting this into the calculation from earlier,

EΛ[|Avn,Λ(π)|] 6 exp((C + k)n)

(
1 + n−

n
k−1

(
n

e(k − 1)α

) n
k−1

)

= exp((C + k)n)

(
1 +

(
1

e(k − 1)α

) n
k−1

)
6 exp((C + k)n)

(
1 + α−

n
k−1

)
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6 exp((C + k + 1)n)α−
n
k−1 ,

the last step being because α 6 1. Replacing C + k+ 1 by C, we have deduced the upper
bound.

For the lower bound, suppose now α > n/
(
n
k

)
. Let m =

⌈
n
α

⌉
in the lower bound of

Theorem 2.5. Since α > n/
(
n
k

)
, we have m 6

(
n
k

)
, so this is valid. We obtain that there

are at least exp(C ′n)α−
n
k−1 permutations in Sn containing at most

⌈
n
α

⌉
copies of π for

some C ′ = C ′(π). Thus, by (1),

EΛ[|Avn,Λ(π)|] > exp(C ′n)α−
n
k−1 (1− α)d

n
αe

> exp(C ′n)α−
n
k−1 exp

(
− α

1− α
· 2n

α

)
> exp

((
C ′ − 2

1− α

)
n

)
α−

n
k−1 ,

where in the second line we used the inequality log(1− α) > − α
1−α (an easy consequence

of Taylor expansion) and
⌈
n
α

⌉
6 2n

α
(immediate as α 6 1 and n > 1). This proves the

lower bound with a constant of C = C ′ − 4 when α 6 1
2
.

With α > 1
2
, note that EΛ[|Avn,Λ(π)|] > 1 > exp(−n)α−

n
k−1 (as either the all-increasing

or all-decreasing permutation avoids π over any hypergraph), so the constant −1 suffices.
So letting C = min(C ′ − 4,−1) is sufficient to prove the lower bound, completing our
argument.

4 Bounds on 0-1 Matrices

As in the proof strategy of [6], before we prove our result for permutations we first pass
to the domain of 0-1 matrices. Since we would like to bound the number of permutations
with few copies of π, we first show that a matrix M that contains few copies of the
corresponding permutation matrix Aπ must have few ones.

The technique we use to prove Theorem 2.3 is a classic method for proving supersat-
uration results; that is, we show that a random submatrix of M will with non-negligible
probability contain at least one copy of Aπ, so all of M must contain several copies of Aπ.

In [6], Marcus and Tardos famously proved the following result, previously known as
the Füredi-Hajnal conjecture.

Theorem 4.1 (Marcus-Tardos). There exists a constant cπ such that for all n, any 0-1
matrix of size n× n containing at least cπn ones contains a copy of Aπ.

From this, we can immediately deduce the following (extremely weak) supersaturation
result, which we will bootstrap using sampling into our stronger results.

Lemma 4.2. With cπ as in Theorem 4.1, any 0-1 matrix of size n × n with m ones
contains at least m− cπn copies of Aπ.
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Proof of Lemma 4.2. We proceed by induction on m. For m > cπn the result is trivial.
Now take m > cπn and assume Lemma 4.2 for m − 1. Take a 0-1 matrix M of size

n×n with m ones. Now, by Theorem 4.1, it contains a copy of Aπ. Let M ′ be the matrix
given by M with one of the ones in this copy of Aπ changed to a 0. By the inductive
hypothesis, M ′ contains at least m − cπn − 1 copies of Aπ. But in going from M to M ′

we eliminated at least one copy of Aπ by design, so M must have at least m− cπn copies
of Aπ, finishing the induction.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Take k ∈ Z+, π ∈ Sk, and let cπ be as given by Theorem 4.1 and
Lemma 4.2. Let M be a 0-1 matrix of size n × n containing a ones, Cn 6 a 6 n2, with
C to be chosen later.

Take an r by r submatrix R of M , with r to be chosen later. Let the density of ones
in R (that is, the number of ones in R divided by r2) be 1(R). Similarly, let the density

of Aπ in R (that is, the number of copies of Aπ in R divided by
(
r
k

)2
) be π(R). Define

1(M) and π(M) similarly; in particular, 1(M) = a
n2 > C

n
by assumption.

In this notation, Lemma 4.2 tells us that(
r

k

)2

π(R) > r21(R)− cπr,

or rearranging,

1(R) 6

(
r
k

)2

r2
π(R) +

cπ
r
. (2)

Now, let R be a random r × r submatrix of M (we choose a random subset of size r
of the rows and similarly for the columns). Now, for each copy of Aπ in M (defined by k

rows and k columns), there is a
(rk)

2

(nk)
2 probability that all rows and columns corresponding

to this copy of Aπ are chosen to be in R. Thus the expected number of copies of Aπ in R

is
(rk)

2

(nk)
2 times the number of copies of Aπ in M , and therefore

E[π(R)] = π(M).

Similarly, each entry of M has equal probability of appearing in R, and so

E[1(R)] = 1(M) >
a

n2
,

as by assumption M has at least a ones.
Now that we have 1(M) and π(M) expressed in terms of 1(R) and π(R), (2) applied

to R will give an inequality between 1(M) and π(M). Explicitly,

1(M) = E[1(R)] 6 E

[(
r
k

)2

r2
π(R) +

cπ
r

]
=

(
r
k

)2

r2
π(M) +

cπ
r
. (3)
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We now have lower bounded π(M) (which is a scaling of the number of copies of Aπ in
M) in terms of the number of ones in M . It only remains to optimize the value of our
parameter r in order to obtain the desired lower bound.

Clearly, we need 1(M) > cπ
r

for (3) to give any bound on π(M) at all, so we choose

r =
⌊

3cπ
1(M)

⌋
. We require r 6 n (so that we can sample r × r submatrices), but this holds

as long as 1(M) > 3cπ
n

; that is, M has at least 3cπn ones. Thus taking C = 3cπ in the
statement of Theorem 2.3 is sufficient to satisfy r 6 n. (This will be our only restriction
on C.)

Note that since cπ > 1 and 1(M) 6 1, we have r > 2cπ
1(M)

. Thus 1(M) − cπ
r

> 1(M)
2

.

Substituting into (3),

1(M)

2
6 1(M)− cπ

r

6

(
r
k

)2

r2
π(M).

Now, since n > r, and the function
(ak)
ak

is increasing for a > k (and 0 on integers less than

k), we have that
(
r
k

)
6 rk

nk

(
n
k

)
. Substituting this yields

1(M) 6 2

(
r
k

)2

r2
π(M)

6 2
r2k−2

n2k

(
n

k

)2

π(M)

6 2
(3cπ)2k−2

(1(M))2k−2n2k

(
n

k

)2

π(M).

Letting C ′ = C ′(π) := 1
2(3cπ)2k−2 , we have shown that

C ′ · 1(M)2k−1n2k 6

(
n

k

)2

π(M). (4)

Now, 1(M) = a
n2 by definition. Furthermore, the right hand side of (4) is simply the

number of copies of Aπ in M (by the definition of π(M). Thus we have shown that M

contains at least C ′ a
2k−1

n2k−2 copies of Aπ, so taking this value of C ′ and C = 3cπ (as above),
we have proven our upper bound.

To show that this bound is sharp, take a and n with Cn 6 a 6 n2. We may modify
a and n by at most a constant factor so that n|a and a|n2. Now, suppose π(1) > π(k)
without loss of generality. Divide our n × n matrix M into blocks of side length a

n
(so

there are n2

a
blocks on each side). Consider the n2

a
blocks along the main (upper left to

lower right) diagonal. Fill each of these blocks with ones, and fill the rest of M with
zeroes. The idea is to show that any copy of Aπ must fall entirely into one of the blocks.
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How many copies of Aπ are contained in M? Recall that a copy of Aπ is given by a
set of k entries of M which equal 1, say at indices (i1, j1), . . . , (ik, jk), with i1 < · · · < ik
and the relative ordering of the jk given by π.

There are a ones in M (as required) and so at most a choices for (i1, j1). Let B be the
a
n
× a

n
block containing (i1, j1). Now, i1 < ik and j1 > jk (since π(1) > π(k)), so we are

looking for a point to the lower-left of (i1, j1). But since all blocks containing ones are on
the main diagonal, (ik, jk) must be contained in B as well.

Now, for all r, we have that i1 6 ir 6 ik, and since B is the only block in its row
containing ones, all other entries (ir, jr) must be contained in B. So for each of the

remaining k − 1 entries (ir, jr) with r > 1, there are at most |B| =
(
a
n

)2
choices. So in

total there are at most

a
(a
n

)2(k−1)

=
a2k−1

n2k−2

copies of π in M . Since we only had to adjust a, n by a constant factor in the start, this
proves the desired sharpness bounds, completing the proof of Theorem 2.3.

En route to the proof of Theorem 2.5 in the next section, we bound the number of 0-1
matrices containing few copies of Aπ.

Proposition 4.3. Let k ∈ Z+ with k > 1, π ∈ Sk be fixed. There is a constant C = C(π)
such for all m,n > 0, the number of 0-1 matrices of size n × n containing at most m
copies of Aπ is at most

exp
(
C
(
n+

2k−1
√
mn2k−2

))
.

Remark 4.4. Notice that Proposition 4.3 immediately implies the same bound on the
number of permutations of length n avoiding π (since each such permutation matrix yields
a 0-1 matrix of size n×n avoiding Aπ). Unfortunately, this bound is not as strong as the
one we need to prove Theorem 2.5. However, we will be able to bootstrap Proposition 4.3
to prove the full result by a technique involving ‘contracting’ each permutation matrix
containing few copies of π to a smaller 0-1 matrix, and then applying the Proposition to
this smaller matrix.

The explanation for the expression n +
2k−1
√
mn2k−2 is that Theorem 2.3 implies

that any 0-1 matrix M of size n × n containing at most m copies of Aπ has at most

O
(
n+

2k−1
√
mn2k−2

)
ones. This is because if this does not hold, then letting a be the

number of ones in M , we have that both a � n and a2k−1

n2k−2 � m, which contradicts the
Theorem.

Proof. The proof here parallels Klazar’s proof that Füredi-Hajnal implies Stanley-Wilf
given in [5]. The idea is to ‘contract’ any n × n matrix M containing few copies of Aπ
to an n/2 × n/2 matrix M ′ by dividing M up into 2 × 2 boxes and assigning each box
a 1 if and only if there are any ones in the box in M . If M contains few copies of Aπ,
M ′ must also, so by Theorem 2.3 it must contain few ones. But the number of possible
values of M given M ′ is exponential in the number of ones of M ′, so we may upper bound
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the number of possible choices for M by the number of possible choices for M ′. This will
give a recursion yielding the desired bound.

In particular, let S(n,m) be the set of 0-1 matrices of size n × n containing at most
m copies of π, and let f(n,m) = |S(n,m)|. For a 0-1 matrix M of size n×n with 2|n, let
the 2-contraction of M be the n/2× n/2 0-1 matrix M ′ such that M ′

i,j = 0 if and only if
M2i−1,2j−1 = M2i−1,2j = M2i,2j−1 = M2i,2j = 0.

Now, for each copy of Aπ in M ′, there is at least one corresponding copy of Aπ in
M . This is because a copy of Aπ in M ′ corresponds to a choice of k 1-entries of M ′ with
relative row- and column- ordering given by π, and each 1-entry of M ′ corresponds (in an
order-preserving way) to at least one 1-entry of M . Thus M contains at least as many
copies of Aπ as its 2-contraction M ′, so M ′ must also contain at most m copies of Aπ.

Therefore, if M ∈ S(n,m), then we must have M ′ ∈ S(n/2,m), where M ′ is the
2-contraction of M . Thus

f(n,m) = |S(n,m)| 6
∑

M ′∈S(n/2,m)

|{M : M ′ is the 2-contraction of M}| . (5)

Now, given a matrix M ′, how many matrices M 2-contract to M ′? For every 0-entry of
M ′, the corresponding four entries of M must be 0, so there are no choices to be made.
For every 1-entry of M ′, the corresponding four entries of M may be either 1 or 0 (but
not all 0), so there are 15 choices for those entries of M . Thus there are 15(# of ones in M ′)

matrices that 2-contract to M ′. Combining this with (5), we obtain that

f(n,m) 6
∑

M ′∈S(n/2,m)

15(# of ones in M ′) 6 f(n/2,m) · 15
max

M ′∈S(n/2,m)
(# of ones in M ′)

(6)

We now apply Theorem 2.3. For M ′ ∈ S(n/2,m), we know that M ′ has at most m copies
of Aπ by definition, so by Theorem 2.3 it must have at most

O
(
n/2 + 2k−1

√
m(n/2)2k−2

)
= O

(
n+

2k−1
√
mn2k−2

)
ones (by the discussion at the beginning of the proof). Substituting into (6),

f(n,m) 6 f(n/2,m) · exp(C0(n+
2k−1
√
mn2k−2)).

for some C0 = C0(π). This recursion is fairly easy to solve; we see that for a ∈ Z>0

log(f(2a,m)) 6 log(f(1,m)) + C0

a∑
i=1

(
2i +

2k−1
√
m2i(2k−2)

)
6 1 + C0

(
2a+1 + 2k−1

√
m · 2

(a+1)(2k−2)
2k−1

2
2k−2
2k−1 − 1

)
6 (C0 + 1)

(
2a+1 + 2 · 2k−1

√
m · 2(a+1)(2k−2)

)
,
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where we simply summed the geometric series and used that log(f(1,m)) 6 log(2) 6 1

and that 2
2k−2
2k−1 > 3

2
for k > 2. Now, f(n,m) is nondecreasing in n (as we may ‘pad’ any

n×n matrix with zeroes to form an n′×n′ matrix with the same number of copies of Aπ,
and this process is injective). For any n, take a ∈ Z>0 such that 2a−1 < n 6 2a. Then by
the previous computation,

log(f(n,m)) 6 log(f(2a,m))

6 (C0 + 1)
(

2a+1 + 2 · 2k−1
√
m · 2(a+1)(2k−2)

)
6 (C0 + 1)

(
4n+ 2 · 2k−1

√
m · (4n)2k−2

)
6 8(C0 + 1)

(
n+

2k−1
√
mn2k−2

)
.

Letting C = 8(C0 + 1) completes the proof of Proposition 4.3.

Now that we have bounded the total number of 0-1 matrices that contain few copies
of Aπ, in the next section we may bound the number of permutations that contain few
copies of π.

5 Permutations with Few Copies of π

This section will be devoted to the proof of Theorem 2.5.

5.1 Proof of the Upper Bound

Our proof of the upper bound of Theorem 2.5 will proceed in the following steps.

1. For a suitable b ∈ Z+ and for any matrix permutation σ containing few copies of
π, take the b-contraction (analogous to the 2-contraction in the last section) of the
matrix Aσ to get some n/b× n/b matrix Bσ.

2. Bσ is a 0-1 matrix containing few copies of Aπ, so we can apply Proposition 4.3.
Thus as σ ranges over all permutations in Sn containing few copies of π, Bσ ranges
through only a small number of distinct matrices. Thus to bound the number of
σ containing few copies of π, it suffices to bound for any matrix B the number of
σ ∈ Sn such that Bσ = B.

3. We bound the desired quantity |{σ ∈ Sn : Bσ = B}| for any n/b × n/b matrix B
using a simple counting argument.

The key is that since we are only applying Proposition 4.3 to an n/b×n/b matrix instead
of an n×n matrix, we can obtain a much better bound (as long as b is chosen accordingly).

Step 1. Let

Sn(m,π) := {σ ∈ Sn : σ contains at most m copies of π}.
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To prove the upper bound of Theorem 2.5, we would like to show that

|Sn(m,π)| 6 exp(O(n)) ·max

(
1,
(m
n

) n
k−1

)
.

First suppose m < n, such that the max is dominated by the first term. Then Proposition
4.3 guarantees that the number of 0-1 matrices of size n× n containing at most m copies
of Aπ is at most exp(O(n)). Since each σ ∈ Sn containing at most m copies of π gives
rise to a permutation matrix Aσ that contains at most m copies of Aπ, we see that the
number of σ containing at most m copies of π is exp(O(n)), as desired.

Now suppose m > n. Take b = 2k−2
√

m
n

. Just as we took the 2-contraction of a matrix
in the proof of Proposition 4.3, we will define the b-contraction of any 0-1 matrix of size
n×n. The b-contraction of such a matrix A is the 0-1 matrix B such that the dimensions
of B are

⌈
n
b

⌉
×
⌈
n
b

⌉
, and such that Bi,j = 1 if and only if there exists i′, j′ with

⌈
i′

b

⌉
= i

and
⌈
j′

b

⌉
= j such that Ai′,j′ = 1 (so if Ai′,j′ = 0 for all such i′, j′, then Bi,j = 0). Let

n′ :=
⌈n
b

⌉
=
⌈

2k−2
√
n2k−1m−1

⌉
so that B is here an n′ × n′ matrix.

For all σ ∈ Sn, let Bσ be the b-reduction of Aσ.

Step 2. Similarly to the proof of Proposition 4.3 (with the 2-contraction), any occurrence
of Aπ in Bσ will correspond to at least one occurrence of Aπ in Aσ. This again comes from,
for each 1-entry in B appearing in that occurrence of Aπ, choosing a corresponding 1-entry
of A, and realizing that these 1-entries have the same relative row- and column-ordering.

Now, we have shown that each occurrence of Aπ in Bσ gives rise to at least one
occurrence of Aπ in Aσ (it is easy to see that these occurrences are all distinct), and the
occurrences of Aπ in Aσ correspond to occurrences of π in σ. Thus for all σ ∈ Sn(m,π),
the matrix Bσ contains at most m copies of Aπ.

By Proposition 4.3 (using the fact that m > n > n′), there are at most

exp
(
C
(

2k−1
√
mn′2k−2

))
matrices of dimension n′ × n′ that contain at most m copies of Aπ (for C = C(π)). So as
σ ranges over all elements of Sn(m,π), Bσ ranges over at most

exp
(
C
(

2k−1
√
mn′2k−2

))
6 exp

(
C

(
2k−1

√
m
(

2
2k−2
√
n2k−1m−1

)2k−2
))

= exp
(
C
(

2k−1
√

22k−2mn2k−1m−1
))

6 exp(2Cn)

different matrices (where we used the fact that n′ =
⌈

2k−2
√
n2k−1m−1

⌉
6 2

2k−2
√
n2k−1m−1

as m 6
(
n
k

)
< n2k−1). Therefore,

|Sn(m,π)| =
∑

B size n′×n′
|{σ ∈ Sn(m,π) : Bσ = B}| (7)
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6 exp(2Cn) · max
B size n′×n′

|{σ ∈ Sn(m,π) : Bσ = B}| (8)

6 exp(2Cn) · max
B size n′×n′

|{σ ∈ Sn : Bσ = B}| . (9)

Step 3. It only remains to bound max
B
|{σ ∈ Sn : Bσ = B}| from above for all 0-1 matrices

B of size n′ × n′. That is, we must prove an upper bound on the number of permutation
matrices of size n× n that b-contract to a particular matrix.

Now, since Aσ is a permutation matrix, it has n ones. By the definition of b-
contraction, Bσ must have at most n ones. So in computing max

B
|{σ ∈ Sn : Bσ = B}|

we may assume B is an n′ × n′ matrix with at most n ones.
Let B be such a matrix, and suppose there are ai ones in the ith row of B. Then

n′∑
i=1

ai 6 n. How many choices are there for σ such that Bσ = B? Consider the first

row of Aσ, in which there is exactly one 1. This 1, when we take the b-reduction, must
correspond to a 1 of B in the first row of B. There are a1 such ones in the first row of B,
and each one corresponds to at most dbe entries in the first row of Aσ. Thus there are at
most dbe · a1 ways to choose the position of the 1 in the first row of Aσ–in other words,
to choose σ(1).

Similarly, the 1-entry in the ith row of Aσ must correspond to a 1-entry in the
⌈
i
b

⌉th
row of B, so there are at most dbe · ad ibe ways to choose the value of σ(i). This implies

that the total number of choices for σ such that Bσ = B is at most

n∏
i=1

dbe · ad ibe = dben
n∏
i=1

ad ibe. (10)

Now, in the sum
n∑
i=1

ad ibe, (11)

every particular aj occurs at most dbe times, once for every i such that bj − b < i 6 bj.

Thus (11) is bounded by dbe
n′∑
j=1

aj 6 dbe · n. So by the AM-GM inequality,

n∏
i=1

ad ibe 6 dbe
n .

Substituting into (10), we see that there are at most dbe2n choices for σ such that Bσ = B.
Finally, substituting into (9), we have derived that

|Sn(m,π)| 6 exp(2Cn) dbe2n .

Now by definition, b = 2k−2
√

m
n

, and m > n, so b > 1 and dbe 6 2b = 2 2k−2
√

m
n

. Therefore,

dbe2n 6 4n
(m
n

) n
k−1

.
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This implies that

|Sn(m,π)| 6 exp((2C + 2)n)
(m
n

) n
k−1

,

and replacing 2C + 2 by C finishes the proof of the upper bound in Theorem 2.5.

5.2 Proof of the Lower Bound

To prove the lower bound of Theorem 2.5, we must exhibit at least

exp(−O(n)) ·max

(
1,
(m
n

) n
k−1

)
permutations σ ∈ Sn such that σ contains at most m copies of π.

Suppose without loss of generality that π(1) > π(k). For m 6 n the all-increasing
permutation avoids π, so we get a lower bound of 1, which is sufficient.

Now suppose m > n. Note that Sn(m,π) is nondecreasing in m and that changing m
by at most a constant multiple does not change our desired lower bound by more than
an exponential factor. Thus we may without loss of generality modify m by a constant
multiple. In particular, we may assume without loss of generality that m

n
is a (k − 1)st

power, say ak−1 = m
n

, a ∈ Z+.
Let Sn,a be the set of permutations σ ∈ Sn such that:
σ(1), . . . , σ(a) is a permutation of 1, . . . , a
σ(a+ 1), . . . , σ(2a) is a permutation of a+ 1, . . . , 2a
...
σ
((⌊

n
a

⌋
− 1
)
a+ 1

)
, . . . , σ

(⌊
n
a

⌋
a
)

is a permutation of
(⌊

n
a

⌋
− 1
)
a+ 1, . . . ,

⌊
n
a

⌋
a

σ
(⌊

n
a

⌋
a+ 1

)
, . . . , n is a permutation of

⌊
n
a

⌋
a+ 1, . . . , n.

It suffices to prove that

1. |Sn,a| > exp(−O(n))
(
m
n

) n
k−1 , and

2. |Sn,a| ∈ Sn(m,π); that is, any element of Sn,a contains at most m copies of π.

Let n = qa + r, q, r ∈ Z>0, r < a. Then |Sn,a| = (a!)q · r!. Since t! >
(
t
e

)t
for all

t ∈ Z>0 (using 00 = 1), we see that

|Sn,a| >
(a
e

)qa (r
e

)r
=
(r
a

)r (a
e

)n
,

as qa+ r = n. Now, the function xx is minimized for x ∈ [0, 1] when x = 1
e
, so xx > e−

1
e .

Thus
(
r
a

)r
=
(
r
a

)a r
a > exp(−a

e
). Now, m 6

(
n
k

)
< nk, and therefore a < n. Thus(r

a

)r
> exp(−n).
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Therefore,

|Sn,a| > an exp(−2n) = exp(−2n)
(m
n

) n
k−1

.

This gives is our desired bound on |Sn,a|. It thus suffices to show that any element of Sn,a
contains at most m copies of π.

Suppose σ ∈ Sn,a. At what indices can π occur in σ? Let π occur at some set of k
indices i1 < · · · < ik. Then since π(1) > π(k), we must have σ(i1) > σ(ik), while of course
i1 < ik. By the definition of Sn,a, this can only occur when

⌈
i1
a

⌉
=
⌈
ik
a

⌉
. Since i1 < · · · < ik,

this means that there is some t, 0 6 t 6 q, such that ta + 1 6 i1 < · · · < ik 6 (t + 1)a
(where again qa+ r = n, r < a).

Given a particular value of t, there are thus at most
(
a
k

)
choices for (i1, . . . , ik). How-

ever, if t = q, we have that qa+ 1 6 i1 < · · · < ik 6 qa+ r = n, so there are in this case
only at most

(
r
k

)
choices for (i1, . . . , ik). Thus the total number of occurrences of π in σ

is at most

q

(
a

k

)
+

(
r

k

)
< qak + rk

6 qak + rak−1

6 (qa+ r)ak−1

= nak−1

= m.

Thus Sn,a ⊆ Sn(m,π), so we have proved the lower bound and we are done.

6 The Fixed Hypergraph Case

For fixed positive integer k, let Λ be a k-uniform hypergraph on n vertices satisfying the
preconditions of Theorem 2.8. That is, for some L, Λ contains a collection of L-vertex
cliques where each of the n vertices belongs to at least δ(Λ) > 1 cliques in the collection
and at most ∆(Λ) = O(1).

We would like to show that for every permutation π ∈ Sk,

Avn,Λ(π) = O

((
n log2+ε n

L

)n)
for all ε > 0.

For L = Θ(nc) with c ∈ (0, 1], this bound is a strict improvement on the n! total n-
permutations. For L = n, we match the Stanley-Wilf conjecture up to a log-exponential
factor log(n)O(n), which is asymptotically dominated by the linear exponential term nO(n)

of the conjecture.
It may seem unnatural at first to restrict our arguments only to hypergraphs containing

polynomially large cliques. However, we see that there are very dense hypergraphs Λ∗

with O(1) maximal clique size for which the number of n-permutations π that are Λ∗-
avoiding is O(n)n. For example, consider partitioning the vertices of Λ∗ into two parts,
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{1, · · · , n/2} and {n/2 + 1, · · · , n}, and adding an edge to Λ∗ for every collection of k
vertices not entirely lying in a single part. This graph will be very dense, containing(
n
k

)
− 2

(
n/2
k

)
≈ (1 − 1

2k
)
(
n
k

)
edges. However, there is a large class of n-permutations

avoiding π on these edges. Say, without loss of generality, that π(1) < π(k). We see that
all n-permutations σ in which the n/2 largest elements belong in the first n/2 indices and
the n/2 smallest elements belong in the last n/2 indices necessarily Λ∗-avoid π. Each edge
of Λ∗ corresponds to a sub permutation (σ(x1), · · · , σ(xk)) in which σ(x1) > σ(xk) and so
it cannot be a copy of π. There are (n/2)!2 ≈

(
n
2e

)n
= O(n)n such permutations, and so

there is no meaningful bound we can prove on the number of Λ∗-avoidant n-permutations.
Importantly, multipartite graphs are characterized by their small maximal cliques.

The bipartite graph we considered has maximal clique 2(k − 1), taking k − 1 vertices
from each part. Thus, our bounds on Λ-avoidance being contingent on Λ containing large
cliques is necessary. Though, the preconditions involving the minimal δ(Λ) and maximal
∆(Λ) number of cliques per vertex is more of an artifact of the proof technique. A more
general argument with a slightly less specific precondition is likely to hold.

7 Hypergraph Formulation of Pattern-Avoidance

We consider a k-uniform hypergraph H on an n × n grid of vertices V (H), which we
index v(i, j). Define a canonical set to be a subset of V (H) of size n containing exactly
one vertex from each row and each column. We see that a canonical set corresponds
bijectively to an n-permutation σ. For a k-permutation π, we add edges to H in such a
way that each canonical set is independent if and only if its corresponding n-permutation
is Λ-avoidant of π. Essentially, we add an edge for each copy of π in the vertices on
columns in E(Λ). For all 1 6 x1 < x2 < · · · < xk 6 n with {x1, · · · , xk} ∈ E(Λ) and
all 1 6 y1 < · · · < yk 6 n, we have {v(x1, yπ(1)), v(x2, yπ(2)), · · · , v(xk, yπ(k))} ∈ E(H).
We see that a canonical set containing the vertices of this edge would correspond to a
permutation σ that contains a copy of π at indices x1, · · · , xk, as desired.

We want to show that the number of n-permutations that Λ-avoid π is O
(
n log2+ε n

L

)n
.

Since each permutation corresponds to a single canonical set, we want to show that the

number of independent canonical sets is O
(
n log2+ε n

L

)n
. In fact, our goal will be to prove

a stronger claim, that the number of independent sets of size n, of which the independent

canonical sets are a subset, is O
(
n log2+ε n

L

)n
.

8 The Hypergraph Containers Lemma

We introduce a version of the hypergraph container lemma due to Balogh, Morris, and
Samotij [1]. Essentially, the container lemma is a means of placing the vertices of a
hypergraph into a collection of containers C in such a way that each independent set
in the hypergraph belongs to one of the containers. Additionally, we ensure that no
individual container contains too many vertices and that the number of containers isn’t
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too large. We let ∆`(H) be the maximum number of hyperedges of H that contain a given
set of ` vertices.

Proposition 8.1 ([1] Theorem 2.2). Let H be a k-uniform hypergraph and let K be a
constant. There exists a constant g ∈ (0, 1) depending only on k and K such that the
following holds. Suppose that for some p ∈ (0, 1) and all ` ∈ {1, . . . , k},

∆`(H) 6 K · p`−1 · e(H)

v(H)

Then, there exists a family C ⊆ P(V (H)) of containers with the following properties:

1. |C| 6
(

v(H)
6kpv(H)

)
6
(
e
kp

)kpv(H)

,

2. |G| 6 (1− g) · v(H) for each G ∈ C,

3. each independent set of H is contained in some G ∈ C.

This lemma is extremely useful in bounding the number of independent sets of a
hypergraph, as the number of independent sets is upper bounded by the sum of the number
of independent sets in each container. Or, in our context, the number of independent sets
of size n in H is upper bounded by the total number of independent sets of size n over
all the containers. However, a single application of the container lemma to our problem
will not be strong enough for our purposes, as a single container can still contain (1 −
g)|V (H)| = (1− g)n2 vertices and potentially have

(
(1−g)n2

n

)
= O(n)n many independent

sets of size n. So, we will apply the lemma recursively. Each time we encounter a container
with too many vertices, we apply the lemma to the subgraph induced by the vertices of the
container and further break it up into more containers. We do this until all the containers
are sufficiently small. Namely, we will attempt to apply the container lemma recursively

until all the containers have 6 U = Cn2 log2+ε n
L

vertices, for a constant C that will only be
in terms of k and π. Once the containers are this small, a naive upper bound will give us

that the number of size-n independent sets in a container is at most
(
U
n

)
= O

(
n log2+ε n

L

)n
.

Unfortunately, since we know nothing about the structure of the containers, we have no
guarantee that the necessary ∆` bounds will hold, which are required to apply the lemma
to a container. To overcome this problem we employ a strategy similar to that used by
Morris and Saxton [7]. Consider a subgraph G of H induced by some subset/container
of the vertices. If we remove some of the edges of G to produce a new subgraph G′, then
every independent set of G will also be an independent set of G′. So, if we apply the
containers lemma to G′, the resulting containers will also cover all the independent sets
of G. This will be our approach: for each container-induced subgraph G with more than
U vertices, we construct a subgraph G′ ⊆ G on the same vertex set with some edges of G
removed. We construct G′ to satisfy the preconditions of Proposition 8.1 for a sufficiently
small p, and so, we can break up G′ into containers using the proposition and recurse. In
this recursive process, we guarantee that all of the independent sets in the original H are
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preserved. We also ensure that we will not have too many containers in the end because
we keep p small.

Formally, in Section 9, we prove the following lemma

Lemma 8.2. Let γ = 1
1−g , where g is defined in Proposition 8.1. For the hypergraph H

defined in Section 7, consider a subgraph G ⊆ H induced by some subset of the vertices,
where

Cnγt−1 < |V (G)| 6 Cnγt

for some constant C and some t > t0 +1 with Cnγt0 = U . There exists a subgraph G′ ⊆ G
on the same vertex set such that

∆`(G
′) 6 K · p`−1

t · |E(G′)|
|V (G)|

for all ` ∈ {1, · · · , k}, where pt = n
t2+ε|V (G)|

This lemma enables the proof of Theorem 2.8 using the recursive hypergraph containers
strategy.

Theorem. 2.8 For every permutation π and any ε > 0, the number of n-permutations

Λ-avoiding π is O
(
n log2+ε n

L

)n
as long as Λ is k-uniform and satisfies the following:

Λ contains a collection of L-vertex cliques where each of the n vertices belongs to at
least δ(Λ) > 1 cliques in the collection and at most ∆(Λ) = O(1).

Proof of Theorem 2.8. As stated earlier in this section, to prove Theorem 2.8 it is sufficient

to prove that the hypergraph H has at most O
(
n log2+ε n

L

)n
independent sets of size n.

Lemma 8.2 shows that, for a general container G, we can apply the container lemma
for a certain p = pt depending on the size of G, and further split G into more containers.
Starting from the original graph H, we can repeat this process recursively until all of

our containers have 6 U = Cn2 log2+ε n
L

vertices. We are trying to count the number of
independent sets of size n in the original hypergraph and we know every independent set
in the original graph is a subset of one of these containers. Each container of size 6 U has

6
(
U
n

)
6
(
eU
n

)n
= O

(
n log2+ε n

L

)n
subsets of size n, and so the number of independent sets

of size n in this container is also bounded by this amount. Therefore, all that remains to
show is that the number of containers is singly exponential in n. That is, upper bounded
by cn for some c = O(1). If we can show this, then we will have

(number of size-n independent sets in H)

6
∑

containers C

(number of size-n independent sets in C)

= (number of conatiners) ·O
(
n log2+ε n

L

)n
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= cn ·O
(
n log2+ε n

L

)n
= O

(
n log2+ε n

L

)n
Say somewhere along this branching recursive process, we encounter a container G

that we want to split into further containers with Cnγt−1 < v(G) 6 Cnγt and t > t0 + 1.
From Lemma 8.2, we know we can apply the container lemma with p = pt = n

t2+ε|V (G)|
and split G into at most(

e

kpt

)kptv(G)

=

(
et2+ε|V (G)|

kn

)kn/t2+ε
6

(
et2+εCnγt

kn

)kn/t2+ε
=

(
et2+εCγt

k

)kn/t2+ε
containers. Additionally, we know that all of the resulting containers will contain at most
(1 − γ)v(G) 6 Cnγt−1 vertices. We will subsequently break down these child containers
using p = ps for some s 6 t − 1. Say T = logγ(n/C) or equivalently CnγT = n2. In the
worst case, after we break up H with p = pT , we break up all of H’s child containers with
p = pT−1, all of H’s grandchild containers with p = pT−2, etc all the way to p = pt0+1.
However, we can never encounter two consecutive generations of containers on which we
apply the containers lemma with the same pt; t is always strictly decreasing. Thus, the
number of containers we have at the end is at most

T∏
t=t0+1

(
e

kpt

)kptv(G)

6
T∏

t=t0+1

(
et2+εCγt

k

)kn/t2+ε

Defining A = γ
(
et2+εC
k

)1/t

,

=
T∏

t=t0+1

(At)kn/t
2+ε

=
(
Ak

∑T
t=t0+1

1
t1+ε

)n
We note that Ak

∑T
t=t0+1

1
t1+ε = O(1) as

∑∞
t=1

1
t1+ε

is a convergent sum and t(2+ε)/t has a
finite upper bound for all t. Moreover, A is a constant in terms of C and γ which are
only in terms of π and k, and have no dependency on n. Thus, the number of containers
at the end of the branching process is singly exponential in n, as desired.

9 Block Decomposition of G

We now demonstrate how to construct a subgraph G′ of G that satisfies the preconditions
of the containers lemma and enables the recursive argument.

Lemma. 8.2 Let γ = 1
1−g , where g is defined in Proposition 8.1. For the hypergraph H

defined in Section 7, consider a subgraph G ⊆ H induced by some subset of the vertices,
where

Cnγt−1 < |V (G)| 6 Cnγt
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for some constant C and some t > t0 + 1 with Cnγt0 = U . There exists a subgraph
G′ ⊆ G on the same vertex set such that

∆`(G
′) 6 K · p`−1

t · |E(G′)|
|V (G)|

for all ` ∈ {1, · · · , k}, where pt = n
t2+ε|V (G)|

Proof. Note that, for any G′ we construct, we will have ∆k(G
′) = 1 as a set of k vertices

belonging to multiple edges would imply that we have duplicate edges. So, in order to
satisfy the condition for ` = k, we have 1 6 K · pk−1

t · |E(G′)|
|V (G)| , and so we must have

|E(G′)| > |V (G)|
Kpk−1

t

. We define

N =
|V (G)|
Kpk−1

t

and so, we will construct a G′ with |E(G′)| > N . Therefore, it will be sufficient to
construct a G′ satisfying

∆`(G
′) 6 K · p`−1

t · N

|V (G)|
=

1

pk−`t

(12)

for all 1 6 ` 6 k.
To construct a subset of the edges of G satisfying (12), we must take advantage of

some structural regularity of G. However, on the whole, all we know about G is roughly
how many vertices it contains. Yet, we can take advantage of the fact that, specifically on
the vertices of G corresponding to some clique in Λ, the edges are well-behaved and will
lend themselves to an intricate construction. Namely, for each of the L-cliques in Λ, we
define its “block” to be the subgraph of G induced by the set of vertices in V (G) belonging
to the L columns corresponding to this clique. We will construct G′ by constructing a
block subgraph B′ for every block B and then taking G′ to be the union of all the B′.

We call a block B rich if

|V (B)| > d =
√
Lt2+ε|V (G)|

We will show that for every rich block B, there exists a subgraph B′ of B, on the same
vertex set with

|E(B′)| = NB =
2∆(Λ)

δ(Λ)
· |V (B)|
Kpk−1

t

We will also show that B′ can be chosen so that

∆`(B
′) 6

1

∆(Λ)pk−`

If we can prove that such a B′ exists for every rich block B, then we can construct G′

by taking the union of all the B′. We see that, for any collection of ` vertices v1, · · · , v`,
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degG′(v1, · · · , v`) 6
∑

rich blocks B

degB′(v1, · · · , v`) 6
∆(Λ)

∆(Λ)pk−`

since any collection of ` vertices, as well as any single vertex, belongs to at most ∆(Λ)
blocks. And so, ∆`(G

′) 6 1

pk−`t

as desired. We also see that we will have at least N edges

in the union of the B′ because

∣∣∣∣∣ ⋃
rich blocks B

E(B′)

∣∣∣∣∣ > 1

∆(Λ)

∑
rich blocks B

|E(B′)|

=
1

∆(Λ)

∑
rich blocks B

NB

=
1

∆(Λ)

∑
rich blocks B

(
2∆(Λ)

δ(Λ)Kpk−1
t

)
|V (B)|

=
2

δ(Λ)Kpk−1
t

·
∑

rich blocks B

|V (B)|

and we see ∑
rich blocks B

|V (B)| =
∑

blocks B

|V (B)| −
∑

unrich blocks B

|V (B)|

where ∑
blocks B

|V (B)| > δ(Λ)|V (G)|

since each vertex belongs to at least δ(Λ) blocks, and∑
unrich blocks B

|V (B)| 6 d(number of unrich blocks) 6 d(number of blocks)

Now, since Cnγt−1 < |V (G)| 6 n2

d =
√
Lt2+ε|V (G)| <

√
L|V (G)| log2+ε

γ

(
γ|V (G)|
Cn

)
6
√
L|V (G)| log2+ε

γ n

for C > γ. And since each of the n vertices in Λ belongs to at most ∆(Λ) of the size
L cliques, the number of L-cliques, which is the number of blocks, is at most ∆(Λ)n/L.
So,

∑
rich blocks B

|V (B)| >
∑

blocks B

|V (B)| − d(number of blocks)
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> δ(Λ)|V (G)| −
(√

L|V (G)| log2+ε
γ n

)
(∆(Λ)n/L)

> δ(Λ)|V (G)|/2

because

|V (G)| > U =
Cn2 log2+ε n

L

∴
√
|V (G)| >

√
Cn2 log2+ε n

L

∴ |V (G)| > n

L
·
√
|V (G)| · CL log2+ε n

∴ δ(Λ)|V (G)|/2 >

(√
L|V (G)| log2+ε

γ n

)
(∆(Λ)n/L)

for C > ∆(Λ)2

(δ(Λ)/2)2 log(γ)
, which is not in terms of n and is therefore a valid bound on the

constant C. And so,

∣∣∣∣∣ ⋃
rich blocks B

E(B′)

∣∣∣∣∣ > 2

δ(Λ)Kpk−1
t

·
∑

rich blocks B

|V (B)|

>
2

δ(Λ)Kpk−1
t

· δ(Λ)|V (G)|/2

= N

as desired.

10 Supersaturation on the Rich Blocks

From the previous section, we showed that, to prove Lemma 8.2, it was sufficient to
show the following lemma about rich blocks. Again, we define blocks to be the subgraph
induced by the vertices of G belonging to a certain collection of L columns of the n × n
grid. These L columns represent a clique in the avoidance hypergraph Λ. So, for any
k of these L columns x1 < x2 < · · · < xk and any 1 6 y1 < · · · < yk 6 n, we have
{v(x1, yπ(1)), v(x2, yπ(2)), · · · , v(xk, yπ(k))} ∈ E(H). We will have an edge in our block B
for every collection of k such vertices that belong to G. Now, we state the lemma.

Lemma 10.1. For a block subgraph B ⊆ G ⊆ H with

|V (B)| > d =
√
Lt2+ε|V (G)|

and
Cnγt−1 < |V (G)| 6 Cnγt
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for some t > t0 + 1, there exists a subgraph B′ ⊆ B on the same vertex set such that

|E(B′)| = NB =
2∆(Λ)

δ(Λ)
· |V (B)|
Kpk−1

t

(13)

and

∆`(B
′) 6

1

∆(Λ)pk−`
(14)

for all ` ∈ {1, · · · , k}, where pt = n
t2+ε|V (G)| and γ = 1

1−g , where g is defined in Proposition
8.1.

Proof. From our definition of NB in (13), we can rewrite (14) as

∆`(B
′) 6

δ(Λ)

2∆(Λ)2
· Kp

`−1
t NB

|V (B)|

We start our construction of B′ with the hypergraph B0 on the vertices of B with no
edges. We then iteratively construct B1, B2, · · · , BNB where we construct Bi+1 by adding
an edge to Bi. BNB will be our B′.

For every ` ∈ [1, k − 1] and every i ∈ [0, NB − 1], we define the dangerous set D`(Bi)
to be the set of all sets of ` vertices {v1, · · · , v`} where

|{E ∈ E(Bi)|{v1, · · · , v`} ⊆ E}| > δ(Λ)

2∆(Λ)2
· Kp

`−1
t NB

|V (B)|
− 1

Now, we say that an edge E ∈ E(B) is i-safe if F 6∈ D|F |(Bi) for every nonempty,
strict subset F ⊂ E. Our goal for all i will be to construct Bi+1 by adding an i-safe
edge to Bi that is not already in E(Bi). If this is always possible, we see that, for all
` ∈ {1, · · · , k − 1},

∆`(Bi+1) 6 max

(
∆`(Bi),

δ(Λ)

2∆(Λ)2
· Kp

`−1
t NB

|V (B)|
− 1 + 1

)
and therefore, we can show inductively that the BNB we construct will satisfy ∆`(BNB) 6
δ(Λ)

2∆(Λ)2
· Kp

`−1
t NB
|V (B)| and be a valid choice for B′, as desired.

In order to show there is always an i-safe edge E not already in E(Bi), it is sufficient to
show that the number of i-safe edges is > NB, meaning that, by the pigeonhole principle,
one of them is not already in E(Bi). Let Z be the number of i-safe edges in B. We
want to show Z > NB. The vertices of B belong to an n × L matrix grid. We define S
to be the set of vertices in B that belong to a random submatrix, selecting each column
independently with probability q and each row independently with probability Lq

n
, for a

fixed q ∈ (0, 1]. In expectation, we select qL rows and qL columns. Also note that the

probability that a single vertex is included in S is Lq2

n
as both its row and column need

to be selected.
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Then, we generate another vertex subset S ′ ⊆ S. We start with S ′ = S and iteratively
scan S ′ for subsets of vertices F ∈ D|F |(Bi). If we find such an F , we remove one of the
vertices in F from S ′ and restart the scanning process. We terminate once no subset of
S ′ belongs to D|F |(Bi). We note that the total number of vertices of S that we deleted is
at most the number of F ∈ D|F |(Bi) contained in S originally, as some vertex deletions
may have destroyed multiple dangerous F .

Now, we consider the subgraph R induced by S ′ and define the random variable X to
be the number of i-safe edges in R. Since we removed a vertex from every dangerous F
in S ′, there will be no dangerous F in V (R) and every edge in R is i-safe. So, we have
X = |E(R)|.

The probability that any i-safe edge in B belongs to R is 6
(
Lq2

n

)k
, as each of the k

vertices in the edge belongs to S with probability Lq2

n
independently, as they all occupy

separate rows and columns. So, by linearity of expectation, we can upper bound

E[X] 6 Z

(
Lq2

n

)k
Now, to show that Z > NB, it remains to give a sufficiently strong lower bound for

E[X]. The main tool for during so is the Füredi-Hajnal conjecture (proved in 2004) which
also formed the backbone of the original proof of the Stanley-Wilf conjecture. The Füredi-
Hajnal conjecture [4] states that any 0-1 matrix A of size x×x that avoids a permutation
matrix P can have at most cPx 1-entries, for a constant cP only in terms of P . The
direct implication of this theorem in the hypergraph setting is this. For a hypergraph
with an x×x grid of vertices, and edges corresponding to the copies of P on this grid, any
independent set of this graph has at most cPx vertices. Using this, we can lower bound
the number of edges in R using a supersaturation argument.

Let x = max(number of rows selected in S, number of columns selected in S). So, all
of the vertices in R belong to an x × x subgrid. We claim that, by Füredi-Hajnal,
|E(R)| > |V (R)| − cPx. While R has more than cPx vertices, we can find an edge in R
and delete one of the vertices in that edge. This decreases |V (R)| by 1, and decreases
|E(R)| by at least 1. Repeating this process until the number of vertices left in R is cPx,
we must have removed at least |V (R)| − cPx edges which were originally in R. Thus, by
linearity of expectation,

E[|E(R)|] > E[|V (R)| − cPx] = E[|V (R)|]− cPE[x]

Now,

E[|V (R)|] = E[|S ′|] = E[|S| − at most 1 for each dangerous set in S]

> E[|S|]−
k−1∑
`=1

∑
F∈D`(Bi)

Pr[F ⊆ S]

=
Lq2

n
|V (B)| −

k−1∑
`=1

|D`(Bi)| ·
(
Lq2

n

)`
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and

E[x] = E[max(number of rows selected, number of columns selected)]

6 E[number of rows selected] + E[number of columns selected]

=
Lq

n
· n+ q · L = 2qL

Therefore,

Z

(
Lq2

n

)k
> E[|E(R)|] > Lq2

n
|V (B)| −

k−1∑
`=1

|D`(Bi)| ·
(
Lq2

n

)`
− 2qcPL

We have that |V (B)| > U = Cnγt0 for some constant C. So, we take C > 4cP , which
is only in terms of π and is therefore a valid constraint on C. Setting q = 4cPn

|V (B)| < 1, we
have

Lq2

n
|V (B)| − 2qcPL >

Lq2

2n
|V (B)|

and

Z

(
Lq2

n

)k
> E[|E(R)|] > Lq2

2n
|V (B)| −

k−1∑
`=1

|D`(Bi)| ·
(
Lq2

n

)`
So, in order to show Z > NB, it is sufficient to show

Lq2

2n
|V (B)| −

k−1∑
`=1

|D`(Bi)| ·
(
Lq2

n

)`
> NB

(
Lq2

n

)k
=

2∆(Λ)

δ(Λ)
· |V (B)|
Kpk−1

t

(
Lq2

n

)k
(15)

We can bound |D`(Bi)| by double counting F,E pairs where

F = {v1, · · · , v`} ⊆ E ∈ E(Bi)

For an upper bound, we know there are i 6 NB ways to choose E ∈ E(Bi) and
there are

(
k
`

)
6 2k ways to choose an F belonging to that E. For a lower bound, each

F ∈ D`(Bi) belongs to at least δ(Λ)
2∆(Λ)2

· Kp
`−1
t NB
|V (B)| − 1 many edges and each F 6∈ D`(Bi)

belongs to at least 0 edges. So,

2kNB > number of F,E pairs > |D`(Bi)|
(

δ(Λ)

2∆(Λ)2
· Kp

`−1
t NB

|V (B)|
− 1

)
∴ |D`(Bi)| 6

2k+2∆(Λ)2|V (B)|
δ(Λ)Kp`−1

t

as δ(Λ)
2∆(Λ)2

· Kp
`−1
t NB
|V (B)| − 1 > δ(Λ)

4∆(Λ)2
· Kp

`−1
t NB
|V (B)| for sufficiently large K. Inserting this bound

into (15), it is sufficient to show

Lq2

2n
|V (B)| −

k−1∑
`=1

2k+2∆(Λ)2|V (B)|
δ(Λ)Kp`−1

t

·
(
Lq2

n

)`
>

2∆(Λ)

δ(Λ)
· |V (B)|
Kpk−1

t

(
Lq2

n

)k
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dividing through by Lq2|V (B)|
n

1

2
− 2k+2∆(Λ)2

δ(Λ)K

k−1∑
`=1

(
Lq2

npt

)`−1

>
2∆(Λ)

Kδ(Λ)

(
Lq2

npt

)k−1

and so we want

K >
2k+3∆(Λ)2

δ(Λ)

k−1∑
`=0

(
Lq2

npt

)`
(16)

Lastly, since we set q = 4cPn
|V (B)| , we have Lq2

npt
=

16c2PLn

pt|V (B)|2 . And since B is given to be a rich
block, we have

|V (B)|2 > Lt2+ε|V (G)| = Ln/

(
n

t2+ε|V (G)|

)
=
Ln

pt

Thus, Lq2

npt
6 16c2

P and we can set K = 2k+3∆(Λ)2

δ(Λ)
· (16c2P )k−1

16c2P−1
, which satisfies (16) and is

not in terms of n, making it a valid definition for the constant K.

11 Conclusion

We have managed to show that the number of n-permutations that Λ-avoid π is bounded

by O
(
n log2+ε n

L

)n
only relying on the fact that Λ contains a certain collection of size-L

cliques. This bound holds for positive ε arbitrarily close to 0. When L is polynomial in n,
that is L = Θ(nc) with c ∈ (0, 1], this bound is a strict improvement on the n! = O(n)n

total n-permutations. For L = n, we are a log-exponential factor off from the Stanley-Wilf
conjecture.

Our matching bound for when Λ is a random hypergraph with edge probability α
of exp(O(n))α−

n
k−1 is therefore more general in many ways, as there are no cliques of

polynomial size in n w.h.p. in such a random graph. This is expected as the weakest part
of our argument came from the deterministic nature of Λ. When we are bounding the
sum of the vertices in the rich blocks,∑

rich blocks B

|V (B)| =
∑

blocks B

|V (B)| −
∑

unrich blocks B

|V (B)|

the best bound for the unrich blocks∑
unrich blocks B

|V (B)| 6 d(number of unrich blocks) 6 d(number of blocks)

assumes that all the blocks are unrich, accounting for the worst deterministic case. When
the locations of the blocks are randomized, we can make a stronger statement in expecta-
tion. However, such a reliance on large cliques in the fixed Λ case is necessary to achieve
any meaningful bound, as we showed there are dense multipartite hypergraphs Λ∗ which
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are avoided by O(n)n permutations of length n, but which have constant maximal clique.
This gives us hope that the conditions we place on the fixed Λ are relatively tight.

An open problem is to remove the log2+ε n term from the bound. The term comes
from the use of hypergraph containers in a recursive branching fashion. Each container
in the tree is broken down using the containers lemma as a black box, necessitating this
term. It may be removable by reworking the arguments of the containers lemma to tailor
to this recursive usage, which would improve our bound especially for L = Θ(n).
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