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Abstract

For a graph G, let cp(G) denote the minimum number of cliques of G needed
to cover the edges of G exactly once. Similarly, let bpk(G) denote the minimum
number of bicliques (i.e. complete bipartite subgraphs of G) needed to cover each
edge of G exactly k times. We make progress on two open questions – one regarding
the maximum possible value of cp(G) + cp(G) (due to de Caen, Erdős, Pullman
and Wormald) and the other regarding bpk(Kn) (due to de Caen, Gregory and
Pritikin). For the first, we improve the best-known upper and lower bounds on
maxG cp(G) + cp(G). For the second question, we show that the classical lower
bound is tight to leading order, i.e. bpk(Kn) = (1 + o(1))n.

Mathematics Subject Classifications: 05C35, 05C70

1 Introduction

For a fixed family of graphs F , an F -partition of a graphG is a collection C = {H1, . . . , H`}
of subgraphs Hi ⊂ G such that each edge of G belongs to exactly one Hi ∈ C, and each
Hi is isomorphic to some graph in F . When F = {Kr}r>2, we refer to F -partitions
as clique partitions, and when F = {Ks,t}s,t>1, the corresponding partitions are called
biclique partitions. The size |C| of the smallest clique partition of G is called the clique
partition number of G, denoted cp(G). The biclique partition number bp(G) is defined
analogously. Both cp(G) and bp(G) (and their many variants) are NP-hard to compute
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in general graphs, but have been studied extensively from a combinatorial perspective,
in part because of their connections to various areas of computer science (see, e.g. [13]).
In this paper, we consider two longstanding combinatorial questions related to these
quantities.

1.1 Biclique partitions of Kn

In 1971, Graham and Pollak [9] showed that, for every n > 2,

bp(Kn) = n− 1. (1.1)

In particular, the edges of Kn can be partitioned into n− 1 stars

K1,n−1, K1,n−2, . . . , K1,1

centered at different vertices, while the corresponding lower bound holds by an elegant
linear algebraic argument. The lower bound argument easily generalizes to give

bpk(Kn) > n− 1 (1.2)

for any k, where bpk(G) is the size of the smallest collection {H1, . . . , H`} of bicliques
Hi ⊂ G such that each edge of G belongs to Hi for exactly k different values of i ∈ [`]. As
a matter of notation, such a collection is called a k-biclique cover of G. More generally, a
{k1, . . . , kt}-biclique cover of G is a collection {H1, . . . , H`} of bicliques Hi ⊂ G such that
for each edge of G there is some k ∈ {k1, . . . , kt} such that the edge belongs to exactly k
of the bicliques. (See [5] for a variety of interesting results on bpL(G) for certain lists L.)

In 1993, de Caen, Gregory and Pritikin conjectured that (1.2) is tight for sufficiently
large n:

Conjecture 1 (de Caen et al. [3]). For every positive integer k,

bpk(Kn) = n− 1

for all sufficiently large n.

The same authors prove their conjecture for each k 6 18, using special constructions
from design theory [3]. However, the best-known upper bound for general k is bpk(Kn) =
O(kn), obtained by simply compounding a small-k construction.

In Section 2, we show that, to leading order, Conjecture 1 is true.

Theorem 2. For every positive integer k,

bpk(Kn) = (1 + o(1))n.

More precisely, we construct a family of designs (inspired by classical ideas of Nisan
and Wigderson [15]), that yields a k-covering of Kn by at most n+2kn3/4 +k

√
n complete

bipartite subgraphs.
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1.2 Clique partitions of G and G

In 1986, de Caen, Erdős, Pullman and Wormald [4] investigated the maximum value of
cp(G) + cp(G) over the set Gn of all graphs G on n vertices, and proved that

7n2

25
+O(n) 6 max

G∈Gn
cp(G) + cp(G) 6

13n2

30
+O(n). (1.3)

They hypothesized that the lower bound 7n2

25
is nearly tight, and left closing the gap in

(1.3) as an open problem.1

Problem 3 (de Caen et al. [4]). Find c such that

max
G∈Gn

cp(G) + cp(G) ∼ cn2.

In Section 3.1, we show that the family of graphs constructed in [4] can actually be
modified to improve the lower bound in (1.3). Specifically, we show that the constant c
in (3) must be at least 23

82
> 7

25
.

Theorem 4. For infinitely many n, there exists a self-complementary graph G ∈ Gn with
cp(G) > 23

164
n2 + o(n2).

The upper bound in (1.3) essentially comes from greedily selecting edge-disjoint tri-
angles from G and G, forming clique partitions into K3’s and K2’s. Subsequent work
on complementary triangle packings, first by Erdős et al. [7] and later by Keevash and
Sudakov [14], improved significantly upon the greedy packing, with the latter authors
showing the existence of a packing with n2

12.89
edge-disjoint triangles. The resulting clique

partitions (as observed by Bujtas et al. [2]) contain a total of 0.34481n2 + o(n2) cliques,
improving the 0.43n2 upper bound in (1.3). However, partitions into triangles and edges
can never push this bound below 0.33n2, as illustrated by G = Kn/2,n/2. In Section 3.2, we
extend the ideas of Keevash and Sudakov to the complementary clique partition problem,
improving (1.3) beyond the limits of triangle packings:

Theorem 5. For all G ∈ Gn, cp(G) + cp(G) 6 0.3186n2 + o(n2).

2 A k-biclique covering of Kn

Our goal in this section is to construct a collection of (1 + o(1))n bicliques on a set of n
vertices such that all

(
n
2

)
edges belong to exactly k bicliques in the collection. We recall

the definition of a combinatorial design in the sense of Nisan and Wigderson [15] from
their classical paper on pseudorandom generators.

1In the same paper [4], the authors solve the corresponding problem for cc(G) + cc(G), where
cc(G) is the minimal number of cliques in G needed to cover every edge at least once, showing that

maxG∈Gn cc(G) + cc(G) = n2

4 (1 +o(1)). This is tight up to the o(1) error by Kn/2,n/2, and the error term
was later removed by Pyber [19] for n > 21500.
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Definition 6. A family of sets {S1, . . . , Sn} with S1, . . . , Sn ⊆ [d] is a (n, d, t,m)-design
if:

1. |Si| = m for all i ∈ [n];

2. |Si ∩ Sj| 6 t for all i, j ∈ [n] with i 6= j.

We construct our designs in a way that differs from [15] and better suits our particular
choice of parameters:

Lemma 7. For any positive integers m and t, there exists some N such that an (n, d, t,m)-
design with d 6 2mn1/(t+1) exists for all n > N .

Proof. Let N be large enough that there are at least m prime numbers in the interval
[n1/(t+1), 2n1/(t+1)] for every n > N ; this is possible by the Prime Number Theorem. Fix
some n > N , and choose m distinct primes p1, . . . , pm in this interval. We will pick sets
S1, . . . , Sn from the disjoint union

U =
m⊔
k=1

Z/pkZ.

For i ∈ [n], let Si consist of m elements from U , one from each group. Specifically, for
k ∈ [m], pick element i (mod pk) from group Z/pkZ.

It is clear that |Si| = m for all i, and that d := |U | =
∑m

k=1 pk 6 2mn1/(t+1). We
claim that |Si ∩ Sj| 6 t for all distinct i, j ∈ [n]. Indeed, suppose to the contrary that
|Si ∩ Sj| > t for some distinct i, j ∈ [n]. Then among the chosen primes, there are t + 1
primes pl1 , . . . , plt+1 with i ≡ j (mod plk) for each k ∈ [t+ 1]. But then

t+1∏
k=1

plk
∣∣ (i− j).

Since i 6= j, it follows that

|i− j| >
t+1∏
k=1

plk > n,

a contradiction.

Remark 8. The above design is in fact optimal up to constant factors. Consider any
(n, d, t,m)-design, where the sets are contained in a universe U of size d. For every
(t + 1)-element subset of U , there is at most one set among S1, . . . , Sn that contains the
subset. Since each Si contains

(
m
t+1

)
subsets of size t+ 1, we must have

(
d
t+1

)
> n

(
m
t+1

)
, so

d >

(
n

(
m

t+ 1

)
(t+ 1)!

)1/(t+1)

>
1

e
n1/(t+1)m.

We will only use the special case (n, k
√
n, 1, bk/2c) of Lemma 7, which we state ex-

plicitly below as a corollary.
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Corollary 9. For any positive integer k and all n sufficiently large, there is some d 6 k
√
n

and sets S1, . . . , Sn ⊆ [d] with |Si| = bk/2c for all i, and |Si ∩ Sj| 6 1 for all i 6= j.

We also require a result of Alon [1] on {1, 2}-biclique coverings of Kn, which are
collections of bicliques such that every edge of Kn belongs to either 1 or 2 of the bicliques
in the collection. The size of the smallest such collection is denoted bp{1,2}(Kn).

Fact 10 (Alon, [1]). 2For all n, bp{1,2}(Kn) 6 2
√
n.

Finally, we construct a k-biclique covering of Kn.

Theorem 11. Let k be a positive integer. Then for all sufficiently large n,

bpk(Kn) 6 n+ 2kn3/4 + k
√
n.

Proof. Let n be large enough to apply Corollary 9. Let S1, . . . , Sn ⊆ [d] be the sets in
the resulting design, and let p1, . . . , pbk/2c be the corresponding primes used in the proof
of Lemma 7. Define bicliques B1, . . . , Bd ⊂ Kn by letting Bi be the biclique between
{j ∈ [n] | i ∈ Sj} and {j ∈ [n] | i 6∈ Sj}. Then any edge {i, j} is covered exactly
|Si| + |Sj| − 2|Si ∩ Sj| times, and this number is equal to either 2bk/2c or 2bk/2c − 2
(depending on whether |Si ∩ Sj| = 0 or 1).

If k is odd, every edge still needs to be covered either 1 or 3 more times. Let us define
a triple-edge to be an edge {i, j} with |Si ∩ Sj| = 1. An edge {i, j} is a triple-edge if and
only if there exists some index l and remainder r such that i ≡ j ≡ r (mod pl). We can
define a clique Cl,r consisting of all vertices i with i ≡ r (mod pl). Observe that every
triple-edge is contained in exactly one such clique, and every such clique contains only
triple-edges. To make progress, we will construct a {1, 2}-biclique covering of each clique
Cl,r. The number of cliques Cl,r is at most k

√
n, and each has size at most

√
n, so by

Fact 10, at most k
√
n · 2n1/4 = 2kn3/4 bicliques are needed to {1, 2}-cover every clique

Cl,r. Now every edge needs to be covered 1 or 2 more times.
If k is even, every edge needs to be covered only 0 or 2 more times, so we skip the

above step. Finally, in either case, we’ll “pad” the covering so that every edge is covered
exactly k times. To do this, define bicliques D1, . . . , Dn where Di is the star centered at
vertex i and containing edges to all vertices j < i such that {i, j} needs to be covered 1 or
2 more times, and to all vertices j > i such that {i, j} needs to be covered 2 more times.

This completes the construction. The total number of bicliques used is at most n +
2kn3/4 + k

√
n (from the padding step, the {1, 2}-covering step, and the initial design,

respectively).

Remark 12. A key ingredient in the proof above is the {2k − 2, 2k}-biclique covering of
Kn using 2k

√
n bicliques. It is shown in [5] that

√
n/2 bicliques are necessary for this list

covering, so the asymptotic dependence on n cannot be decreased.

2The value of bp{1,2}(Kn) is not known for large n, although the lower bound bp{1,2}(Kn) >
√
n− 1

always holds.
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G G

K` K`K` K`

K` K` K` K`

Figure 1: The graph H`(G) and its complement.

3 Clique partitions of a graph and its complement

3.1 Improving the lower bound

The construction in our proof of Theorem 4 is based on the original construction in [4],
and the calculation of its clique partition number makes use of certain facts shown in
[4] and [17]. Here we include the entire argument for the reader’s convenience. Before
proceeding with the construction, we need the following lemma, which has appeared in
many places but perhaps first in Pullman and Donald [17]. Recall that the edge chromatic
number χ′(G) of a graph G is the minimum number of colors needed to color the edges
of G so that no two edges of the same color are incident to the same vertex. We use the
notation G∨H to denote the graph on vertices V (G)t V (H) formed by adding all edges
between V (G) and V (H).

Lemma 13. Let G be any graph with n vertices and e edges. Then cp(G∨K`) > n`− e.
If χ′(G) 6 `, then cp(G ∨K`) = n`− e.

Proof. Let H = K` and let EG−H be the set of all n` edges between V (G) and V (H).
Suppose C1, . . . , Cr is a clique partition of G ∨H. Since Ci can have at most one vertex
in H, it follows that |E(Ci) ∩ E(G)| >

(|E(Ci)∩EG−H |−1
2

)
> |E(Ci) ∩ EG−H | − 1. Letting

S = {i : E(Ci) ∩ EG−H 6= ∅} and summing this inequality over S, we obtain

e >
∑
i∈S

|E(Ci) ∩ E(G)| >
∑
i∈S

|E(Ci) ∩ EG−H | − |S| > n`− r, (3.1)

which implies cp(G ∨H) > n` − e. When χ′(G) 6 `, we can assign each of the ` nodes
in H to one of the ` color classes of a valid edge coloring in G, and obtain a collection of
triangles of the form {v, x, y}, for v ∈ H and (x, y) ∈ E(G) that has been given color v in
the edge coloring. No edge in EG−H will be used twice precisely because no vertex in G is
incident to two edges of the same color. This gives a collection of e edge-disjoint triangles
that cover all the edges in G, and leaves at most n` − 2e edges left to cover. Adding in
those remaining edges yields a clique partition of size at most n`− e.

The construction: Let ` and m be any positive integers, and let G be any graph on
m vertices. We define H` = H`(G) to be the graph in Figure 1, where the double lines
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G

K2` K` K`

K` K`

Figure 2: Decomposing H` into the edge-disjoint union of the two graphs X`(G) = G∨K2`

(left) and Y` = K` ∨K` ∨K` ∨K` (right).

are to be interpreted in the same way as the ∨ symbol, i.e. including all possible edges
between the vertices on either end. Observe that H`(G) ∼= H`(G), and that the edges of
H`(G) can be split into X`(G) := G ∨ K2` and Y` = K` ∨ K` ∨ K` ∨ K`, as depicted in
Figure 2. Clearly χ′(G) 6 χ′(Km), which is at most m, since we can assign the numbers
0, 1, . . . ,m − 1 to each vertex and color the edge (i, j) by i − j mod m. So if m 6 2`,
Lemma 13 implies that cp(X`(G)) = m`− e(G). Therefore

cp(H`(G)) + cp(H`(G)) = cp(H`(G)) + cp(H`(G))

= cp(X`(G)) + cp(X`(G)) + 2cp(Y`)

= 2m`−
(
m

2

)
+ 2cp(Y`)

for any graph G on m 6 2` vertices. (In fact, this still gives a lower bound on cp(H`(G))+
cp(H`(G)) for any G and any m.) The term cp(Y`) was computed in [4], and we include
this calculation in the Appendix:

Lemma 14 (Lem. 2 and 3 in [4]). For any `, cp(Y`) > 7
4
`2 + O(`), and this is tight

infinitely often.

So for any G on m vertices, we have

cp(H`(G)) + cp(H`(G)) > 2m`−
(
m

2

)
+

7

2
`2. (3.2)

Note that H`(G) has n := m+ 4` vertices, so when we maximize (3.2) in m while keeping
n fixed, we find that the optimum occurs at m = 9

8
`. At this value of m, the lower bound

is (8− 81
128

)`2 +O(`) for a graph on 41
8
` vertices, implying that, for infinitely many n,

max
G∈Gn

cp(G) + cp(G) >
(8− 81

128
)

(41
8

)2
n2 +O(n) =

23

82
n2 +O(n).

Note that if G is a self-complementary graph (i.e. G ∼= G), then H`(G) is also self-
complementary.
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3.2 Improving the upper bound

The problem of partitioning a graph G into as few cliques as possible is equivalent to
the problem of packing disjoint copies of K3, K4, . . . , Kn inside of G in such a way as to
maximize a certain linear objective function. Indeed, given a clique partition C of G, let
Ci denote the number of cliques of size i in C, for i = 2, . . . , n. Then |C| =

∑n
i=2 Ci and∑n

i=2

(
i
2

)
Ci = |E(G)|, so

cp(G) = min
C
|C|

= E(G)−max
C

∑
i>3

((
i

2

)
− 1

)
Ci︸ ︷︷ ︸

=:v(G)

. (3.3)

We will also consider r-restricted clique packings/partitions, in which the largest clique
can have size at most r. We define cp(G, r) to be the minimum number of cliques of size
at most r needed to partition the edges of G. Equivalently, cp(G, r) = E(G) − vr(G),
where

vr(G) := max
C

r∑
i=3

((
i

2

)
− 1

)
Ci. (3.4)

Clearly cp(G, r) > cp(G), and one would expect the numbers cp(G, r) and cp(G) to be
relatively close for large r. This is indeed the case, as we show in the following lemma.

Lemma 15. For any ε > 0, there exists an integer r0 = r0(ε) such that for any r > r0

and any graph G on n vertices,

cp(G, r) 6 cp(G) + ε · n2.

Proof. We make use of the following fact, which is a straightforward consequence of
Wilson’s theorem [21]: for any fixed t > 2 and ε > 0, there is an integer m0 = m0(t, ε)
such that for all m > m0, there is a partition of Km into edge-disjoint copies of Kt and
at most εm2 leftover edges. Set t = 1

2ε
and r0 = m0(t, ε/5).

Let C be a clique partition with |C| = cp(G). For any r > r0, we can obtain an

r-restricted clique partition C̃ from C as follows: keep each clique of size at most r, and,
for each clique Km with m > r, decompose it into at most

(
m
2

)
/
(
t
2

)
copies of Kt and cover

the remaining edges (of which there are at most ε
5
· m2) with K2’s. This gives a clique

partition C̃ of size

|C̃| 6
r∑
i=2

Ci +
∑
i>r

((
i
2

)(
t
2

) +
ε

5
i2

)
Ci

6
n∑
i=2

Ci + ε ·
n∑
i=2

(
i

2

)
Ci

= |C|+ ε · |E(G)|

from which the lemma follows.
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3.2.1 Fractional clique packings

For a fixed family F of graphs and any graph G, let
(
G
F

)
denote the set of (unlabeled, non-

induced) subgraphs of G which are isomorphic to some F ∈ F . Following Keevash and
Sudakov [14] and Yuster [22], we say a function ψ :

(
G
F

)
→ [0, 1] is a fractional F-packing

of G if for every edge e ∈ E(G), we have∑
e∈H∈(G

F)

ψ(H) 6 1.

We denote by GF the polyhedron of all fractional F -packings of G. As we are interested
in the fractional analogue of clique packings, we will only be concerned with families of
the form

Fr := {K3, K4, . . . , Kr}.

Let νr(G) be the value of the linear program

max
ψ∈GFr

∑
H∈( G

Fr)

((
|H|
2

)
− 1

)
ψ(H). (3.5)

When the objective function is simply
∑

H∈(G
F)
ψ(H), and the family F = {F} is just

a single graph, a theorem of Haxell and Rödl [11] implies that relaxing the domain of
maximization from (integer) packings to fractional packings can only change the value of
the optimum by o(n2). Subsequently, Yuster [22] extended this result to arbitrary families
of graphs. For finite families (such as Fr), Yuster’s proof easily extends to arbitrary linear
objective functions [23]. Therefore:

Theorem 16. For any r > 3 and G ∈ Gn,

vr(G)− νr(G) = o(n2).

The advantages of studying fractional clique packings rather than clique partitions
are twofold. First, solving the linear program (3.5) is computationally feasible, unlike the
corresponding integer program. Second, they can be averaged, which not only enables one
to turn finite computations into asymptotic bounds, but also allows one to leverage the
results of a search on n vertices to reduce the search space when looking for a minimizer
on n + 1 vertices. This is the approach used by Keevash and Sudakov in [14], and the
following averaging lemma (for a different LP) appears as their Lemma 2.1, with the same
proof.

For each r, define
fr(n) := min

G∈Gn
νr(G) + νr(G).

Lemma 17. For any r > 3, the sequence fr(n)
n(n−1)

is increasing in n.

the electronic journal of combinatorics 28(4) (2021), #P4.53 9



Proof. Let G ∈ Gn+1, and let G1, . . . , Gn+1 be the induced subgraphs on the vertex subsets
of size n. Let ψi, ψi be optimal fractional packings on Gi and Gi. Since each edge of G
(and G) occurs in n− 1 of the Gi, we have that

ψ :=
1

n− 1

n+1∑
i=1

ψi, ψ :=
1

n− 1

n+1∑
i=1

ψi

are fractional packings on G and G with combined objective value of at least n+1
n−1

fr(n),

and hence fr(n+1)
(n+1)n

> (n+1)fr(n)
n(n−1)(n+1)

= fr(n)
n(n−1)

, as claimed.

Since the sequence fr(n)
n(n−1)

is obviously bounded above by 1/2, it follows that it con-

verges to a limit cr ∈ (0, 1/2). Since cr is increasing in r, the sequence {cr} also converges
to a limit that we will call c∞.

Theorem 18.

max
G∈Gn

cp(G) + cp(G) ∼
(

1

2
− c∞

)
n2.

Proof. This essentially follows from Lemma 15 and Theorem 16. More explicitly, for any
ε > 0, we can pick r large enough so that |cp(G) − cp(G, r)| < εn2 for any G ∈ Gn, and
|cr − c∞| < ε. Now pick n large enough so that |vr(G)− νr(G)| < εn2 for any G ∈ Gn and
|fr(n)− crn2| < εn2. It follows that

max
G∈Gn

cp(G) + cp(G) ∈
(

1

2
− c∞ ± 8ε

)
n2

for n sufficiently large.

The same argument shows that maxG∈Gn cp(G, r) + cp(G, r) ∼
(

1
2
− cr

)
n2. Let us

define αr := 1
2
− cr, and α∞ = 1

2
− c∞. We seek an upper bound on α∞, and since

α∞ 6 αr = 1
2
− cr 6 1

2
− fr(n)

n(n−1)
for any n, it suffices for our purposes to compute a lower

bound on the value of fr(n)
n(n−1)

for any particular pair of positive integers (r, n). For example,

a modern computer can compute f4(8) = 6 numerically by solving the LP (3.5) on every
non-isomorphic graph on 8 vertices. This shows that α∞ 6 α4 6 1

2
− 6

8·7 = 11
28
≈ 0.3928.

This already beats the best bound one can get from purely Ramsey-based arguments3,

3As was remarked in [4], one can begin with a maximal collection of edge disjoint Kr’s (instead of
triangles) in G and G, and bound the number of remaining edges (using Turan’s theorem) by ξrn

2, where
ξr := 1

2 −
1

2R(r,r)−2 , and the iterate on the remaining edges with cliques of size Kr−1, etc. It is not hard

to see that the bound one obtains is

cp(G) + cp(G) 6

(
ξ3 +

ξ4 − ξ3
3

+
ξ5 − ξ4

6
+ · · ·+ ξr − ξr−1(

r−1
2

) +
1
2 − ξr(

r
2

) )
n2.

Even using the most optimistic (i.e. smallest) of the possible values for R(k, k) for k > 5, this approach
will not yield an upper bound better than 0.41n2.
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although it does not beat the Keevash-Sudakov triangle packing bound. In the remainder
of this section, we improve this bound in two ways: first, we show in Section 3.2.2, we
can combine Ramsey-type arguments with estimates on fr(n0) to yield better estimates
on fr(n) for n much larger than n0; second, in Section 3.2.3 we compute the exact value
of f4(n) up to n = 19, using an algorithm of Keevash and Sudakov that is significantly
more efficient than brute force search.

3.2.2 Ramsey-type improvements

In [14], it was observed that the averaging argument in Lemma 17 can be improved,
in a sense, by using a different decomposition of G into smaller subgraphs based on a
greedy packing as described in the introduction. In particular, given any bicoloring of
K3n, greedily select vertex-disjoint monochromatic triangles T1, . . . , Ti. The fact that
R(3, 3) = 6 guarantees that we can do this until 3 vertices remain, giving us n − 1
triangles T1, . . . , Tn−1, and one set of 3 vertices denoted Tn. Consider the 3n colorings c of
Kn obtained by picking one vertex in each Ti and the edges between them. Each coloring
has some fractional packing ψc of weight at least f3(n), and since each edge between Ti
and Tj for i 6= j occurs in exactly 3n−2 of these, the average 3−(n−2)

∑
c ψc is a valid

fractional packing in K3n of weight at least 9f3(n). Since each of the monochromatic
triangles T1, . . . , Tn−1 are edge disjoint from this packing, they can be included as well,
yielding a lower bound

f3(3n) > 9f3(n) + 2(n− 1). (3.6)

Since R(4, 4) = 18, we can greedily find vertex disjoint monochromatic copies of K4,
H1, . . . , Hn−4, with 16 vertices remaining. From the remaining vertices, we can find edge
disjoint monochromatic triangles Tn−3, Tn−2, Tn−1, Tn, which we join with the remaining
four vertices to form Hn−3, . . . , Hn, each of size four. Repeating the same process as
above, we see that

f4(4n) > 16f4(n) + 5(n− 4) + 8. (3.7)

For r = 5, we can use the bound R(5, 5) 6 48 to find n − 9 vertex-disjoint copies of
K5, with 45 vertices left over. We can then find d(45 − 18)/4e = 7 copies of K4, with
17 vertices left over, in which we can find 2 monochromatic triangles, and distribute the
remaining vertices so that each of these 11 parts has size 5. Arguing as above, this then
implies

f5(5n) > 25f5(n) + 9(n− 9) + 37. (3.8)

We omit the details, but using similar arguments and the bounds on Ramsey numbers
R(6, 6) 6 165 and R(7, 7) 6 540 yields the inequalities

f6(6n) > 36f6(n) + 14n− 151 (3.9)

f7(7n) > 49f7(n) + 20n− 532. (3.10)

According to András Gyárfás [10], Paul Erdős, sitting in the Atlanta Airport in 1995,
asked his companions whether every bicoloring of the edges of KR(k,k) contains two edge-
disjoint monochromatic copies of Kk. Ralph Faudree pointed out that this is not true,
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at which point Erdős asked for the smallest number n(k) for which any bicoloring of
Kn(k) does contain two edge-disjoint monochromatic Kk’s. The next day, Faudree showed
n(3) = 7, and some time later, Gyárfás showed n(4) = 19. For our purposes, however, we
require vertex-disjoint monochromatic copies of Kr. In the appendix we give an argument,
inspired by the proof of n(4) = 19 by Gyárfás, showing that n = 20 is sufficient to find
two vertex-disjoint monochromatic K4’s, provided there is also a monochromatic K5:

Lemma 19. Any bicoloring of the edges of K20 with a monochromatic copy of K5 contains
two vertex-disjoint monochromatic copies of K4.

With this lemma in hand, we can obtain a slight improvement over (3.7):

Lemma 20. For any n > 12, f4(4n) > 16f4(n) + 5n− 9.

Proof. Consider any bicoloring of K4n. Since 4n > 48 > R(5, 5), there is some monochro-
matic copy of K5 – call this subgraph N . While there are at least R(4, 4) = 18 vertices in
K4n \ N , we can greedily select vertex-disjoint monochromatic copies of K4 in K4n \ N ,
H1, . . . , Hn−5. This leaves a set S of 15 remaining vertices. By Lemma 19, the coloring
induced on S ∪ N ∼= K20 has two vertex disjoint copies of K4, which we call Hn−4 and
Hn−3. Removing the vertices in Hn−4 ∪ Hn−3 from N ∪ S, we are left with 12 vertices,
which must contain three vertex-disjoint monochromatic triangles T1, T2 and T3. This
leaves behind a set of three vertices {v1, v2, v3}. Decomposing K4n into the n blocks of
size 4

H1, . . . , Hn−3, T1 ∪ {v1}, T2 ∪ {v2}, T3 ∪ {v3},
we consider the 4n edge-colorings c of Kn obtained by picking one vertex from each
part. Each of these has a fractional clique packing ψc of size at least f4(n), and since
each edge is used in 4−(n−2) such ψc, we know that 4−(n−2)

∑
c ψc is a valid packing

in K4n. Adding the copies of K4 and K3 inside the n individual blocks, we see that
f4(4n) > 16f4(n) + 5(n− 3) + 6.

3.2.3 Computer-aided calculations

We next describe a generalization of the algorithm used by Keevash and Sudakov in the
case of triangle packings [14], which we call the KS extension method. For any finite
family of graphs F = {H1, . . . , Hr}, any graph G ∈ Gn, and any vector Γ ∈ RF , we let
νF ,Γ(G) be the value of the linear program

max
ψ∈GF

∑
H∈(G

F)

Γ(H)ψ(H) (3.11)

and define Λ(F ,Γ, n) := minG∈Gn νF ,Γ(G) + νF ,Γ(G). For any ` ∈ R, and any set L of
graphs, define

L(L, `) := {G ∈ L : νF ,Γ(G) + νF ,Γ(G) 6 `},
and let ΛF ,Γ(L) = minG∈L νF ,Γ(G′) + νF ,Γ(G′). We also define ext(L) be the set of one-
vertex extensions of the graphs in L. The KS extension method is based on the following
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observation: by Lemma 17, any graph G′ ∈ Gn+1 with νF ,Γ(G′) + νF ,Γ(G′) 6 n+1
n−1
· ` must

be a one-vertex extension of some graph in L(Gn, `). In other words, if {`n}n∈N is any
sequence of numbers satisfying `n+1 > n+1

n−1
`n, then

L(Gn+1, `n+1) ⊆ ext(L(Gn, `n)).

Let us refer to such sequences `n as level sequences.

Algorithm 1: KS Extension Method

1 n← n0

2 compute L = L(Gn, `n) (e.g. via exhaustive search)
3 while L 6= ∅ do
4 Λ[n] = ΛF ,Γ(L)
5 S ← ext(L)
6 L← L(S, `n+1)
7 Λ[n+ 1] = `n+1

8 n← n+ 1

9 end
10 return Λ

Note that the sequence `n used by Algorithm 1 does not have to be determined before
runtime; as long as it is guaranteed to be a level sequence, this guarantees the loop
invariant L(Gn, `n) ⊆ L, and hence Λ[n] 6 ΛF ,Γ(Gn). In [14], they choose a parameter d
(called the “search depth”), and define `n recursively by taking `n0 = +∞ and `n+1 to be
n+1
n−1
· αn, where αn is either (a) the dth smallest value in the set {νF ,Γ(G′) + νF ,Γ(G′) :

G ∈ L(Gn, `n)}, if this set has at least d elements, or (b) `n, if the set has fewer than d
elements. The role of d is to limit the number of graphs stored in the set L. If d = ∞,
then Algorithm 1 has to solve the LP (3.11) on every graph up to size n in order to
compute ΛF ,Γ(Gn), while if d is too small, then the while loop will terminate after a small
number of iterations. We ran an implementation4 of this method on a 24-core computing
grid with d = 11, starting with an exhaustive search on n0 = 6 vertices, and obtained the
results summarized in Table 1. The last column in particular implies f4(20) > 64.725,
which implies c4 > 0.1703. Using Lemma 20, and inequalities (3.8), (3.9), and (3.10) (in
that order), we can obtain the bound c7 > 0.1814, which implies

max
G∈Gn

cp(G) + cp(G) < 0.3186n2 + o(n2).

4There are other implementation details omitted from our pseudocode description of Algorithm 1
that also have significant impact on its runtime and memory usage, such as how and when to prune
isomorphisms, which LP solver to use, which value of n0 to exhaust from, and how to split work among
processors. Our implementation is similar to the one used in [14], and we recommend reading their magma
code, which can be found online at https://people.math.ethz.ch/~sudakovb/triangles-program.
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i
n

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 4 6 8 11 15 19 23 27 33 39 45 51 57 > 64.725
2 4 5 7 9 12 16 20 24 28 34 40 46 52 58 *
3 5 6 8 10 12.5 16.5 20.5 24.5 28.5 34.5 40.5 * * * *
4 6 7 9 11 13 17 21 25 29 34.75 40.75 * * * *
5 7 8 9.5 12 14 17.5 21.25 25.25 29.25 35 * * * * *
6 8 8.3 10 12.3 14.5 18 21.5 25.5 29.5 35.25 * * * * *
7 8.3 8.5 10.3 12.5 14.6 18.25 22 26 30 35.5 * * * * *
8 9 9 10.5 12.6 14.8 18.3 22.25 26.25 30.25 * * * * * *
9 10.6 9.5 10.6 12.6 15 18.5 22.3 26.3 30.5 * * * * * *
10 12.5 10 10.6 12.8 15.5 18.6 22.5 26.5 30.75 * * * * * *
11 * 10.3 10.8 13 15.6 18.75 * * 31 * * * * * *

Table 1: The lowest values of ν4(G)+ν4(G) for G ∈ Gn, n = 6, . . . , 19, as found by the KS
extension method. The level `20 was 64.72527+ when the algorithm terminated, which
implies that f4(20) > 64.725.
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Appendix

Proof of Lemma 14

Lemma 14. For any `, cp(Y`) > 7
4
`2 +O(`), and this is tight infinitely often.
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Proof. Let C = {C1, . . . , Ck} be an optimal clique partition of Y`. Let us denote the left
(according to Figure 2) copy of K` in Y` by A and the right copy by B. Suppose that
C ′ = {C1, . . . , Ct}, for some t 6 k, is the sub-collection of cliques which contain vertices
in both A and B. Let EA and EB be the edges in A ∩ C ′ and B ∩ C ′, so that Y` is the
edge disjoint union of (A \ EA) ∨K` and (B \ EB) ∨K` with C ′, and therefore

cp(Y`) > 2`2 − 2

(
`

2

)
+ |EA|+ |EB|+ t. (3.12)

If clique Ci has ai vertices in A and bi vertices in B, then

t∑
i

aibi = `2 (3.13)

and

|EA|+ |EB|+ t =
t∑
i=1

((
ai
2

)
+

(
bi
2

)
+ 1

)
. (3.14)

Minimizing (3.14) over positive integers ai, bi subject to the constraint (3.13), we see the
minimum occurs when ai = bi = 2, i.e. each Ci ∈ C ′ is a K4 with two vertices in each of
A and B. Therefore, at the minimum, t = `2/4 and |EA|+ |EB|+ t = 3`2/4, which gives

cp(Y`) > 2`2 − 2

(
`

2

)
+ 3`2/4 =

7

4
`2 +O(`),

as claimed. Tightness follows from Theorem 4 in [18], which essentially guarantees the
existence of a decomposition of the edges between A and B into disjoint K4’s, whenever
` > 14 is even.

Proof of Lemma 19

Lemma 19. Any bicoloring of the edges of K20 with a monochromatic copy of K5 contains
two vertex-disjoint monochromatic copies of K4.

Proof. Suppose that we have a bicoloring of K20 with a red copy N = {n1, . . . , n5} of
K5. If there is a blue copy of K4, then we are finished, because this blue copy and N
cannot share an edge, and therefore share at most one vertex. We may now assume that
all monochromatic copies of K4 are red. We can address the case in which there exists a
vertex v such that it is incident to at least nine red and blue edges each relatively quickly.
We denote by R and B the cliques on the red and blue neighbors of v, respectively.
Because the Ramsey number R(3, 4) = 9 and our graph has no blue copy of K4, R must
contain a red copy of K3. Moreover, B cannot contain a blue copy of K3, so B must
contain a red copy of K4. Adding v to the red copy of K3 in R results in two vertex-
disjoint red copies of K4, one in R∪v and one in B. We may now assume that all vertices
have at least eleven incident edges of the same color.
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Consider the case in which some vertex v has two red and two blue edges adjacent to
a red copy M of K4. If v has at least eleven red edges, then it has at least nine red edges
connected to K20\(M ∪ {v}), which, by the same argument as above, implies K20\M has
a red copy of K4. The same argument holds if v has at least eleven blue edges. We may
now assume that no vertex has two red and two blue edges adjacent to a red copy of K4.

From here, we consider two cases:

Case I: Suppose that there exists five vertices V = {v1, . . . , v5} ⊂ K20\N , each with at
least three red edges adjacent to N . Because no vertex has both two red and two
blue edges adjacent to a red copy of K4, each vertex of V has at least four red edges
adjacent to N . In addition, because our graph has no blue copy of K4 every set
V \vi has a red edge.

Suppose that some vertex of V , without loss of generality called v1, has five red edges
adjacent to N . Without loss of generality, {v2, v3} is a red edge in V \v1. There are
at most two blue edges from v2 or v3 to N ; without loss of generality assume they
are not incident to n4 or n5. Then the subsets {v1, n1, n2, n3} and {v2, v3, n4, n5} are
both red copies of K4. So we may now assume that each vertex in V has exactly
four red edges adjacent to N .

Let f(vi) denote the unique vertex in N for which edge {vi, f(vi)} is blue, and f(V )
denote the range of f . We consider several sub-cases, depending on the size of
|f(V )|.
Suppose |f(V )| > 2. Let {v1, v2} be (without loss of generality) a red edge in V .
Both v1 and v2 have four red edges to N , so there are at least three vertices in N
(without loss of generality n1, n2, and n3) such that {vi, nj} is a red edge for all
i ∈ {1, 2} and j ∈ {1, 2, 3}. By pigeonhole, |f(V ) ∩ {n1, n2, n3}| > 0, so (without
loss of generality) suppose that f(v3) = n1. Then {v1, v2, n1, n2} and {v3, n3, n4, n5}
are vertex-disjoint red copies of K4.

Suppose |f(V )| = 2. Without loss of generality, support that f(V ) = {n1, n2}
and |f−1(n1)| > 3. Because there are no blue copies of K4 in our graph, f−1(n1)
contains a red edge {vi, vj}, and the subsets {vi, vj, n2, n3} and {vk, n1, n4, n5} are
vertex-disjoint red copies of K4, where vk ∈ f−1(n2).

Suppose |f(V )| = 1. Without loss of generality, suppose f(V ) = {n1}. Then V does
not contain a blue copy of K3, otherwise our graph would contain a blue copy of K4.
If V contains a red copy {v1, v2, v3} of K3, then {v1, v2, v3, n2} and {v4, n3, n4, n5}
are two red copies of K4, and we are done. If V does not contain a red or blue
copy of K3, then the red edges in V form a cycle of length five, and there are two
vertex-disjoint red edges in V , denoted {vi, vj} and {vk, vl}. In this case, the subsets
{vi, vj, n2, n3} and {vk, vl, n4, n5} are both red copies of K4.

Case II: Suppose that there exist at most four vertices in K20\N with at least three red
edges adjacent to N . Then there are at least eleven vertices in K20\N with at least
three blue edges adjacent to N . Because no vertex has two red and two blue edges
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adjacent to a red copy of K4, these vertices have at least four blue edges adjacent
to N , and so there exists a vertex ni ∈ N with at least nine blue edges adjacent to
K20\N . Therefore, K20\N must contain a red copy of K4.

This completes the proof.
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