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Abstract

The P-position sets of some combinatorial games have special combinatorial
structures. For example, the P-position set of the hexad game, first investigated
by Conway and Ryba, is the block set of the Steiner system S(5, 6, 12) in the shuffle
numbering, denoted by Dsh. However, few games were known to be related to
Steiner systems in this way. For a given Steiner system, we construct a game whose
P-position set is its block set. By using constructed games, we obtain the following
two results. First, we characterize Dsh among the 5040 isomorphic S(5, 6, 12) with
point set {0, 1, . . . , 11}. For each S(5, 6, 12), our construction produces a game whose
P-position set is its block set. From Dsh, we obtain the hexad game, and this game
is characterized as the unique game with the minimum number of positions among
the obtained 5040 games. Second, we characterize projective Steiner triple systems
by using game distributions. Here, the game distribution of a Steiner system D is the
frequency distribution of the numbers of positions in games obtained from Steiner
systems isomorphic to D. We find that the game distribution of an S(t, t + 1, v)
can be decomposed into symmetric components and that a Steiner triple system is
projective if and only if its game distribution has a unique symmetric component.
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1 Introduction

The starting point of this paper is a two-player game called the hexad game1 [6, 13].
This game is played with six coins and a strip of cells indexed by [12], where [12] =
{0, 1, . . . , 11}. The six coins are placed on distinct cells indexed by p1, p2, . . . , p6 with∑
pi > 21. Two players alternately move a coin to a smaller empty cell with the restriction

that the sum of indices of the six non-empty cells is at least 21. A player who cannot move
loses. Figure 1 shows an example of the hexad game. Note that a position in the hexad
game can be represented as an element of

(
[12]
6

)
, where

(
[12]
6

)
=
{
P ⊂ [12] : |P | = 6

}
.

The first player moves 8 to 0. 

0 1 2 3 4 75 6 8 9 10 11 0 1 2 3 4 75 6 8 9 10 11

The second player moves 6 to 1 and wins.

Figure 1: An example of the hexad game with six coins initially placed on 2, 4, 5, 6, 8,
and 9.

The hexad game is notable because its P-position set is the block set of a Steiner
system S(5, 6, 12) [6,13]. Here, a P-position is a winning position for the Previous player
(i.e., the second player to move);2 a pair

(
[v],B

)
is called a Steiner system S(t, k, v) with

point set [v] and block set B if B ⊆
(

[v]
k

)
and every T ∈

(
[v]
t

)
is contained in a unique

B ∈ B. Further, Conway and Sloane [6] found a game whose P-position set is the block
set of a Steiner system S(5, 8, 24). No general methods, however, were known to find such
games related to Steiner systems as the above games.

For a given Steiner system, we construct a game whose P-position set is equal to its
block set (Corollary 10).3 We here illustrate our construction using the S(1, 2, 4) with
block set

{
{0, 2}, {1, 3}

}
; our aim is to obtain the game shown in Figure 2. We use a

digraph to represent a game. Let Γ be the digraph with vertex set
(

[4]
2

)
and edge set{(

P, P (p q)
)
∈
(

[4]

2

)2

: q < p, p ∈ P, q 6∈ P
}
,

where (p q) is the transposition of p and q, that is, P (p q) = P ∪{q}\{p} when p ∈ P and
q 6∈ P . We denote by PΓ and EΓ the vertex and edge sets of Γ, respectively. For example,(
{2, 3}, {2, 3}(3 0)

)
=
(
{2, 3}, {0, 2}

)
∈ EΓ. For P ∈ PΓ, let IΓ(P ) and OΓ(P ) be the sets

of in-neighbors and out-neighbors of P , respectively. That is,

IΓ(P ) =
{
R ∈ PΓ : (R,P ) ∈ EΓ

}
and OΓ(P ) =

{
Q ∈ PΓ : (P,Q) ∈ EΓ

}
.

1According to [13], the hexad game was first investigated by Conway and Ryba.
2The P-position set of the hexad game is a subset of

(
[12]
6

)
. For example, a position P ∈

(
[12]
6

)
with∑

p∈P p = 21 is a P-position in the hexad game.
3Since we start with a P-position set, our approach may be referred to as reverse game theory or

mechanism design (see [12]).
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For example, IΓ

(
{0, 2}

)
=
{
{1, 2}, {0, 3}, {2, 3}

}
. Define

PB
Γ = B ∪

⋃
B∈B

IΓ(B), (1.1)

where B =
{
{0, 2}, {1, 3}

}
. Then PB

Γ =
(

[4]
2

)
\
{
{0, 1}

}
. Let Ind

(
Γ,PB

Γ

)
denote the

subgraph induced in Γ by PB
Γ , that is, the digraph with vertex set PB

Γ and edge set{
(P,Q) ∈ EΓ : P,Q ∈ PB

Γ

}
.

We consider the digraph Ind
(
Γ,PB

Γ

)
as the following two-player game. Before a game

begins, we put a token on a starting vertex P ∈ PB
Γ . The first player moves the token

from P to an out-neighbor Q of P . Similarly, the second player moves it from Q to an out-
neighbor R of Q. In this way, the two players alternately move the token from the current
vertex to one of its out-neighbors. A player who cannot move loses. In this manner, we
can view a digraph as a two-player game. Then the P-position set of Ind

(
Γ,PB

Γ

)
is B.

Figure 2: A game whose P-position set is
{
{0, 2}, {1, 3}

}
. The labels P and N indicate

winning positions for the previous and next players, respectively.

For example, if {1, 3} is the starting vertex, then the first player can move the token only
to {0, 3} or {1, 2}, so the second player can move it to {0, 2} and win. Thus {1, 3} is
a winning position for the previous player, that is, a P-position. In the same way, for
a given Steiner system, we can construct a game whose P-position set is its block set
(Corollary 10).

In this paper, we investigate the frequency distribution of the numbers of positions
of games obtained from a Steiner system. Let D be an S(t, k, v) with point set [v], and
let N be the index of the automorphism group of D in the symmetric group Sym([v]) on
[v]. Then there are N Steiner systems S(t, k, v) with point set [v] isomorphic to D, and,
for each of them, we can construct a game whose P-position set is its block set. The
frequency distribution of the numbers of positions (vertices) of the obtained N games is
called the game distribution of D. For example, there are three S(1, 2, 4) with point set
[4], and their block sets are as follows:

B =
{
{0, 2}, {1, 3}

}
, B′ =

{
{0, 1}, {2, 3}

}
, B′′ =

{
{0, 3}, {1, 2}

}
.
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As we have seen, |PB
Γ | = 5. A direct computation shows that∣∣PB′

Γ

∣∣ =

∣∣∣∣([4]

2

)∣∣∣∣ = 6 and
∣∣PB′′

Γ

∣∣ =

∣∣∣∣([4]

2

)
\
{
{0, 1}, {0, 2}

}∣∣∣∣ = 4.

Therefore the game distribution of an S(1, 2, 4) is as follows:

# positions 4 5 6 Total
# games 1 1 1 3

By using game distributions, we present the following two results.
First, we characterize the Steiner system S(5, 6, 12) in the shuffle numbering, denoted

by Dsh. It is well-known that S(5, 6, 12) is unique up to isomorphism and its automorphism
group is the sporadic simple Mathieu group M12 [17, 18]. Since the index of M12 in
Sym([12]) equals 5040, it follows that there are 5040 S(5, 6, 12) with point set [12], and
our construction produces 5040 games. Here, Dsh is one of the 5040 S(5, 6, 12). The
name of the shuffle numbering comes from the fact that the automorphism group of Dsh

is generated by the two permutations i 7→ 11 − i and i 7→ min(2i, 23 − 2i) of [12], called
the Mongean shuffle, and Dsh has many interesting properties [7, 10]. In fact, the P-
position set of the hexad game is the block set of Dsh [6,13]. Conversely, our construction
produces the hexad game from Dsh. Surprisingly, this game can be characterized as the
unique game with the minimum number of positions among the obtained 5040 games;
this result is easily seen by using the game distribution of an S(5, 6, 12) (Theorem 16). In
particular, we can characterize Dsh by using games.

Second, we characterize projective Steiner triple systems among all Steiner triple sys-
tems. In this paragraph, we consider non-isomorphic designs unlike in the previous para-
graph. The projective geometry PG(d, 2) forms a Steiner system S(2, 3, 2d+1 − 1), called
the projective Steiner triple system of order 2d+1− 1 (Example 2). It is known that there
are 80 non-isomorphic Steiner systems S(2, 3, 15) [4], and one of them is projective. How
can we characterize the projective one among them? In combinatorial design theory, char-
acterizations of particular designs, including projective Steiner triple systems, have been
studied (see, for example, [1, 3, 9, 11,16]). In this paper, we show that the game distribu-
tion of an S(t, t+ 1, v) can be decomposed into symmetric components (Proposition 19).
We then prove that an S(2, 3, v) is projective if and only if its game distribution has a
unique symmetric component (Theorem 23).

This paper is organized as follows. In Section 2, we recall the concepts of a Steiner
system and an impartial game. Section 3 contains the construction of games whose P-
position set equals the block set of a Steiner system. In Section 4, we introduce game
distributions and then characterize the S(5, 6, 12) in the shuffle numbering. In Section
5, it is shown that the game distribution of an S(t, t + 1, v) can be decomposed into
symmetric components. We finally characterize projective Steiner triple systems by using
game distributions in Section 6.

2 Preliminaries

We recall some facts about Steiner systems and impartial games that will be used later.
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2.1 Steiner Systems

Let t be a nonnegative integer and let v, k, and λ be positive integers with t 6 k 6 v.
A t-(v, k, λ) design D is a pair (VD,BD) where VD is a set with |VD| = v and BD, called
the block set of D, is a subset of

(
VD

k

)
such that every T ∈

(
VD

t

)
is contained in exactly

λ blocks. Note that a t-(v, k, 1) design is a Steiner system S(t, k, v). Throughout this
paper, we assume that VD = [v] = {0, 1, . . . , v − 1} unless otherwise stated. If D is a
t-(v, k, λ) design, then it is also an i-(v, k, λi) design for 0 6 i 6 t, where

λi =

(
v−i
t−i

)(
k−i
t−i

)λ. (2.1)

Note that λ0 equals the number of blocks of D.

Example 1. Let B =
{
{0, 1}, {2, 3}, . . . , {2v−2, 2v−1}

}
. Then ([2v],B) is an S(1, 2, 2v).

Example 2 (Projective Steiner triple systems). Let F2 be the finite field with two ele-
ments. Let

V = Fd+1
2 \

{
(0, . . . , 0)

}
and B =

{
{p, q, p+ q} ∈

(
V

3

)
: {p, q} ∈

(
V

2

)}
.

We see that (V,B) is a Steiner system S(2, 3, 2d+1−1). This design is called the projective
Steiner triple system of order 2d+1 − 1, since V and B can be regarded as the point and
line sets of the projective geometry PG(d, 2). For example, if d = 2, then the blocks are
as shown in Figure 3.

Figure 3: The blocks of the projective Steiner triple system of order 7. For example,{
(1, 0, 0), (1, 1, 0), (0, 1, 0)

}
and

{
(1, 1, 0), (1, 0, 1), (0, 1, 1)

}
are blocks.

We next define isomorphisms. Let D and D′ be t-(v, k, λ) designs. A bijection
φ : VD → VD′ is called an isomorphism if φ(B) ∈ BD′ for every B ∈ BD, where φ(B) =
{φ(b) : b ∈ B}. If there is an isomorphism between D and D′, then they are said to
be isomorphic. An isomorphism from D to itself is called an automorphism of D. Let
Aut(D) denote the group of automorphisms of D.

Example 3. Let D be the S(1, 2, 4) with block set
{
{0, 1}, {2, 3}

}
. The automorphism

group of D is generated by the two permutations (0 1) and (0 2)(1 3). This group is
isomorphic to the dihedral group D8 of order 8. It is easy to see that S(1, 2, 4) is unique
up to isomorphism. In general, S(1, 2, 2v) is unique up to isomorphism.
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Remark 4. A Steiner system S(2, 3, v) is called a Steiner triple system (see [3] for details).
Kirkman [14] showed that an S(2, 3, v) exists if and only if v ≡ 1, 3 (mod 6). Although
S(2, 3, 7) and S(2, 3, 9) are unique up to isomorphism, S(2, 3, v) is not unique for v >
9 [8, 15]. For example, there are 80 non-isomorphic S(2, 3, 15) [4] and one of them is
projective. Let D be an S(2, 3, v). By the Veblen-Young theorem [16], the following two
conditions are equivalent:

(1) D is projective, that is, it is isomorphic to a projective Steiner triple system.

(2) If {a, b, c}, {a, d, e}, and {b, d, f} are distinct three blocks of D, then {c, e, f} is also
a block (see Figure 4).

Figure 4: A characterization of projective Steiner triple systems.

2.2 Impartial Games

We recall the concept of an impartial game (see, for example, [2, 5] for more details).
We represent a game as a digraph. Let Γ be a digraph (PΓ,EΓ) satisfying

lgΓ(P ) <∞ for every P ∈ PΓ, (2.2)

where lgΓ(P ) is the maximum length of a walk from P . The vertex set PΓ is called the
position set of Γ. If (P,Q) ∈ EΓ, then Q is called an option of P . A position without
options is called a terminal position. Suppose that Γ has at least one position; then Γ
has a terminal position. We consider Γ as a two-player game in the way described in the
introduction. This kind of game is called an impartial game, and every (short) impartial
game can be represented in this manner. Thus we call a digraph satisfying (2.2) simply
a game.

Example 5. Let

Γ1 =
(
[4],
{

(3, 2), (3, 1), (2, 1), (2, 0), (1, 0)
})

and Γ2 =
(
[2],
{

(1, 0), (0, 1)
})
.

See Figure 5. Then Γ1 is a game and position 0 is a terminal position in Γ1. However, Γ2

is not a game since the walk (1, 0, 1, 0, . . . ) has infinite length.

Example 6 (Welter’s game and the hexad game). Let Γv,k be the game with position set(
[v]
k

)
and edge set {

(P, P (p q)) ∈
(

[v]

k

)2

: q < p, p ∈ P, q 6∈ P
}
.
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Figure 5: Γ1 and Γ2.

The game Γv,k is called Welter’s game. Let

PHxd =

{
P ∈

(
[12]

6

)
:
∑
p∈P

p > 21

}
.

The subgraph Ind
(
Γ12,6,PHxd

)
induced in Γ12,6 by PHxd is called the hexad game and is

denoted by Hxd.

We next define P-position sets. Let P and N be two symbols. For a game Γ and a
position P ∈ PΓ, the outcome oΓ(P ) of P is defined recursively by

oΓ(P ) =

{
N if P has an option Q with oΓ(Q) = P,

P otherwise.

Recall that Γ has a terminal position if it has at least one position. By definition, the
outcome of a terminal position is P. An easy induction shows that the previous player
can force a win if and only if the outcome of the starting position is P. Let

WΓ =
{
P ∈ PΓ : oΓ(P ) = P

}
.

The set WΓ is called the P-position set or winning position set of the game Γ. Note that
WΓ is an independent set in Γ, that is, (B,C) 6∈ EΓ for any B,C ∈ WΓ. As we will see
in the next section, our construction, described in the introduction, can be applied to an
independent set in Γ. Note that if B is the block set of an S(t, k, v) with t < k, then B

is an independent set in Γv,k.

Example 7. Let Γ1 be as in Example 5. The outcomes of the four positions are shown
in Figure 6. For example, the previous player can force a win if we start at position 3.

Figure 6: Outcomes of positions.
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Remark 8. Let Dsh = ([12],WHxd). Then Dsh is an S(5, 6, 12), called the Steiner system
S(5, 6, 12) in the shuffle numbering [6, 13]. For example, if P is an element in

(
[12]
6

)
with∑

p∈P p = 21, then it is a terminal position in Hxd, so P ∈ WHxd. Incidentally, the set
WHxd can be obtained as the orbit{

{0, 1, 2, 3, 4, 11}π : π ∈ G
}
,

where {0, 1, 2, 3, 4, 11}π = {0π, 1π, 2π, 3π, 4π, 11π} and G is the group generated by the
two permutations i 7→ 11− i and i 7→ min(2i, 23− 2i) of [12], which is the automorphism
group of Dsh. We can also explicitly describe WHxd by using the following 3 × 4 array,
called the MINIMOG in the shuffle numbering (see [7]).

3 Construction of Games

For an independent set B in a game Γ, we construct a game whose P-position set equals
B. In particular, our construction works for the block set B of an S(t, k, v) with t < k
since B is an independent set in Γv,k.

For an independent set B in a game Γ, define PB
Γ by (1.1), that is, PB

Γ = B∪
⋃
B∈B IΓ(B).

When no confusion can arise, we write PB, I(P ), and O(P ) instead of PB
Γ , IΓ(P ), and

OΓ(P ), respectively. Let Φ(Γ,B) denote the family of the position sets of induced sub-
graphs of Γ whose P-position sets equal B, that is,

Φ(Γ,B) =
{
Q ⊆ PΓ : WInd(Γ,Q) = B

}
.

Theorem 9. If Γ is a game and B is an independent set in Γ, then

Φ(Γ,B) =
{
Q : B ⊆ Q ⊆ PB

}
;

in particular, WInd(Γ,PB) = B and PB is the maximum element of Φ(Γ,B) with respect to
inclusion.

Proof. We begin by showing that if B ⊆ Q ⊆ PB, then Q ∈ Φ(Γ,B). Let ∆ = Ind(Γ,Q).
It suffices to show that W∆ = B. Let Q ∈ Q and l = lg∆(Q). We show that Q ∈ W∆

if and only Q ∈ B by induction on l. If l = 0, then Q ∈ W∆ and Q ∈ B since Q is a
terminal position in ∆ and Q ∈ Q ⊆ PB. Suppose that l > 0. First, we show that if
Q ∈ B, then Q ∈W∆. Let R be an option of Q. Since B is an independent set, it follows
that R 6∈ B. By the induction hypothesis, R 6∈ W∆. This implies that Q ∈ W∆. Next,
we show that if Q 6∈ B, then Q 6∈W∆. Since Q ∈ Q ⊆ PB, it follows that Q has an option
B with B ∈ B. By the induction hypothesis, B ∈W∆, so Q 6∈W∆. Therefore W∆ = B.

It remains to prove that if Q ∈ Φ(Γ,B), then B ⊆ Q ⊆ PB. It is obvious that Q ⊇ B.
We show that Q ⊆ PB. Let Q ∈ Q and ∆ = Ind(Γ,Q). If Q ∈ B, then Q ∈ PB. Suppose
that Q 6∈ B. Since B = W∆, it follows that Q 6∈ W∆, and that Q has an option B with
B ∈W∆ = B. This implies that Q ∈ I(B) ⊆ PB. Therefore Q ⊆ PB.
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For a t-(v, k, λ) design D, let ΓD denote the game Ind
(
Γv,k,P

D
)
, where PD = PBD . If

BD is an independent set in Γv,k, then it follows from Theorem 9 that WΓD = BD. In
particular, we obtain the following corollary.

Corollary 10. If D is an S(t, k, v) with t < k, then the P-position set of ΓD equals BD.

Example 11. Let D be the S(1, 2, 4) with block set
{
{0, 2}, {1, 3}

}
. As we have seen in

the introduction, PD =
(

[4]
2

)
\
{
{0, 1}

}
and WΓD =

{
{0, 2}, {1, 3}

}
.

Example 12. The game ΓDsh equals Hxd. To verify this, it suffices to show that PDsh =
PHxd. Since WHxd equals the block set Bsh of Dsh, it follows from Theorem 9 that PHxd ⊆
PDsh . We show that PDsh ⊆ PHxd. If B ∈ Bsh (= WHxd), then B ∈ PHxd, so

∑
b∈B b > 21.

This implies that if P ∈ PDsh , then
∑

p∈P p > 21. Thus PDsh ⊆ PHxd. Therefore PDsh =
PHxd.

Remark 13. In this paper, we will investigate an S(t, t + 1, v) by using the above games
obtained from Welter’s game. Incidentally, we can also consider games obtained from
other than Welter’s game to study S(t, t+m, v), especially when m is greater than one.4

For example, let k = t+m and let Γmv,k be the game with position set
(

[v]
k

)
and edge set{

(P,Q) ∈
(

[v]

k

)2

: P 6= Q, there is a walk from P to Q of length at most m in Γv,k

}
.

For example,
(
{1, 4, 5}, {0, 2, 5}

)
is an edge in Γ2

6,3 since
(
{1, 4, 5}, {0, 4, 5}, {0, 2, 5}

)
is a

walk of length 2 in Γ6,3. Note that Γ1
v,k is Welter’s game Γv,k. Let Γ = Γmv,k and let D

be an S(t, k, v) with block set B. Then we can see that B is an independent set in Γ.
Therefore the P-position set of Ind

(
Γ,PB

Γ

)
is equal to B.

4 Game Distributions

We introduce the game distribution of a Steiner system in this section. The Steiner system
Dsh will be characterized by using its game distribution. Hereafter, for P ∈

(
[v]
k

)
, let

I(P ) = IΓv,k
(P ) and O(P ) = OΓv,k

(P ).

For a t-(v, k, λ) design D and a permutation π in Sym([v]), let Dπ denote the design
obtained from D by applying π, that is, Dπ =

(
[v],Bπ

D

)
, where Bπ

D =
{
Bπ : B ∈ BD

}
and Bπ =

{
bπ : b ∈ B

}
. Define

Orb(D) =
{
Dπ : π ∈ Sym([v])

}
.

4If D is an S(t, t + m, v) with m > 1, then we can show that the number of positions in ΓD always
equals λ0 +

(
λ0k(v− k)/2

)
by Lemma 24. Thus to investigate D by using its game distribution, we have

to consider other games, for example, Ind
(
Γ,PB

Γ

)
described in Remark 13.
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For example, if D =
(
[4],
{
{0, 2}, {1, 3}

})
, then

Orb(D) =
{
D,D(1 2),D(2 3)

}
=
{(

[4],
{
{0, 2}, {1, 3}

})
,
(
[4],
{
{0, 1}, {2, 3}

})
,
(
[4],
{
{0, 3}, {1, 2}

})}
.

Note that

|Orb(D)| = |Sym([v])|
|Aut(D)|

=
v!

|Aut(D)|
.

Let fD (n) denote the number of designs D′ ∈ Orb(D) such that the corresponding game
ΓD′

has n positions, that is,

fD (n) =
∣∣∣{D′ ∈ Orb(D) :

∣∣PD′∣∣ = n
}∣∣∣.

The function fD will be called the game distribution of D (with respect to Γv,k).

Example 14. Let D be an S(1, 2, 4). As we have seen in the introduction, the game
distribution of D is as follows:

n 4 5 6 Total
fD (n) 1 1 1 3

Example 15. Let D be an S(2, 3, 7). Then the game distribution of D is as follows:

n 28 29 30 31 32 33 34 35 Total
fD (n) 1 3 5 6 6 5 3 1 30

Note that this distribution is symmetric, that is, fD (n) = fD (63− n). Incidentally, the
game distribution of a Steiner system is not always symmetric. For example, if D is an
S(2, 3, 9), then its game distribution is as follows:

n 68 69 70 71 72 73 74 75 76 77 78 79 80 Total
fD (n) 1 6 16 36 77 94 116 129 131 104 74 39 17 840

Theorem 16. Let D be an S(5, 6, 12). The game distribution of D is as follows:

n 905 906 907 908 909 910 911 912 913 914 915 916 Total
fD (n) 1 10 42 150 351 650 1012 1237 939 532 115 1 5040

Moreover, ΓDsh is the hexad game and is the unique minimum game, that is, |PDsh| = 905.

Theorem 16 can be obtained by computer.

Remark 17. Let D be the unique S(5, 6, 12) with |PD| = 916. Then(
[12]

6

)
\ PD =

{
{0, 1, 2, 3, 8, 9}, {0, 1, 2, 4, 7, 9}, {0, 1, 2, 4, 7, 10}, {0, 1, 2, 5, 7, 8},

{0, 1, 3, 5, 6, 8}, {0, 1, 3, 5, 7, 9}, {0, 1, 4, 5, 6, 7}, {0, 2, 3, 5, 6, 8}
}

and the block set BD can be obtained from the following MINIMOG:
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Remark 18. We close this section by remarking that the game distribution of S(1, 2, 2v)
can be calculated as follows. If D is an S(1, 2, 2v), then

∞∑
n=0

fD (n)xn = xv
2

v∏
i=1

x2i−1 − 1

x− 1
. (4.1)

For example, if D is an S(1, 2, 6), then its game distribution and
∑
fD (n)xn are as

follows:

n 9 10 11 12 13 14 15 Total
fD (n) 1 2 3 3 3 2 1 15

∞∑
n=0

fD (n)xn = x9(x2 + x+ 1)(x4 + x3 + x2 + x+ 1).

We sketch the proof. Let fD (n) denote the number of designs D′ ∈ Orb(D) such that the
corresponding game ΓD′

has n non-positions, that is,

fD (n) =
∣∣∣{D′ ∈ Orb(D) :

∣∣PD′
∣∣ = n

}∣∣∣,
where PD =

(
[2v]
2

)
\ PD. Since |PD| + |PD| =

(
2v
2

)
= v(2v − 1), it follows that fD (n) =

fD (v(2v − 1)− n). We first show that

∞∑
n=0

fD (n)xn =
v∏
i=1

x2i−1 − 1

x− 1
. (4.2)

Let Ψv(x) be the left-hand side of (4.2). We show (4.2) by induction on v. If v = 1,
then fD (0) = 1 and fD (n) = 0 for n > 1, so (4.2) holds. Suppose that v > 2, and let
{0, w} ∈ BD. We calculate |PD|. The number of P ∈ PD with P ∩ {0, w} 6= ∅ equals
w−1 since the set of such P is

{
{0, 1}, . . . , {0, w−1}

}
. Moreover, the number of P ∈ PD

with P ∩ {0, w} = ∅ (i.e., P ⊆ [2v] \ {0, w}) equals |PE|, where E is the S(1, 2, 2v − 2)
described below. Write [2v] \ {0, w} = {a0, . . . , a2v−3} with a0 < · · · < a2v−3, and let φ be
the bijection [2v] \ {0, w} 3 ai 7→ i ∈ [2v − 2]. Note that φ is order-preserving, that is,
φ(a) < φ(b) if and only if a < b. Let E =

(
[2v − 2],

{
φ(B) : B ∈ BD, B 6= {0, w}

})
. Then

E is an S(1, 2, 2v − 2). If Q ⊆ [2v] \ {0, w}, then Q ∈ PD if and only if φ(Q) ∈ PE since
φ is order-preserving. Therefore the number of P ∈ PD with P ⊆ [2v] \ {0, w} is equal to
|PE|. Thus |PD| = w − 1 + |PE|. It follows from the induction hypothesis that

Ψv(x) = (1 + x+ · · ·+ x2v−2)Ψv−1(x) =
v∏
i=1

x2i−1 − 1

x− 1
.
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Therefore (4.2) holds. Since fD (n) = 0 for n > v(2v−1) and fD (n) = fD (v(2v − 1)− n),
we see that

∞∑
n=0

fD (n)xn =

v(2v−1)∑
n=0

fD (v(2v − 1)− n)xn

=

v(2v−1)∑
n=0

fD (n)xv(2v−1)−n

= xv(2v−1)

v∏
i=1

(1 + x−1 + · · ·+ x−2i+2)

= xv
2

v∏
i=1

x2i−1 − 1

x− 1
.

5 Symmetric Components

We show that the game distribution of an S(t, t+ 1, v) can be decomposed into symmet-
ric components. Using symmetric components, we characterize projective Steiner triple
systems in Section 6.

For a t-(v, k, λ) design D and a non-block P ∈
(

[v]
k

)
\ BD, a block B ∈ BD is called

an out-block of P if B ∈ O(P ). Define ai(D) to be the number of non-blocks with i
out-blocks, that is,

ai(D) =

∣∣∣∣{P ∈ ([v]

k

)
\BD :

∣∣O(P ) ∩BD

∣∣ = i

}∣∣∣∣.
For example, if D =

(
[4],
{
{0, 2}, {1, 3}

})
, then {0, 1} has no out-blocks; {0, 3} and {1, 2}

have one out-block, {0, 2}; {2, 3} has two out-blocks, {0, 2} and {1, 3}; hence

a0(D) =
∣∣{{0, 1}}∣∣ = 1, a1(D) =

∣∣{{0, 3}, {1, 2}}∣∣ = 2, a2(D) =
∣∣{{2, 3}}∣∣ = 1.

Note that |PD| = |BD|+
∑

i>1 ai(D) and |PD| = a0(D), where PD =
(

[v]
k

)
\PD. Moreover, if

BD is an independent set in Γv,k, then ai(D) = 0 for i > k+1. Indeed, if |O(P )∩BD| > k+1

for some P ∈
(

[v]
k

)
\BD, then P (p q), P (p q′) ∈ BD for some p ∈ P and some q, q′ 6∈ P with

q′ < q, so BD is not an independent set because (P (p q), P (p q′)) is an edge of Γv,k. Let

s(D) =
{
a0(D′) + ak(D

′) : D′ ∈ Orb(D)
}

and
Orbα(D) =

{
D′ ∈ Orb(D) : a0(D′) + ak(D

′) = α
}

for α ∈ s(D). Define

fαD (n) =
∣∣∣{D′ ∈ Orbα(D) :

∣∣PD′∣∣ = n
}∣∣∣
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and

fαD (n) =
∣∣∣{D′ ∈ Orbα(D) :

∣∣PD′
∣∣ = n

}∣∣∣
=
∣∣{D′ ∈ Orbα(D) : a0(D′) = n

}∣∣.
By definition,

fD (n) =
∑
α∈s(D)

fαD (n) .

Let D be an S(t, t+1, v). Then the following proposition says that fαD (n) is symmetric.
From this, the function fαD is called a symmetric component of the game distribution of
D.

Proposition 19. If D is an S(t, k, v) with k = t+ 1, and if α ∈ s(D), then

fαD (n) = fαD (α− n)

for n ∈ N; in particular,

fαD (n) = fαD

(
2

(
v

k

)
− α− n

)
.

Proof. It suffices to show the assertion for α = a0(D) + ak(D), since fαD (n) = fαD′ (n) for

D′ ∈ Orb(D). Let B = BD and P ∈
(

[v]
k

)
\B. We first show that∣∣O(P ) ∩B
∣∣+
∣∣I(P ) ∩B

∣∣ = k. (5.1)

Let p ∈ P . Since k = t + 1, there is a unique p′ ∈ [v] such that P (p p′) ∈ B. Note that
|O(P ) ∩ B| equals the number of p ∈ P with p′ < p. Similarly, |I(P ) ∩ B| equals the
number of p ∈ P with p′ > p. Hence (5.1) holds.

Let π be the permutation i 7→ v − 1 − i of [v]. We next show that Dπ ∈ Orbα(D).
Since p < q ⇐⇒ pπ > qπ for p, q ∈ [v], it follows that

∣∣I(P ) ∩ B
∣∣ =

∣∣O(P π) ∩ Bπ
∣∣. By

(5.1), ∣∣O(P ) ∩B
∣∣ = i ⇐⇒

∣∣O(P π) ∩Bπ
∣∣ = k − i.

This implies that ai(D) = ak−i(D
π), and hence that a0(Dπ)+ak(D

π) = ak(D)+a0(D) = α.
Thus Dπ ∈ Orbα(D). We also see that

a0(D) = n ⇐⇒ a0(Dπ) = α− n.

Therefore fαD (n) = fαD (α− n).

Example 20. The symmetric components of the game distribution of an S(2, 3, 9) are as
shown in Table 1.
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Table 1: The symmetric components of an S(2, 3, 9).

n 68 69 70 71 72 73 74 75 76 77 78 79 80 Total
f 24
D (n) 1 1 1 1 1 1 1 1 1 9

f 22
D (n) 5 6 6 7 6 7 6 6 5 54
f 20
D (n) 9 14 24 23 22 23 24 14 9 162
f 18
D (n) 15 28 40 49 54 49 40 28 15 318
f 16
D (n) 17 24 37 45 51 45 37 24 17 297
fD (n) 1 6 16 36 77 94 116 129 131 104 74 39 17 840

Example 21. As shown in Table 2, the game distribution of an S(2, 3, 7) has a unique
symmetric component. This property characterizes projective Steiner triple systems as
we will see in Theorem 23.

Table 2: The symmetric component of an S(2, 3, 7).

n 28 29 30 31 32 33 34 35 Total
f 7
D (n) 1 3 5 6 6 5 3 1 30

fD (n) 1 3 5 6 6 5 3 1 30

Example 22. Let D be an S(5, 6, 12). Then

ai(D) = a6−i(D), (5.2)

so the symmetric components of fD are as shown in Table 3. We can prove (5.2) as follows.
If B ∈ BD, then B ∈ BD, where B = [12] \ B. This implies that if P ∈

(
[12]
6

)
\ BD and

P (p q) ∈ BD, then

P ∈
(

[12]

6

)
\BD and P

(p q)
= P (p q) ∈ BD.

For example, if D = Dsh and P = {1, 2, 3, 4, 5, 11}, then P (5 0) = {1, 2, 3, 4, 0, 11} ∈ BD

and P (5 0) = {0, 6, 7, 8, 9, 10}(5 0) = {5, 6, 7, 8, 9, 10} ∈ BD. Note that if P (p q) ∈ O(P ),
then P (p q) ∈ I(P ). It follows that if |O(P ) ∩ BD| = i, then |O(P ) ∩ BD| = 6 − i. Hence
ai(D) = a6−i(D), so its symmetric components are as shown in Table 3. The symmetric
components of the game distribution of an S(4, 5, 11) are also shown in Table 4.

Table 3: The symmetric components of an S(5, 6, 12).

n 905 906 907 908 909 910 911 912 913 914 915 916 Total
f 38
D (n) 1 1

f 36
D (n) 10 10

... · · · ...
f 18
D (n) 115 115
f 16
D (n) 1 1
fD (n) 1 10 42 150 351 650 1012 1237 939 532 115 1 5040
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Table 4: The symmetric components of an S(4, 5, 11).

n 443 444 445 446 447 448 449 450 451 452 453 454 Total
f 29
D (n) 1 1 3 3 1 1 10

f 28
D (n) 7 7 12 8 8 8 12 7 7 76
f 27
D (n) 2 25 62 62 77 77 62 62 25 2 456
f 26
D (n) 7 44 106 155 212 155 106 44 7 836
f 25
D (n) 31 167 220 345 345 220 167 31 1526
f 24
D (n) 1 8 140 259 402 259 140 8 1 1218
f 23
D (n) 50 101 216 216 101 50 734
f 22
D (n) 10 36 58 36 10 150
f 21
D (n) 6 9 9 6 30
f 20
D (n) 1 2 1 4
fD (n) 1 10 42 150 351 650 1012 1237 939 532 115 1 5040

6 A Characterization of Projective Steiner Triple Systems

Theorem 23. If D is an S(2, 3, v), then D is projective if and only if its game distribution
has a unique symmetric component, that is, |s(D)| = 1.

To prove Theorem 23, we show two lemmas.
Let D be an S(2, 3, v). The following lemma enables us to calculate a0(D) + a3(D).

Recall that λi, defined in (2.1), is the number of blocks of D containing i given points.

Lemma 24. Let D be a t-(v, k, λ) design with block set B.

(1) If t > 1 and B is an independent set in Γv,k, then

k∑
i=0

iai(D) =
λ0k(v − k)

2
.

(2) If D is an S(2, 3, v), then

a0(D) + a3(D) =
∑

{B,C}∈(B
2)

I(B,C)− v(v − 1)(v − 3)

12
,

where I(B,C) = |I(B) ∩ I(C)|.

Proof. (1) Let

Ai(D) =

{
P ∈

(
[v]

k

)
\B :

∣∣O(P ) ∩B
∣∣ = i

}
.

Then ai(D) = |Ai(D)|. Since B is an independent set, we see that
⋃k
i=0 Ai(D) =

(
[v]
k

)
\B

and

k∑
i=0

iai(D) =
k∑
i=0

∣∣∣{(P,B) : P ∈ Ai(D), B ∈ O(P ) ∩B
}∣∣∣
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=

∣∣∣∣{(P,B) : P ∈
(

[v]

k

)
\B, B ∈ O(P ) ∩B

}∣∣∣∣
=
∣∣∣{(P,B) : B ∈ B, P ∈ I(B)

}∣∣∣
=
∑
B∈B

∣∣I(B)
∣∣.

Let B ∈ B and write B = {b1, . . . , bk} with b1 < · · · < bk. Then P ∈ I(B) if and
only if P = B(bi p) for some bi and p 6∈ B with p > bi. The number of such p equals
v − 1− bi − (k − i). Hence

|I(B)| =
k∑
i=1

(
v − 1− bi − (k − i)

)
= k(v − 1)−

∑
b∈B

b− k(k − 1)

2
.

Since ∑
B∈B

∑
b∈B

b = (0 + 1 + · · ·+ v − 1)λ1

=
v(v − 1)

2

(
v−1
t−1

)(
k−1
t−1

)λ
=
k(v − 1)

2

(
v
t

)(
k
t

)λ
=
k(v − 1)λ0

2
,

it follows that∑
B∈B

∣∣I(B)
∣∣ = λ0

(
k(v − 1)− k(v − 1)

2
− k(k − 1)

2

)
=
λ0k(v − k)

2
.

(2) Let ai = ai(D). We first show that

3∑
i=0

(
i

2

)
ai = a2 + 3a3 =

∑
{B,C}∈(B

2)

I(B,C). (6.1)

By the definition of ai,

3∑
i=0

(
i

2

)
ai =

3∑
i=0

∣∣∣∣{(P, {B,C}) : P ∈ Ai(D), {B,C} ∈
(
O(P ) ∩B

2

)}∣∣∣∣
=

∣∣∣∣{(P, {B,C}) : P ∈
(

[v]

3

)
\B, {B,C} ∈

(
O(P ) ∩B

2

)}∣∣∣∣
=

∣∣∣∣{(P, {B,C}) : {B,C} ∈
(
B

2

)
, P ∈ I(B) ∩ I(C)

}∣∣∣∣
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=
∑

{B,C}∈(B
2)

I(B,C).

We now calculate a0 + a3. Note that λ0 = v(v − 1)/6. By (1),

3∑
i=0

iai = a1 + 2a2 + 3a3 =
λ03(v − 3)

2
=
v(v − 1)(v − 3)

4
.

Since
3∑
i=0

ai = a0 + a1 + a2 + a3 =

(
v

3

)
− λ0 =

v(v − 1)(v − 3)

6
,

it follows that

3∑
i=0

iai −
3∑
i=0

ai = −a0 + a2 + 2a3 =
v(v − 1)(v − 3)

12
.

Therefore

a0 + a3 +
v(v − 1)(v − 3)

12
= a2 + 3a3 =

∑
{B,C}∈(B

2)

I(B,C).

From Lemma 24, to calculate a0 + a3, it is enough to compute
∑
I(B,C). To do this,

the following easy lemma will be used.

Lemma 25. Let B and C be two distinct blocks of an S(2, 3, v).

(1) If I(B,C) 6= 0, then |B ∩ C| = 1.

(2) If B = {x, b, b′}, C ′ = {x, c, c′}, b < b′, and b < c < c′, then

I(B,C) = [c < b′] + [c′ < b′], (6.2)

where [ ] is the Iverson bracket notation, that is, [S] = 1 if a statement S holds, and
[S] = 0 otherwise.

(3) If
I(B,C) 6= I(B(i i+1), C(i i+1)),

then {B,C} =
{
{i, x, y}, {i+ 1, x, z}

}
for some x, y, z ∈ [v] with y 6= z.

Proof. (1) If B∩C = ∅, then I(B,C) = 0. If |B∩C| > 2, then B = C. Hence |B∩C| = 1.
(2) Since b < b′ and b < c < c′, it follows that

I(B) ∩ I(C) =


∅ if b′ < c,{
{x, b′, c′}

}
if c < b′ < c′,{

{x, b′, c′}, {x, b′, c}
}

if c′ < b′.
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Thus (6.2) holds.
(3) By (1), if |B ∩ C| 6= 1 then I(B,C) = I

(
B(i i+1), C(i i+1)

)
. Let B = {x, b, b′} and

C = {x, c, c′}. We may assume that b < b′ and b < c < c′. If

[y(i i+1) < z(i i+1)] 6= [y < z],

then {y, z} = {i, i+1}. It follows from (2) that {i, i+1} ∈
{
{b, c}, {b′, c}, {b′, c′}

}
. Hence

{B,C} =
{
{x, i, y}, {x, i+ 1, z}

}
for some y, z ∈ [v] with y 6= z.

Proof of Theorem 23. Let D be an S(2, 3, v) with block set B.
We first show that if D is projective, then |s(D)| = 1. By Lemma 25,∑

{B,C}∈(B
2)

I(B,C) =
∑

{B,C}∈(B
2), |B∩C|=1

I(B,C).

Let {x, b, b′} and {x, c, c′} be two distinct blocks of D. We may assume that b < b′ and
b < c < c′. Since D is projective, there are y, z ∈ [v] such that {y, b, c}, {y, b′, c′}, {z, b, c′},
and {z, b′, c} are blocks. Thus we obtain the following triple of pairs of blocks:{{

{x, b, b′}, {x, c, c′}
}
,
{
{y, b, c}, {y, b′, c′}

}
,
{
{z, b, c′}, {z, b′, c}

}}
.

By Lemma 25,

I
(
{x, b, b′}, {x, c, c′}

)
+ I
(
{y, b, c}, {y, b′, c′}

)
+ I
(
{z, b, c′}, {z, b′, c}

)
= [c < b′] + [c′ < b′] + [b′ < c] + [c′ < c] + [b′ < c′] + [c < c′] = 3.

(6.3)

Note that every pair {B,C} of blocks with |B ∩C| = 1 belongs to exactly one such triple
and there are v

(
λ1
2

)
/3 triples. Hence

∑
{B,C}∈(B

2), |B∩C|=1

I(B,C) =
v
(
λ1
2

)
3

3 =
v(v − 1)(v − 3)

8
.

By Lemma 24,

a0(D) + a3(D) =
∑

{B,C}∈(B
2)

I(B,C)− v(v − 1)(v − 3)

12
=
v(v − 1)(v − 3)

24
.

Therefore s(D) = {v(v − 1)(v − 3)/24}.
We next show that if D is not projective, then |s(D)| > 1. Note that v > 9. Since D

is not projective, it follows from Remark 4 that we may assume that

{0, v − 2, 2}, {1, v − 2, 3}, {0, v − 3, 3}, {1, v − 3, 4} ∈ B

by replacing D with some D′ ∈ Orb(D) if necessary (see Figure 7). We may also assume
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Figure 7: The four blocks of D.

that {0, 1, v − 1} ∈ B. We show that∑
{B,C}∈(B

2)

I(B,C)− I(B,C)(0 1) 6= 0 or
∑

{B,C}∈(B
2)

I(B,C)(2 3) − I(B,C)(2 3)(0 1) 6= 0,

(6.4)
where I(B,C)(0 1) = I(B(0 1), C(0 1)). If {B,C} ∈

(
B

2

)
and I(B,C) 6= I(B,C)(0 1), then,

by Lemma 25,
{B,C} =

{
{0, x, y}, {1, x, z}

}
for some x, y, z ∈ [v] with y 6= z; note that x 6= v − 1 since {0, 1, v − 1} ∈ B. For
x ∈ {2, 3, . . . , v − 2}, let Bx = {0, x, yx} ∈ B and Cx = {1, x, zx} ∈ B. By assumption,

Bv−2 = {0, v − 2, 2}, Cv−2 = {1, v − 2, 3},
Bv−3 = {0, v − 3, 3}, Cv−3 = {1, v − 3, 4}.

(6.5)

We see that ∑
{B,C}∈(B

2)

I(B,C)− I(B,C)(0 1) =
v−2∑
x=2

I(Bx, Cx)− I(Bx, Cx)
(0 1). (6.6)

Similarly, by Lemma 25, if {B,C} ∈
(
B

2

)
and I(B,C)(2 3) 6= I(B,C)(2 3)(0 1), then{

B(2 3), C(2 3)
}

=
{
{0, x, y}(2 3), {1, x, z}(2 3)

}
for some x, y, z ∈ [v] with y 6= z, and hence {B,C} = {Bx, Cx}. Therefore

∑
{B,C}∈(B

2)

I(B,C)(2 3) − I(B,C)(2 3)(0 1) =
v−2∑
x=2

I(Bx, Cx)
(2 3) − I(Bx, Cx)

(2 3)(0 1). (6.7)

If I(Bx, Cx) 6= I(Bx, Cx)
(2 3)

, then {Bx, Cx} =
{
{2, x, u}, {3, x, w}

}
for some u,w ∈ [v],

so x = v− 2 by (6.5). Similarly, if I(Bx, Cx)
(0 1) 6= I(Bx, Cx)

(2 3)(0 1), then x = v− 2. Let
Bo = Bv−2 and Co = Cv−2. By (6.6) and (6.7),∑

{B,C}∈(B
2)

I(B,C)− I(B,C)(0 1) −
(
I(B,C)(2 3) − I(B,C)(2 3)(0 1)

)
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=
v−2∑
x=2

I(Bx, Cx)− I(Bx, Cx)
(0 1) −

(
I(Bx, Cx)

(2 3) − I(Bx, Cx)
(2 3)(0 1)

)
=

v−2∑
x=2

I(Bx, Cx)− I(Bx, Cx)
(2 3) −

(
I(Bx, Cx)

(0 1) − I(Bx, Cx)
(2 3)(0 1)

)
= I(Bo, Co)− I(Bo, Co)

(2 3) −
(
I(Bo, Co)

(0 1) − I(Bo, Co)
(2 3)(0 1)

)
.

Since

I(Bo, Co) = I({0, v − 2, 2}, {1, v − 2, 3}) = 1,

I(Bo, Co)
(2 3) = I({0, v − 2, 3}, {1, v − 2, 2}) = 2,

I(Bo, Co)
(0 1) = I({1, v − 2, 2}, {0, v − 2, 3}) = 2,

I(Bo, Co)
(2 3)(0 1) = I({1, v − 2, 3}, {0, v − 2, 2}) = 1,

we see that∑
{B,C}∈(B

2)

I(B,C)− I(B,C)(0 1)−
(
I(B,C)(2 3) − I(B,C)(2 3)(0 1)

)
= 1− 2− (2− 1) = −2.

Therefore (6.4) holds. It follows from Lemma 24 that |s(D)| > 1.
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