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Abstract

Let f(n) be a positive function and H a graph. Denote by RT(n,H, f(n)) the
maximum number of edges of an H-free graph on n vertices with independence
number less than f(n). It is shown that RT(n,K4 +mK1, o(

√
n log n)) = o(n2) for

any fixed integer m > 1 and RT(n,C2m+1, f(n)) = O(f2(n)) for any fixed integer
m > 2 as n→∞.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction

For a graph G, let v(G) and e(G) be the number of vertices and edges of G, respectively,
and let α(G) be the independence number of G. For graphs F,G and H, call G to be
H-free if G does not contain H as a subgraph. Define R(F,H) the minimum integer N
such that any red/blue edge-coloring of KN contains a red F or a blue H. The Turán
number ex(n;H) is defined as the maximum e(G) of an H-free graph G with v(G) = n.
The celebrated Erdős-Stone-Simonovits theorem shows that the asymptotic behavior of
ex(n;H) is determined by the chromatic number χ(H).

Theorem 1 ([9, 10]). Let H be a graph with χ(H) = k > 2. Then

ex(n;H) =

(
k − 2

k − 1
+ o(1)

)(
n

2

)
(1)

as n→∞.
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For a graph H and positive integers n and m, the Ramsey-Turán number RT(n,H,m)
is defined as

RT(n,H,m) = max{e(G) : G is H-free with v(G) = n and α(G) < m}. (2)

Clearly, RT(n,H,m) is non-decreasing on m. The study of Ramsey-Turán numbers
was introduced by Sós [21]. It was motivated by the classical theorems of Ramsey and
Turán and their connections to geometry, analysis, and number theory. Ramsey-Turán
theory has attracted a great deal of attention over the last 40 years, see, e.g, [3, 4, 6, 7,
8, 11, 12, 15, 18, 22, 23], and a survey by Simonovits and Sós [20].

Sometimes we want to consider the case when the bound f(n) on α(Gn) is in form of
o(g(n)). Namely, we shall consider RT(n,H, o(g(n))) or RT(n,H, g(n)/wn), where the
function wn →∞ slowly and arbitrarily.

A further notation is as follows. If RT(n,H, f(n)) 6 cn2 + o(n2) for every f(n) =
o(g(n)), then we write RT(n,H, o(g(n))) 6 cn2 + o(n2). If RT(n,H, f(n)) > cn2 + o(n2)
for some f(n) = o(g(n)), then we write RT(n,H, o(g(n))) > cn2 + o(n2). When both
inequalities become equalities, we write RT(n,H, o(g(n))) = cn2 + o(n2). Note that
RT(n,H, o(g(n))) 6 o(n2) is equivalent to RT(n,H, o(g(n))) = o(n2).

Definition 2. Let H be a graph and f a positive function. Define

ρτ(H, f) = lim
n→∞

RT(n,H, f(n))

n2

and

ρτ(H, f) = lim
n→∞

RT(n,H, f(n))

n2
.

If ρτ(H, f) = ρτ(H, f), then we write the common value as ρτ(H, f) and call it the
Ramsey-Turán density of H with respect to f .

We try to understand that for a given graph H and large n, when we can observe
crucial drops in the value of RT(n,H,m) while m is changing continuously from n to 2?
In other words, we try to understand the asymptotic behavior of RT(n,H, f(n)) when
we replace f(n) by a smaller g(n).

Definition 3. Given a graph H and two functions f and g with f(n) > g(n), we shall
say that H has a phase transition from f to g if ρτ(H, f) > ρτ(H, g).

Trivially, RT(n,K3, o(n)) = o(n2) since a K3-free graph G with v(G) = n has maxi-
mum degree ∆(G) 6 α(G). A celebrated result of Szemerédi [23], Bollobás and Erdős [4]
is

RT(n,K4, o(n)) =

(
1

8
+ o(1)

)
n2.

To clarify, the above result says that every K4-free graph G with v(G) = n and α(G) =
o(n) has e(G) 6 (1/8 + o(1))n2, and the bound is sharp. It is natural to ask whether
or not RT(n,K4, n

1−ε) is Θ(n2) for some ε > 0? A negative answer to this question was
given by Sudakov [22]. Note that for any ε > 0, the function f(n) = e−ω

√
lognn > n1−ε if

ω = ωn < ε
√

log n.
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Theorem 4 ([22]). Let f(n) = e−ω
√
lognn, where

√
log n > ω →∞. Then

RT(n,K4, f(n)) < e−ω
2/2n2

for large n.

Let us define q(3, n) as

q(3, n) = min{α(G) : G is K3-free and v(G) = n}. (3)

Then q(3, n) = Θ(
√
n log n) from [1, 14, 19]. The function

√
n log n plays an important

role in Ramsey-Turán theory. The orders of magnitude of ex(n;H) with χ(H) > 3 are all
n2, among which K3 has the minimum v(H). From definition of RT(n,H,m) in (2) and
that of q(3, n) in (3), and the fact q(3, n) = Θ(

√
n log n), we may say that an important

phase transition of H with χ(H) > 3 is that from
√
n log n to o(

√
n log n).

It is known that [20]

RT(n,K5,
√
n log n) = RT(n,K6,

√
n log n) =

(
1

4
+ o(1)

)
n2. (4)

By answering a question of Erdős and Sós in [11], Balogh, Hu and Simonovits [3]
proved the following result.

Theorem 5 ([3]). As n→∞, it holds

RT(n,K5, o(
√
n log n)) = o(n2). (5)

So by (4) and (5) we know that K5 has a phase transition from
√
n log n to o(

√
n log n).

But the problem for K6 on the same phase transition is still open.

Problem 6. Whether or not

RT(n,K6, o(
√
n log n)) = o(n2)?

For vertex disjoint graphs G and H, let G+H be the joint of G and H obtained from
G and H by adding new edges connecting G and H completely. In this note, we shall
make a small step to solve Problem 6. Our main result is as follows, in which K4 + K1

for m = 1 is K5 in (5).

Theorem 7. Let m > 1 be an integer. Then

RT(n,K4 +mK1, o(
√
n log n)) = o(n2)

as n→∞.

Denote by K−6 = K4 + 2K1, which is the graph obtained also from K6 by dropping
an edge. We shall list the results in [20] on Ramsey-Turán density of K5, K

−
6 , K6 in the

following table.
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function\ graph K5 K−6 K6

n 3
8

3
8

2
5

o(n) 1
4

1
4

2
7√

n log n 1
4

1
4

1
4

o(
√
n log n) 0 0 6 1

6

Table 1: Ramsey-Turán density of K5,K
−
6 ,K6

Theorem 7 shows that RT(n,K−6 , o(
√
n log n)) = o(n2), which and a result in Table 1

tells us that K−6 has a phase transition from
√
n log n to o(

√
n log n).

Corollary 8. The graph K−6 has a phase transition from
√
n log n to o(

√
n log n).

We also have a result on odd cycle C2m+1 of length 2m+ 1.

Theorem 9. Let m > 2 be an integer. If n→∞, then

RT(n,C2m+1, f(n)) = O(f 2(n)).

Remark 1 It is easy to see that RT(n,C2m+1, n) = ex(n;C2m+1) = (1
4

+ o(1))n2 by
Theorem 1. Thus Theorem 9 shows that C2m+1 has a phase transition from n to o(n).
Let us point out that RT(n, {C3, C5, C7}, s) 6 s2 appeared in [18] (Lemma 7.1).

Remark 2 It should be remarked that m in Theorem 7 can be replaced by some ωn
by careful analysis.

2 Proofs of Main results

The Dependent Random Choice is a method developed by Füredi, Gowers, Kostochka,
Rödl, Sudakov, and possibly others. The method is powerful for many problems, which
is a “random double counting” in some sense. The next lemma is taken from Alon,
Krivelevich and Sudakov [2]. Interested readers may check the survey on this method by
Fox and Sudakov [13].

Lemma 10. Let `, r be positive integers. Let G = (V,E) be a graph with n vertices
and average degree d = 2e(G)/n. Then for any positive integer t, there exists a subset
U ⊆ V (G) with

|U | > dt

nt−1
−
(
n

r

)(
`

n

)t
,

such that every r vertices in U have at least ` common neighbours.

Note that Lemma 10 makes sense only if

|U | > r, and
dt

nt−1
−
(
n

r

)( `
n

)t
> 0.

We need another lemma [16] for the proof of Theorem 7.
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Lemma 11. Let Bm = K2 +mK1. If m > 1 and n > 3, then

R(Bm, Kn) 6
mn2

log(n/e)
.

Proof of Theorem 7. Let ωn → ∞ slowly and arbitrarily be a function and εn =
logωn

ωn
. To show RT(n,K4 + mK1,

√
n log n/ωn) 6 εnn

2, we shall show that if G is a

(K4 +mK1)-free graph on n vertices with α(G) <
√
n log n/ωn, then e(G) 6 εnn

2.
Suppose to the contrary, there is a (K4 + mK1)-free graph G = (V,E) on n vertices

with
e(G) > εnn

2 and α(G) <
√
n log n/ωn,

and we shall find a contradiction.
Applying Lemma 10 to G with d = 2εnn, r = 2, t = logn

ωn
, ` = 4mn

ω2
n

and noting that

log
(
(2εn)t · n

)
∼ log n,

and

log

(
n2

2
·
(

4m

ω2
n

)t)
= o(log n),

and

log
(√

n log n/ωn

)
∼ 1

2
log n,

we know that there exists a subset U ⊆ V (G) with

|U | > dt

nt−1
−
(
n

r

)(
`

n

)t
> (2εn)t · n− n2

2
·
(

4m

ω2
n

)t
>

√
n log n/ωn

for all large n, such that all subsets of U of size 2 have at least 4mn
ω2
n

common neighbours.

Noting that |U | >
√
n log n/ωn and α(G) <

√
n log n/ωn, we know that G[U ] must have

an edge. Assume u0v0 ∈ G[U ]. Now we shall construct a K4 + mK1 as follows. As we
know |N(u0) ∩ N(v0)| > 4mn

ω2
n

, by Lemma 11, we know either G[N(u0) ∩ N(v0)] contains
an independent set of size at least

(1− o(1))

√
1

2m
· 4mn

ω2
n

log

(
4mn

ω2
n

)
>

√
n log n

ωn
> α(G),

or Bm ⊂ G[N(u0, v0)], which yields K4 +mK1 in G, a contradiction. �

Proof of Theorem 9 In order to prove Theorem 9, we need the following well-known
result, which was proved by Chvatál [5].
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Theorem 12 ([5]). Let Tm be a tree of order m. Then the Ramsey number

R(Tm, Kn) = (m− 1)(n− 1) + 1.

We also need the following lemma, which plays the key role in the proof.

Lemma 13 ([17]). Let m > 2 be an integer and let a graph G = (V,E) be C2m+1-free.
Then

α(G) >
1

(2m− 1)2(m−1)/m

(∑
v∈V

d(v)1/(m−1)

)(m−1)/m

,

where d(v) is the degree of v in G.

Proof To avoid the triviality we may assume that f(n) 6 n. To show Theorem 9,
we shall show that any graph G on n vertices which is C2m+1-free and α(G) < f(n) has
at most O(f 2(n)) edges.

For m = 2, the assertion is clear since

f(n) > α(G) >
1

3
√

2

(∑
v∈V

d(v)

)1/2

=

(
nd

18

)1/2

,

where d is the average degree of G. It follows that e(G) = nd
2
6 9f 2(n).

In the following, we shall suppose m > 3 and separate the proof into two cases.
Case 1. The maximum degree ∆(G) of the graph G satisfies ∆(G) >

√
nd, i.e., there

is some vertex v such that d(v) >
√
nd. As the neighborhood N(v) of v contains no path

P2m of order 2m, it follows from Theorem 12 that

f(n) > α(G) >
d(v)

2m
>

√
nd

2m
,

and thus e(G) = nd
2
6 2m2f 2(n).

Case 2. ∆(G) 6
√
nd. For every vertex v we have

d(v)1/(m−1) >
d(v)

∆(G)(m−2)/(m−1)
.

Together with Lemma 13 and ∆(G) 6
√
nd =

√
2e(G) , this yields

α(G) >
1

2m− 1

(
1

2

∑
v∈V

d(v)

∆(G)(m−2)/(m−1)

)(m−1)/m

>
1

2m− 1

(
e(G)

(2e(G))(m−2)/(2m−2)

)(m−1)/m

>

√
e(G)√
8 ·m

,

whence e(G) 6 8m2α(G)2. Hence e(G) = O(f 2(n)) that completes the proof. �
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3 Conclusions

It was shown [16] that R(K1 +Tm, Kn) 6 (2m−3)n2

log(n/e)
for all m > 2 and n > 3, thus Theorem

7 can be generalized to RT(n,K3 + Tm, o(
√
n log n)) = o(n2).
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problems. Combinatorica, 3:69–81, 1983.
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