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Abstract

We show that: (1) unimodular simplices in a lattice 3-polytope cover a neigh-
borhood of the boundary of the polytope if and only if the polytope is very ample,
(2) the convex hull of lattice points in every ellipsoid in R3 has a unimodular cover,
and (3) for every d > 5, there are ellipsoids in Rd, such that the convex hulls of the
lattice points in these ellipsoids are not even normal. Part (c) answers a question
of Bruns, Micha lek, and the author.

Mathematics Subject Classifications: 52B20, 11H06

1 Introduction

1.1 Main result

A convex polytope P ⊂ Rd is normal if it is lattice, i.e., has vertices in Zd, and satisfies
the condition

∀c ∈ N ∀x ∈ (cP ) ∩ Zd ∃x1, . . . , xc ∈ P ∩ Zd x1 + · · ·+ xc = x.

A necessary condition for P to be normal is that the subgroup

gp(P ) :=
∑

x,y∈P∩Zd

Z(x− y) ⊂ Zd

must be a direct summand. Also, a face of a normal polytope is normal.
Normality is a central notion in toric geometry and combinatorial commutative algebra

[7]. A weaker condition for lattice polytopes is very ample; see Section 1.2 for the defini-
tion. Normal polytopes define projectively normal embeddings of toric varieties whereas
very ample polytopes correspond to normal projective varieties [3, Proposition 2.1].
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A sufficient condition for a lattice polytope P to be normal is the existence of a
unimodular cover, which means that P is a union of unimodular simplices. Unimodular
covers play an important role in integer programming through their connection to the
Integral Carathéodory Property [8, 12, 15].

There exist normal polytopes in dimensions > 5 without unimodular cover [6]. It is
believed that all normal 3-polytopes have unimodular cover. But progress in this direction
is scarce. Recent works [4, 11] show that all lattice 3-dimensional parallelepipeds and
centrally symmetric 3-polytopes with unimodular corners have unimodular cover.

The normality of the convex hull of lattice points in an ellipsoid naturally comes
up in [9]. We consider general ellipsoids, neither centered at 0 nor aligned with the
coordinate axes. According to [9, Theorem 6.5(c)], the convex hull of the lattice points
in any ellipsoid E ⊂ R3 is normal. [9, Question 7.2(b)] asks whether this result extends
to higher dimensional ellipsoids.

Here we prove the following

Theorem. Let P ⊂ R3 be a lattice polytope, E ⊂ Rd an ellipsoid, and P (E) the convex
hull of the lattice points in E.

(a) The unimodular simplices in P cover a neighborhood of the boundary ∂P in P if and
only if P is very ample.

(b) If d = 3 then the polytope P (E) is covered by unimodular simplices.

(c) For every d > 6, there exists E such that gp(P (E)) = Zd and P (E) is not normal.

If in (c) we drop the condition gp(P (E)) = Zd, then ellipsoids E ⊂ Rd with P (E)
non-normal already exist for d = 5; see Remark 7.

1.2 Preliminaries

Z+ and R+ denote the sets of non-negative integers and reals, respectively.
The convex hull of a set X ⊂ Rd is denoted by conv(X). The relative interior of a

convex set X ⊂ Rd is denoted by intX. The boundary of X is denoted by ∂X = X\intX.
Polytopes are assumed to be convex. For a polytope P ⊂ Rd, its vertex set is denoted

by vert(P ).
A lattice n-simplex ∆ = conv(x0, . . . , xn) ⊂ Rd is unimodular if {x1−x0, . . . , xn−x0}

is a part of a basis of Zd.
A unimodular pyramid over a lattice polytope Q is a lattice polytope P = conv(v,Q),

where the point v is not in the affine hull of Q and the lattice height of v above Q inside
the affine hull of P equals 1.

Cones C are assumed to be pointed, rational, and finitely generated, which means
C = R+x1 + · · · + R+xk, where x1, . . . , xk ∈ Zd and C does not contain a nonzero linear
subspace. For a cone C ⊂ Rd, the smallest generating set of the additive submonoid
C ∩ Zd ⊂ Zd consists of the indecomposable elements of this monoid. This is a finite set,
called the Hilbert basis of C and denoted by Hilb(C). See [7, Chapter 2] for a detailed
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discussion on Hilbert bases. For a lattice polytope P ⊂ Rd, we have the inclusion of finite
subsets of Zd+1: (

P ∩ Zd, 1
)
⊂ Hilb(R+(P, 1)).

This inclusion is an equality if and only if P is normal.
A lattice polytope P is very ample if Hilb(R+(P − v)) ⊂ P − v for every vertex

v ∈ vert(P ). All normal polytopes are very ample, but already in dimension 3 there
are very ample non-normal polytopes [7, Exercise 2.24]. For a detailed analysis of the
discrepancy between the two properties see [3].

For a cone C ⊂ Rd, we say that C has a unimodular Hilbert triangulation (cover) if
C can be triangulated (resp., covered) by cones of the form R+x1 + · · · + Rxn, where
{x1, . . . , xn} is a part of a basis of Zd as well as of Hilb(C).

An ellipsoid E ⊂ Rd is a set of the form{
x ∈ Rd | (l1(x)− a1)2 + · · ·+ (ld(x)− ad)2 = 1

}
⊂ Rd,

where l1, . . . , ld is a full-rank system of real linear forms and a1, . . . , ad ∈ Rd.
For a lattice polytope P , the union of unimodular simplices in P will be denoted

by U(P ).

2 Unimodular covers close to the boundary

The following result of Sebő was later rediscovered in [1, 5] in a refined form in the context
of toric varieties.

Theorem 1. ([16]) Every 3-dimensional cone C has a unimodular Hilbert triangulation.

Notice. There exist 4-dimensional cones without unimodular Hilbert triangulation [5] and
it is not known whether all 4- and 5-dimensional cones have unimodular Hilbert cover.
According to [6], in all dimensions > 6 there are cones without unimodular Hilbert cover.

If P ⊂ R3 is very ample, then by Theorem 1, for every v ∈ vert(P ), the cone R+(P−v)
has a unimodular Hilbert triangulation:

R+(P − v) =
⋃
T (v)

Ct,

where T (v) is a finite index set, depending on v. In particular, the following unimodular
simplices form a neighborhood of v in P :

∆v,t = conv(Hilb(Ct), 0) + v, t ∈ T (v).

Also, lattice polygons have unimodular triangulation [7, Corollary 2.54]. Therefore, the
following lemma completes the proof of Theorem (a):
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Lemma 2. For a lattice polytope P of an arbitrary dimension, the following conditions
are equivalent:

(a) U(P ) is a neighborhood of ∂P within P ;

(b) U(P ) is a neighborhood within P of every vertex of P and ∂P ⊂ U(P ).

Proof. The implication (a)=⇒(b) is obvious.

For the opposite implication, let:

� x ∈ ∂P ;

� F be the minimal face of P containing x;

� v ∈ vert(F );

� TF be a unimodular cover of F with dim(F )-simplices, contained in F ;

� Tv be a unimodular cover of a neighbourhood of v in P ;

� Tv,F be the sub-family of Tv, consisting of simplices that have a dim(F )- dimensional
intersection with F ;

� Tv/F be the collection of faces of simplices in Tv,F , opposite to F (that is, from each
simplex in Tv,F remove the dim(F ) + 1 vertices that lie in F , so that one is left with a
(dim(P )− dim(F ))-simplex).

Then, the collection of conv(Tv/F, TF ) covers a neighbourhood of x in P and consists of
unimodular simplices.

3 Unimodular covers inside ellipsoids

3.1 Proof of Theorem (b)

The set of normal polytopes P ⊂ Rd carries a poset structure, where the order is generated
by the elementary relation

P 6 Q if P ⊂ Q and #(Q ∩ Zd) = #(P ∩ Zd) + 1.

In [9] this poset is denoted by NPol(d). The trivial minimal elements of NPol(d) are the
singletons from Zd. It is known that NPol(d) has nontrivial minimal elements for d > 4 [7,
Exercise 2.27] and the first maximal elements for d = 4, 5 were found in [9]. It is possible
that NPol(d) has isolated elements for some d.

Computer searches so far have found neither maximal nor nontrivial minimal elements
in NPol(3) [9]. The next lemma is yet another evidence that all normal 3-polytopes have
unimodular cover.
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Lemma 3. Let P be a normal 3-polytope. If ∗ 6 P in NPol(3) for a singleton ∗ ∈ Z3

then P = U(P ).

Proof. If Q 6 P is an elementary relation in NPol(d) and dimQ < dimP then P is
a unimodular pyramid over Q. In this case every full-dimensional unimodular simplex
∆ ⊂ P is the unimodular pyramid over a unimodular simplex in Q and with the same apex
as P . On the other hand, lattice segments and polygons are unimodularly triangulable.
Therefore, it is enough to show that a polytope P ∈ NPol(3) has a unimodular cover if
there is a 3-polytope Q ∈ NPol(3), such that Q has a unimodular cover and Q 6 P is an
elementary relation in NPol(3). Assume {v} = vert(P ) \Q. By Theorem (a) we have the
inclusion P \ U(P ) ⊂ Q. Since Q = U(Q) we have P = U(P ).

Call a subset E ⊂ Zd ellipsoidal and a point v ∈ E extremal if there is an ellipsoid
E ⊂ Rd, such that E = conv(E) ∩ Zd and v ∈ E.

Lemma 4. Let E ⊂ Rd be an ellipsoidal set. Then E has an extremal point and E \ {v}
is also ellipsoidal for every extremal point v ∈ E.

Proof. Let E = conv(E)∩Zd for an ellipsoid E ⊂ Rd. Applying an appropriate homothetic
contraction, centered at the center of E, we can always achieve E ∩E 6= ∅. In particular,
E has an extremal point. For v ∈ E ∩ E, after changing E to its homothetic image with
factor (1 + ε) and centered at v, where ε is a sufficiently small positive real number, we
can further assume E ∩E = {v}. Finally, applying a parallel translation to E by δ(z− v),
where z is the center of E and δ > 0 is a sufficiently small real number, we achieve
conv(E) ∩ Zd = E \ {v}.

Next we complete the proof of Theorem (b). It follows from Lemma 3.2 that, for
any natural number d and an ellipsoidal set E ⊂ Zd, there is a descending sequence of
ellipsoidal sets of the form

E = Ek ⊃ Ek−1 ⊃ · · · ⊃ E1, with #Ei = i for i = 1, . . . , k.

By [9, Theorem 6.5(c)], for d = 3, the conv(Ei) are normal polytopes. Therefore,
∗ 6 conv(E) in NPol(3) for some ∗ ∈ Z3. Thus Lemma 3 applies.

3.2 Alternative algorithmic proof in symmetric case

For the ellipsoids E with center in 1
2
Z3, there is a different proof of Theorem (b). It yields

a simple algorithm for constructing a unimodular cover of P (E).
Instead of Theorem 1 and [9, Theorem 6.5] this approach uses Johnson’s 1916 Circle

Theorem [13, 14]. We only need Johnson’s theorem to derive the following fact, which does
not extend to higher dimensions: for any lattice Λ ⊂ R2 and any ellipse E ′ ⊂ R2, such
that conv(E ′) contains a triangle with vertices in Λ, every parallel translate conv(E ′) + v,
where v ∈ R2, meets Λ.

Assume an ellipsoid E ⊂ R3 has center in 1
2
Z3 and dim(P (E)) = 3 (notation as in

the theorem). Assume U(P (E)) $ P (E). Because ∂P (E) is triangulated by unimodular
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triangles, there is a unimodular triangle T ⊂ P (E), not necessarily in ∂P (E), and a point
x ∈ intT , such that the points in [0, x], sufficiently close to x, are not in U(P (E)). For the
plane, parallel to T on lattice height 1 above T and on the same side as 0, the intersection
E ′ = conv(E) ∩H is at least as large as the intersection of conv(E) with the affine hull
of T : a consequence of the fact that P (E) ∩ Z3 is symmetric relative to the center of E.
The mentioned consequence of Johnson’s theorem implies that conv(E ′) contains a point
z ∈ Z3. In particular, all points in [x, 0], sufficiently close to x are in the unimodular
simplex conv(T, z) ⊂ P (E), a contradiction.

4 High dimensional ellipsoids

For a lattice Λ ⊂ Rd, define a Λ-polytope as a polytope P ⊂ Rd with vert(P ) ⊂ Λ. Using
Λ as the lattice of reference instead of Zd, one similarly defines Λ-normal polytopes and
Λ-ellipsoidal sets.

Consider the lattice Λ(d) = Zd+Z
(
1
2
, . . . , 1

2

)
⊂ Rd. We have

[
Zd : Λ(d)

]
= 2. Consider

the Λ(d)-polytope P (d) = conv
(

B(d) ∩ Λ(d)
)
, where B(d) =

{
(ξ1, . . . , ξd)

∣∣ ∑d
i=1

(
ξi −

1
2

)2
6 d

4

}
⊂ Rd, i.e., ∂(B(d)) is the circumscribed sphere for the cube [0, 1]d.

Consider the d-dimensional Λ(d)-polytope and the (d− 1)-dimensional Λ(d)-simplex:

Q(d) = conv
(
(P (d) ∩ Λ(d)) \ {e1 + · · ·+ ed}

)
,

∆(d− 1) = conv (e1 + · · ·+ ei−1 + ei+1 + · · ·+ ed | i = 1, . . . , d) ,

where e1, . . . , ed ∈ Rd are the standard basic vectors.

Notice. Although P (d) ∩ Zd = {0, 1}d for all d, yet [0, 1]d $ P (d) for all d > 4. In fact,(
1
2
, . . . , 1

2

)
+ kei ∈ P (d) ∩ Λ(d) for 1 6 i 6 d and −

⌈√
d
2

⌉
6 k 6

⌊√
d
2

⌋
.

Lemma 5. If d > 5 then ∆(d−1) is a facet of Q(d) and ∆(d−1)∩Λ(d) = vert(∆(d−1)).

Proof. Assume x = (ξ1, . . . , ξd) ∈ P (d)∩Λ(d) satisfies ξ1 + · · ·+ξd > d−1. We claim that
there are only two possibilities: either x = e1+· · ·+ed or x = e1+· · ·+ei−1+ei+1+· · ·+ed
for some index i. Since P (d) ∩ Zd = {0, 1}d, only the case x ∈

(
1
2
, . . . , 1

2

)
+ Zd needs to

be ruled out. Assume ξi = 1
2

+ ai for some integers ai, where i = 1, . . . , d. Then we have
the inequalities

d∑
i=1

a2i 6
d

4
and

d∑
i=1

ai >
d

2
− 1.

Since the ai are integers we have d
4
> d

2
− 1, a contradiction because d > 5.

Lemma 6. For every even natural number d > 6, there exists a point in
(
d
2
·Q(d)

)
∩Λ(d)

which does not have a representation of the form x1+· · ·+x d
2

with x1, . . . , x d
2
∈ Q(d)∩Λ(d).

In particular, Q(d) is not Λ(d)-normal.
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Proof. Consider the baricenter β(d) = d−1
d
· (e1 + · · ·+ ed) of ∆(d− 1). The point d

2
· β(d)

is the baricenter of the dilated simplex d
2
·∆(d− 1) and, simultaneously, a point in Λ(d).

Assume d
2
· β = x1 + · · · + x d

2
for some x1, . . . , x d

2
∈ Q(d) ∩ Λ(d). Lemma 5 implies

x1, . . . , x d
2
∈ ∆(d − 1) ∩ Λ(d) = vert(∆(d − 1)). But this is not possible because the

dilated (d − 1)-simplex c∆(d − 1) has an interior point of the form z1 + · · · + zc with
z1, . . . , zc ∈ vert(∆(d− 1)) only if c > d.

Proof of Theorem (c). Since e1, . . . , ed, (
1
2
, . . . , 1

2
) ∈ Q(d) we have the equality gp(Q(d)) =

Λ(d). By Lemmas 4 and 5, the set Q(d) ∩Λ(d) is Λ(d)-ellipsoidal for d > 5. By applying
a linear transformation, mapping Λ(d) isomorphically to Zd, Lemma 6 already implies
Theorem (c) for d even.

One involves all dimensions d > 6 by observing that (i) if E ⊂ Rd is an ellipsoidal
set then E × {0, 1} ⊂ Rd+1 is also ellipsoidal and (ii) the normality of conv(E × {0, 1})
implies that of conv(E). While (ii) is straightforward, for (i) one applies an appropriate
affine transformation to achieve E = conv(Sd−1)∩Λ, where Sd−1 ⊂ Rd is the unit sphere,

and Λ ⊂ Rd is a shifted lattice. In this case the ellipsoid E =
{

(ξ1, . . . , ξd)

∣∣∣∣ ξ21
a2

+

· · · +
ξ2d−1

a2
+

ξ2d
a2

+
(ξd+1− 1

2
)2

b2
= 1

}
⊂ Rd+1 with b > 1

2
and a = 2b√

4b2−1 , is within the

(b − 1
2
)-neighborhood of the region of Rd+1 between the hyperplanes (Rd, 0) and (Rd, 1)

and satisfies the following conditions: E ∩ (Rd, 0) = (Sd−1, 0) and E ∩ (Rd, 1) = (Sd−1, 1).
In particular, when 1

2
< b < 3

2
we have conv(E) ∩ (Λ× Z) = E × {0, 1}.

Remark 7. The definition of a normal polytope in the introduction is stronger than the
one in [7, Definition 2.59]: the former is equivalent to the notion of an integrally closed
polytope, whereas ‘normal’ in the sense of [7] is equivalent to gp(P )-normal. Examples
of gp(P )-normal polytopes, which are not normal, are lattice non-unimodular simplices,
whose only lattice points are the vertices. Lemma 5 and the proof of Lemma 6 show that
the 5-simplex ∆(5) is not Λ(6)-unimodular. Applying an appropriate affine transformation
we obtain a lattice non-unimodular simplices ∆′ ⊂ R5 with vert(∆′) ellipsoidal. Such
examples in R5 have been known sine the 1970s: a construction of Voronoi [2] yields a
lattice Λ ⊂ R5 and a 5-simplex ∆ ⊂ R5 of Λ-multiplicity 2, whose circumscribed sphere
does not contain points of Λ inside except vert(∆).

We do not know whether there are ellipsoidal subsets E ⊂ R5 with conv(E) non-normal
and gp(conv(E)) = Z5. For instance, Q(5) is Λ(5)-normal, as checked by Normaliz [10].
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