
Counting non-crossing permutations on

surfaces of any genus

Norman Do∗ Jian He Daniel V. Mathews†

School of Mathematics
Monash University

Victoria 3800, Australia

{norm.do,jian.he,daniel.mathews}@monash.edu

Submitted: Sep 23, 2020; Accepted: Sep 29, 2021; Published: Oct 22, 2021

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given a surface with boundary and some points on the boundary, a polygon
diagram is a way to connect those points as vertices of non-overlapping polygons on
the surface. Such polygon diagrams represent non-crossing permutations on the sur-
face. If only bigons are allowed, then one obtains the notion of arc diagrams, whose
enumeration is known to have a rich structure. We show that the count of polygon
diagrams on surfaces with any genus and number of boundary components exhibits
similar structure. In particular it is almost polynomial in the number of points
on the boundary components, and the leading coefficients of those polynomials are
intersection numbers on compactified moduli spaces of curves.

Mathematics Subject Classifications: 05A15, 57M50

1 Introduction

Define a polygon on a connected compact oriented surface S with boundary to be an
embedded (closed) disc bounded by a sequence P1P2, P2P3, . . . , Pm−1Pm, PmP1 of properly
embedded arcs, where P1, P2, . . . , Pm lie on the boundary ∂S. The points P1, P2, . . . , Pm
are called the vertices of the polygon and the arcs PiPi+1 (with i taken modulo m) are its
edges. This notion of polygon allows for “loops” and ”bigons”, which arise in the cases
m = 1 and m = 2, respectively. Given a finite set of marked points M ⊂ ∂S, a polygon
diagram on (S,M) is a disjoint union of polygons on S whose vertices are precisely the
marked points M . See figure 1 for an example. Two polygon diagrams D1, D2 on (S,M)
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are equivalent if there is an orientation-preserving diffeomorphism φ : S → S such that
φ|∂S is the identity and φ(D1) = D2.

Polygon diagrams are closely related to non-crossing permutations as well as dessins
d’enfant, as described in further detail below. In this paper we count them.

Figure 1: A polygon diagram on S1,2.

Denote by Sg,n a connected compact oriented surface of genus g with n > 1 boundary
components, or just S when g and n are understood. Label the boundary components of
S as F1, . . . , Fn. Since we will be performing cutting and pasting operations on polygon
diagrams, it is often helpful to choose a single marked point mi ∈M ∩Fi to be decorated
on each boundary component Fi containing at least one marked point (i.e. such that
M ∩ Fi 6= ∅). Two polygon diagrams D1, D2 on S can then be regarded as equivalent
if there is an orientation-preserving diffeomorphism from S to itself taking D1 to D2,
such that each decorated marked point on D1 is mapped to the decorated marked point
of D2 on the same boundary component. Fixing the total number of vertices on each
boundary component Fi to be µi (i.e. |M ∩ Fi| = µi), let Pg,n(µ1, . . . , µn) be the number
of equivalence classes of polygon diagrams on (S,M). Clearly Pg,n only depends on
g, n, µ1, . . . , µn (not on the choice of particular S or M) and is a symmetric function of
the arguments µ1, . . . , µn.

Proposition 1. For (g, n) = (0, 1), (0, 2), (0, 3) and (1, 1), Pg,n(µ1, . . . , µn) is given by

P0,1(µ1) =

{(
2µ1−1
µ1

)
2

µ1+1
, for µ1 > 0,

1, for µ1 = 0,
(1)

P0,2(µ1, µ2) =

{(
2µ1−1
µ1

)(
2µ2−1
µ2

) (
2µ1µ2
µ1+µ2

+ 1
)
, for µ1, µ2 > 0,(

2µ1−1
µ1

)
, for µ2 = 0,

(2)

P0,3(µ1, µ2, µ3) =
3∏
i=1

(
2µi − 1

µi

)
×

(
2µ1µ2µ3 +

∑
i<j

µiµj +
3∑
i=1

µ2
i − µi

2µi − 1
+ 1

)
, (3)

P1,1(µ1) =

(
2µ1 − 1

µ1

)
1

2µ1 − 1

µ3
1 + 3µ2

1 + 20µ1 − 12

12
. (4)

Here we take the non-standard convention that when µ = 0,
(

2µ−1
µ

)
=
(−1

0

)
= 1.

Observe that the expression for P0,1(µ1) produces a Catalan number, which we have
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written in a non-standard form to highlight the binomial coefficient that arises in the
general statement of theorem 3 below.

Suppose D is a polygon diagram on (S,M) where S is a disc or an annulus, i.e.
(g, n) = (0, 1) or (0, 2) respectively. Each boundary component Fi inherits an orientation
from S. Label the marked points of M by the numbers 1, 2, . . . , |M | =

∑n
i=1 µi, in order

around F1 in the disc case, and in order around F1 then F2 in the annulus case. Orienting
each polygon in agreement with S induces a cyclic order on the vertices (and vertex
labels) of each polygon, giving the cycles of a permutation π of {1, 2, . . .

∑
µi}. Such a

permutation is known as a non-crossing permutation if S is a disc, and an annular non-
crossing permutation if S is an annulus. We say the diagram D induces or represents the
permutation π.

Non-crossing permutations are well-known combinatorial objects. It is a classical
result that the number of non-crossing permutations on the disc with N marked points
is given by the Nth Catalan number. Annular non-crossing permutations were (so far as
we know) first introduced by King [20]. They were studied in detail by Mingo–Nica [22],
Nica–Oancea [24], Goulden–Nica–Oancea [13], Kim [18] and Kim–Seo–Shin [19]. More
generally, there is now a wealth of literature on non-crossing combinatorics, with much
of it inspired by connections to random matrices and free probability [28].

In general, if we number the marked points in M from 1 to |M | =
∑n

i=1 µi in order
around the oriented boundaries F1, then F2, up to Fn, then in a similar way, a polygon
diagram represents a non-crossing permutation on a surface with arbitrary genus and
an arbitrary number of boundary components. This paper studies such non-crossing
permutations via polygon diagrams.

The relation between permutation and genus here differs slightly from others in the
literature. The notion of genus of a permutation π in [16] and subsequent papers such as [6,
7, 8], in our language, is the smallest genus g of a surface S with one boundary component
on which a polygon diagram exists representing the permutation π; equivalently, it is the
genus of a surface S with one boundary component on which a polygon diagram exists
representing π, such that all the components of S\D are discs. This differs again from
the notion of genus of a permutation in [5].

Given a non-crossing permutation π on the disc, it is clear that there is a unique
polygon diagram D (up to equivalence) representing π. Therefore P0,1(µ) is also the µ-th
Catalan number. Uniqueness of representation is also true for connected annular non-
crossing partitions. An annular non-crossing partition is connected if there is at least
one edge between the two boundary components, i.e. from F1 to F2. Uniqueness of
representation follows since an edge from F1 to F2 cuts the annulus into a disc. The
number of connected annular non-crossing partitions counted in P0,2(µ1, µ2) is known to
be [22, cor. 6.8] (

2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)(
2µ1µ2

µ1 + µ2

)
,

which appears as a term in the formula (2) for P0,2(µ1, µ2).
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A disconnected annular non-crossing permutation however can be represented by sev-
eral distinct polygon diagrams. For example, consider a bigon on the disc and remove
a small disk from the region on either side of the bigon to create two polygon diagrams
on the annulus. Whereas these contribute separately to the enumeration P0,2(2, 0), they
correspond to the same annular non-crossing permutation. So P0,2 can be viewed as the
total count of annular non-crossing permutations with multiplicities. Similarly, in general
the numbers Pg,n(µ, . . . , µn) can be regarded as counts with multiplicity of non-crossing
permutations on arbitrary connected compact oriented surfaces with boundary.

Given a polygon diagram D on S where all components of S\D are discs, we may
embed a bipartite graph G in S, dual to D, as follows. We place a white vertex in
the interior of each polygon of D, a black vertex in each component of S\D, and join
vertices by edges across each edge of the polygon diagram D. Capping off the surface
S to a closed surface Ŝ by gluing a disc to each boundary component, distinguishing
one edge of the graph G, as a root, and regarding two such graphs as equivalent if they
are related by a homemorphism of Ŝ, we then have a bicoloured rooted map in the sense
of [14]. As S deformation retracts onto G, the number of components of S\G is the
number of boundary components n of S. This graph G is exactly a dessin d’enfant with
a decorated edge on each boundary component corresponding to the decorated marked
point, and the polygon diagram can be recovered from the dessin. If n = 1 then we have
a bicoloured unicellular rooted map. Goupil and Schaeffer [14, cor. 4.3] showed that the
number Bi(µ, g) of unicellular bicoloured maps with µ edges (which corresponds to the
number of vertices in a polygon diagram) of genus g is given asymptotically by

Bi(µ, g) ∼µ→∞
µ3(g− 1

2)4µ√
π g! 48g

.

Applying Stirling’s approximation to our result contained in equation (4) immediately
gives the same asymptotics in the case g = 1.

Corollary 2.

P1,1(µ) ∼µ→∞
µ3/24µ

48
√
π
.

For general n, enumerative and polynomiality results for the enumeration of dessins
have been previously obtained by Kazarian–Zograf [17], Ambjørn–Chekov [1], and Do–
Norbury [11]. Let Rk

g,n(µ1, . . . , µn) denote the enumeration of dessins with k black vertices,
and S(n, k) be the Stirling number of the second kind. Then our polygon diagram count
is related to the dessin count by the equation

Pg,n(µ1, . . . , µn) =
∑
g′,k,l

(
g + 2l − g′ − k − 1

l − 1

)
S(k, l)Rk

g′,n(µ1, . . . , µn). (5)

This can be seen by starting with a polygon diagram where Sg′,n\D consists of k discs,
grouping those k discs together into l connected components by adding k− l handles, and
then adding the remaining g − g′ − (k − l) handles amongst these l components.
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If all polygons in D are bigons, then collapsing them into arcs turns D into an arc
diagram, as defined and studied by the first and third authors with Koyama in [9]. The
count of arc diagrams exhibits quasi-polynomial behaviour, and the asymptotic behaviour
is governed by intersection numbers on moduli spaces of curves. In this paper we show
that the count of polygon diagrams has an analogous structure. The arguments here
parallel those in [9], which deal with the enumeration of arc diagrams. Our arguments are
necessarily more involved than those for arc diagrams but, perhaps surprisingly, produce
cleaner results.

The formulae for Pg,n in proposition 1 suggest that Pg,n(µ1, . . . , µn) is a product of the(
2µi−1
µi

)
, together with a rational function of µ1, . . . , µn. In fact we also know the form of

the denominator. Moreover, the behaviour is better than for arc diagrams in the sense
that we obtain polynomials rather than quasi-polynomials.

Theorem 3. For (g, n) 6= (0, 1), (0, 2), let a = 3g − 3 + n and

Cg,n(µ) =
1

(2µ− 1)(2µ− 3) . . . (2µ− 2a− 1)

(
2µ− 1

µ

)
.

Then

Pg,n(µ1, . . . , µn) =

(
n∏
i=1

Cg,n(µi)

)
Fg,n(µ1, . . . , µn),

where Fg,n is a polynomial with rational coefficients.

Note that Fg,n might have some common factors with (2µi−1)(2µi−3) · · · (2µi−2a−1),
which would simplify the formula for Pg,n. For example, F1,1 has a factor (2µ1−3), hence
only (2µ1 − 1) appears on the denominator in (4).

The Pg,n(µ1, . . . , µn) satisfy a recursion which allows the count on a surface to be
computed from the counts on surfaces with simpler topology, i.e, either smaller genus g,
or fewer boundary components n, or fewer vertices

∑
µi.

Let X = {1, 2, . . . , n}. For each I ⊆ X, let µI = {µi | i ∈ I}.

Theorem 4. For non-negative integers g and µ1, . . . , µn such that µ1 > 0, we have

Pg,n(µ1, . . . ,µn) = Pg,n(µ1 − 1,µX\{1}) +
n∑
k=2

µkPg,n−1(µ1 + µk − 1,µX\{1,k})

+
∑

i+j=µ1−1

j>0

[
Pg−1,n+1(i, j,µX\{1}) +

∑
g1+g2=g

ItJ=X\{1}

Pg1,|I|+1(i,µI)Pg2,|J |+1(j,µJ)

]
.

(6)

Note that the dessin count Rg,n satisfies the same recursion, with the only difference
in the initial data. For polygon diagrams, Pg,n(0, 0, . . . 0) = 1 for all (g, n), whereas for
dessins, Rg,n(0, 0, . . . 0) = 0 except R0,1(0) = 1.
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An edge is boundary-parallel if it cuts off a disc from the surface S. Two edges are
parallel if there is a disc in the surface S bounded by the union of these two edges with
two segments that lie on the boundary of S. A polygon all of whose edges are parallel
to the same boundary component is local in the sense that it does not detect any of the
underlying topology of S. The enumeration of these polygons is thus combinatorial in
nature. Therefore from a topological point of view, it is natural to count polygon diagrams
where no edges are boundary-parallel. We call such a diagram a pruned polygon diagram.
Observe that a pruned polygon diagram cannot contain a polygon with one edge, otherwise
known as a “loop”. Let the count of pruned polygon diagrams be Qg,n(µ1, . . . , µn), i.e.
the number of equivalence classes of pruned polygon diagrams on a surface of genus g,
with n boundary components, containing µ1, . . . , µn marked points respectively. Clearly
Qg,n(µ1, . . . , µn) is also symmetric in the arguments µ1, . . . , µn.

As the name suggests, the relationship between Pg,n and Qg,n mirrors that of dessin and
pruned dessin counts [11], as well as Hurwitz numbers and pruned Hurwitz numbers [10].
It also mirrors the relationship between the counts of arc diagramsGg,n and non-boundary-
parallel arc diagrams Ng,n in [9]; we can think of the latter as pruned arc diagrams.
This correspondence between combinatorial objects and their pruned counterparts also
bears a resemblance to constructions appearing in the literature on maps, such as the
notion of non-choppable maps [2]. The relationship between pruned polygon diagrams
and pruned dessins is not as simple as their unpruned versions. In particular the equivalent
of equation (5) does not hold, and the polynomiality of Qg,n does not follow directly from
that of the pruned dessin enumeration.

We call a function f(µ1, . . . , µn) that takes non-negative integer arguments a quasi-
polynomial if it is given by a family of polynomial functions, depending on whether
each of the integers µ1, . . . , µn is zero, odd, or even and nonzero. In other words, a
quasi-polynomial can be viewed as a collection of 3n polynomials, depending on whether
each µi is zero, odd, or even and nonzero. More precisely, for each partition X =
Xe t Xo t X∅, there is a polynomial f (Xe,Xo,X∅)(µXe ,µXo) such that f(µ1, . . . , µn) =
f (Xe,Xo,X∅)(µXe ,µXo) whenever µi = 0 for i ∈ X∅, µi is nonzero and even for i ∈ Xe,
and µi is odd for i ∈ Xo. (Here as above, X = {1, 2, . . . , n} and for a set I ⊆ X,
µI = {µi | i ∈ I}.) Call a quasi-polynomial odd if each f (Xe,Xo,X∅)(µXe ,µXo) is an odd
polynomial with respect to each µi ∈ Xe tXo.

Note that our definition of a quasi-polynomial differs slightly from the standard defi-
nition in the literature, in that 0 is treated as a separate case rather than an even number.
The notion is sufficiently close though that one might consider it more practical to keep
the term quasi-polynomial than to invent a new variation.

Theorem 5. For (g, n) 6= (0, 1) or (0, 2), Qg,n(µ1, . . . , µn) is an odd quasi-polynomial in
the sense described above.

The proof of this structural result relies heavily on a recursion for the numbers
Qg,n(µ1, . . . , µn) that appears as theorem 17, which may be considered the technical core
of the present work. While the recursion for Qg,n(µ1, . . . , µn) broadly resembles that
for Pg,n(µ1, . . . , µn) in theorem 4 above, it is more complicated. On the other hand, it
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has the virtue of being an effective recursion on (g, n), in the sense that it expresses
Qg,n(µ1, . . . , µn) in terms of values of Qg′,n′ for which 2g′ + n′ < 2g + n. Contrast the
recursion for Pg,n(µ1, . . . , µn) of theorem 4, which involves other values of Pg,n. Whereas
the recursion for the pruned enumeration leads to the structural result for the pruned
enumeration, an analogous approach at the level of the unpruned enumeration seems to
the authors to be difficult. It is precisely for this reason that passing to the pruned
enumeration is advantageous.

The pruned diagram enumeration captures topological information of Sg,n in some
sense. We will show that the highest degree coefficients of the quasi-polynomial Qg,n are
determined by intersection numbers on the compactified moduli space of curvesMg,n. In
this way the quasi-polynomials Qg,n(µ1, . . . , µn) behave similarly not only to arc diagram
counts [9], but also to the volume polynomials of Kontsevich [21], the Weil–Petersson
volume polynomials of Mirzakhani [23], and the lattice count polynomials of Norbury [25].
These last three problems are all governed by the topological recursion of Chekhov, Eynard
and Orantin [4, 12] and the fact that they agree to leading order is a consequence of this
fact. It is not yet clear whether the enumeration of non-crossing permutations discussed
presently is also governed by the topological recursion or some variant of it.

Theorem 6. For (g, n) 6= (0, 1) or (0, 2), Q
(Xe,Xo,∅)
g,n (µ1, . . . , µn) has degree 6g − 6 + 3n.

The coefficient cd1,...,dn of the highest degree monomial µ2d1+1
1 · · ·µ2dn+1

n is independent of
(Xe, Xo), and

cd1,...,dn =
1

2g−1d1! · · · dn!

∫
Mg,n

ψd11 · · ·ψdnn .

Here ψi is the Chern class of the i-th tautological line bundle over the Deligne–
Mumford compactification Mg,n of the moduli space of genus g curves with n marked
points. A discussion of these algebro-geometric concepts would take us too far from the
focus of the paper, so we refer the interested reader to the literature for more details [15].

2 Algebraic identities

In this section we state some identities required in the sequel. The proofs of all the results
in this section appear in appendix A.

The combinatorial identities we require involve sums of binomial coefficients multiplied
by polynomials. The sums themselves also have a certain polynomial structure, analogous
to the sums in [9, defn. 5.5] and [26].

Proposition 7. For any integer α > 0 there are polynomials Pα and Qα such that

∑
06i6n even

i2α+1

(
2n

n− i

)
=

(
2n
n

)
(2n− 1)(2n− 3) · · · (2n− 2α− 1)

Pα(n)

∑
06i6n odd

i2α+1

(
2n

n− i

)
=

(
2n
n

)
(2n− 1)(2n− 3) · · · (2n− 2α− 1)

Qα(n).
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In particular, in the cases α = 0 and 1 we have

P0(n) =
1

2
(n2−n), Q0(n) =

1

2
n2, P1(n) = (n−1)2n2 and Q1(n) =

1

2
n2(2n2−4n+1). (7)

In other words, we have the identities

∑
06ν6µ even

ν

(
2µ

µ− ν

)
=

(
2µ
µ

)
2µ− 1

µ2 − µ
2

,
∑

06ν6µ odd

ν

(
2µ

µ− ν

)
=

(
2µ
µ

)
2µ− 1

µ2

2
, (8)

∑
06ν6µ even

ν3

(
2µ

µ− ν

)
=

(
2µ
µ

)
(2µ− 1)(2µ− 3)

(µ− 1)2µ2, (9)

∑
06ν6µ odd

ν3

(
2µ

µ− ν

)
=

(
2µ
µ

)
(2µ− 1)(2µ− 3)

µ2(2µ2 − 4µ+ 1)

2
. (10)

We also need some results for summing polynomials over tuples of integers satisfying
constraints on their sum and parities. They can be proved as in [9] using generalisations
of Ehrhart’s theorem from [3], but we give more elementary proofs in the appendix.

Proposition 8. For positive odd integers k1, k2∑
i1,i2>1, i1+i2=n

i1,i2 have fixed parities

ik11 i
k2
2

is an odd quasi-polynomial in n. This quasi-polynomial is given by a degree k1 + k2 + 1
polynomial when the parity of n is the sum of the fixed parities of i1 and i2, and is equal
to zero otherwise. Furthermore, the leading coefficient of this polynomial is independent
of the choice of parities.

In other words, in the sum above, we fix elements ε1, ε2 ∈ Z/2Z and the sum is over
integers i1, i2 such that i1, i2 > 1, i1 + i2 = n, i1 ≡ ε1 mod 2 and i2 ≡ ε2 mod 2.

Proposition 8 can be directly generalised by induction to the following.

Proposition 9. For positive odd integers k1, k2, . . . , km∑
i1,i2,...,im>1, i1+i2+···+im=n
i1,i2,...,im have fixed parities

ik11 i
k2
2 · · · ikmm

is an odd quasi-polynomial in n. This quasi-polynomial is given by a degree
∑m

i=1 ki+m−1
polynomial when the parity of n is the sum of the fixed parities of i1, i2, . . . , im, and is equal
to zero otherwise. Furthermore, the leading coefficient of this polynomial is independent
of the choice of parities.

We will need the following particular cases, which can be proved by a straightforward
induction, and follow immediately from the discussion in the appendix.
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Lemma 10. Let n > 0 be an integer.

When n is odd,
∑

06i6n
i odd

i =
(n+ 1)2

4
and

∑
06i6n
i odd

i2 =
n(n+ 1)(n+ 2)

6
.

When n is even,
∑

06i6n
i even

i =
n(n+ 2)

4
and

∑
06i6n
i even

i2 =
n(n+ 1)(n+ 2)

6
.

3 Basic results on polygon diagrams

3.1 Base cases for the pruned enumeration

We start by working out Qg,n for some small values of (g, n). As Qg,n(µ1, . . . , µn) is
symmetric in its arguments, the next proposition gives all values of Q0,1, Q0,2 and Q0,3

Proposition 11.

Q0,1(µ1) = δµ1,0,

Q0,2(µ1, µ2) = µ1δµ1,µ2 ,

Q0,3(µ1, µ2, µ3) =


2µ1µ2µ3, for µ1, µ2, µ3 > 0,

µ1µ2, for µ1, µ2 > 0, µ3 = 0,

µ1, for µ1 even, µ2 = µ3 = 0,

0, for µ1 odd, µ2 = µ3 = 0.

Here δ is the Kronecker delta and n = n + δn,0 as in [9], so for a positive integer n we
have n = n, while 0 = 1.

Proof. On the disc, every edge is boundary-parallel. Therefore Q0,1(µ1) = 0 for all positive
µ1.

For (g, n) = (0, 2), all non-boundary-parallel edges must run between the two boundary
components F1 and F2, and are all parallel to each other. A pruned polygon diagram must
consist of a number of pairwise parallel bigons running between F1 and F2. Therefore
Q0,2(µ1, µ2) = 0 if µ1 6= µ2. If µ1 = µ2 > 0, consider the bigon containing the decorated
marked point on F1. The location of its other vertex on F2 uniquely determines the
pruned polygon diagram. Therefore Q0,2(µ1, µ1) = µ1, where the bar notation allows us
to include the trivial case Q0,2(0, 0) = 1.

For (g, n) = (0, 3), we can embed the pair of pants in the plane, with its usual ori-
entation, and denote the three boundary components by F1 = Fouter, F2 = Fleft and
F3 = Fright, with µ1, µ2 and µ3 marked points respectively. Without loss of generality
assume µ1 > µ2, µ3. A non-boundary-parallel edge can be separating, with endpoints on
the same boundary component and cutting the surface into two annuli, or non-separating,
with endpoints on different boundary components. See figure 2.

In a pruned polygon diagram on a pair of pants there can be only one type of separating
edge, and all separating edges must be parallel to each other. Consider a polygon P in a
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Figure 2: Boundary labels and three types of non-boundary-parallel edges on a pair of
pants.

pruned polygon diagram. All its diagonals are also non-boundary-parallel, for a boundary-
parallel diagonal implies boundary-parallel edges. Further, there is at most one boundary
component on which P has more than one vertex; if there were two boundary components
Fi, Fj each with at least two vertices then there would be separating diagonals from each
of Fi, Fj to itself, which is impossible since there can be only one type of separating edge.
Moreover, P cannot have three vertices on a single boundary component, since the three
diagonals connecting them would have to be non-boundary-parallel, hence separating,
hence parallel to each other, hence forming a bigon at most. Therefore a polygon in a
pruned diagram on a pair of pants is of one of the following types:

• a non-separating bigon from one boundary component to another,

• a separating bigon from one boundary component to itself,

• a triangle with a vertex on each boundary component,

• a triangle with two vertices on a single boundary component, and the third vertex
on a different boundary component,

• a quadrilateral with two opposite vertices on a single boundary component, and one
vertex on each of the other two boundary components.

See figure 3. It is easy to see that there can be at most one quadrilateral or two triangles
in any pruned diagram.

If µ2 = µ3 = 0, then all edges must be between Fouter and itself and separating. In
this case a pruned polygon diagram must consist of a number of pairwise parallel bigons.
Hence Q0,3(µ1, 0, 0) = 0 if µ1 is odd. If µ1 > 0 is even, then the configuration of µ1

2

separating bigons gives rise to µ1 pruned polygon diagrams, as the decorated marked
point can be located at any one of the µ1 positions. If µ1 = 0 then there is only the empty
diagram, so in general there are µ1 diagrams.
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Figure 3: Types of polygons in a pruned diagram on a pair of pants.

If µ2 > 0 and µ3 = 0, then since µ1 > µ2, the possible polygons are

• a separating bigon between Fouter and itself,

• a non-separating bigon between Fouter and Fleft,

• a triangle with two vertices on Fouter and a vertex on Fleft.

Furthermore there can be at most one triangle. If µ1−µ2 is even, then a pruned polygon
diagram must consist of µ2 bigons from Fouter to Fleft and µ1−µ2

2
bigons from Fouter to

itself. If µ1 − µ2 is odd, then a pruned polygon diagram must consist of a single triangle,
µ2− 1 bigons from Fouter to Fleft and µ1−µ2−1

2
bigons from Fouter to itself. Again each such

configuration determines µ1µ2 pruned diagrams accounting for the locations of the two
decorated marked points on Fouter and Fleft.

If µ1, µ2, µ3 > 0, then because µ1 is maximal, any separating edge or separating di-
agonal in a quadrilateral must be from Fouter to itself. Therefore the single quadrilateral
(if it exists) must have a pair of opposite vertices on Fouter and one vertex each on Fleft

and Fright. There are two types of triangles with a separating edge from Fouter to itself,
depending on whether the last vertex is on Fleft or Fright. Call these left or right triangles
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respectively. There are also two types of triangles with a vertex on each boundary com-
ponent, depending on whether the triangle’s boundary, inheriting an orientation from the
surface, goes from Fouter to Fleft or Fright. Call these up or down triangles respectively.
We then have the following seven cases. See figure 4.

Figure 4: The seven types of pruned polygon diagram on a pair of pants. These correspond
to cases (i)–(vii) reading across rows from left to right

(i) There is one quadrilateral. Then the pruned diagram must consist of this single
quadrilateral, µ2 − 1 bigons between Fouter and Fleft, and µ3 − 1 bigons between
Fouter and Fright. In this case we must have µ1 − µ2 − µ3 = 0.
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(ii) There is a left and a right triangle. Then the pruned diagram must consist of these
two triangles, µ2 − 1 bigons between Fouter and Fleft, µ3 − 1 bigons between Fouter

and Fright, and µ1−µ2−µ3−2
2

separating bigons between Fouter and itself. In this case
we have µ1 − µ2 − µ3 is positive and even.

(iii) There is an up and a down triangle. Then the pruned diagram must consist of these
two triangles, µ1+µ2−µ3−2

2
bigons between Fouter and Fleft,

µ1+µ3−µ2−2
2

bigons between

Fouter and Fright, and µ2+µ3−µ1−2
2

bigons between Fleft and Fright. In this case we have
µ1 − µ2 − µ3 is negative and even. (Note that µ1 + µ2 − µ3 and µ1 + µ3 − µ2 are
both positive and even in this case.)

(iv) There is a single left (resp. right) triangle. Then the pruned diagram must consist
of this triangle, µ2−1 (resp. µ3−1) bigons between Fouter and Fleft (resp. Fright), µ3

(resp. µ2) bigons between Fouter and Fright (resp. Fleft), and µ1−µ2−µ3−1
2

separating
bigons between Fouter and itself. In this case µ1 − µ2 − µ3 is positive and odd.

(v) There is a single up (resp. down) triangle. Then the pruned diagram must consist of
this triangle, µ1+µ2−µ3−1

2
bigons between Fouter and Fleft,

µ1+µ3−µ2−1
2

bigons between

Fouter and Fright, and µ2+µ3−µ1−1
2

bigons between Fleft and Fright. In this case µ1 −
µ2 − µ3 is negative and odd. (Note that µ1 + µ2 − µ3 and µ1 + µ3 − µ2 are both
positive and odd in this case.)

(vi) There are only non-separating bigons. Then the pruned diagram must consist of
µ1+µ2−µ3

2
bigons between Fouter and Fleft,

µ1+µ3−µ2
2

bigons between Fouter and Fright,
and µ2+µ3−µ1

2
bigons between Fleft and Fright. In this case µ1 − µ2 − µ3 is negative

or zero, and even. (Note that µ1 + µ2 − µ3 and µ1 + µ3 − µ2 are both positive and
even in this case.)

(vii) There are only bigons, some of which are separating. Then the pruned diagram
must consist of µ2 bigons between Fouter and Fleft, µ3 bigons between Fouter and
Fright, and µ1−µ2−µ3

2
separating bigons between Fouter and itself. In this case we have

µ1 − µ2 − µ3 is positive and even.

Observe that for each triple (µ1, µ2, µ3), precisely two of these cases apply, depending on
µ1 − µ2 − µ3. (Here we count the left and right versions of (iv) separately, and the up
and down versions of (v) separately.) These cases yield two possible configurations of
polygons, and each configuration corresponds to µ1µ2µ3 pruned diagrams, accounting for
the locations of the decorated marked points on the three boundary components. Thus
Q0,3 is as claimed.

3.2 Cuff diagrams

Consider the annulus embedded in the plane with F1 being the outer and F2 the inner
boundary. A cuff diagram is a polygon diagram on an annulus with no edges between
vertices on the inner boundary F2. (These are analogous to the local arc diagrams of [9].)
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Let L(b, a) be the number, up to equivalence, of cuff diagrams with b vertices on the outer
boundary F1 and a vertices on the inner boundary F2.

Proposition 12. For all non-negative integers a, b, L(b, a) is given by

L(b, a) =


a
(

2b
b−a

)
, for a, b > 0,

1
2

(
2b
b

)
, for a = 0, b > 0,

1, for a = b = 0.

Proof. This argument follows [9], using ideas of Przytycki [27]. A partial arrow diagram
on a circle is a labelling of a subset of vertices on the boundary of the circle with the label
“out”.

Assume a > 0. We claim there is a bijection between the set of equivalence classes of
cuff diagrams counted by L(b, a), on the one hand, and on the other, the set of partial
arrow diagrams on a circle with 2b vertices and b−a “out” labels, together with a choice of
decorated marked point on the inner circle. Clearly the latter set has cardinality a

(
2b
b−a

)
.

This bijection is constructed as follows. Starting from a cuff diagram D, observe
that there are b − a edges of D with both endpoints on the outer boundary F1. Orient
these edges in an anticlockwise direction. (Note this orientation may disagree with the
orientation induced from polygon boundaries.) Label the b vertices on F1 from 1 to b
starting from the decorated marked point. Taking a slightly smaller outer circle F ′1 close
to F1, the edges of D intersect F ′1 in 2b vertices, say 1, 1′, 2, 2′, . . . , b, b′. Label each of
these 2b vertices “out” if it is a starting point of one of the oriented edges. We then have
b−a “out” labels, and hence a partial arrow diagram of the required type. The decorated
marked point on the inner circle is given by the cuff diagram.

Conversely, starting from a partial arrow diagram, there is a unique way to reconstruct
the edges of the cuff diagram D so that they do not intersect. Regard the circle with 2b
vertices of the partial arrow diagram as the outer boundary F1, with the 2b vertices lying
in pairs close to each marked point of the original annulus, and with the pair close to
marked point i labelled i, i′. Since there are vertices with and without arrows among the
2b vertices, there is an “out” vertex on F1 followed by an unlabelled vertex in an anticlock-
wise direction. The edge starting from this “out” vertex must end at that neighbouring
unlabelled vertex (otherwise edges ending at those two vertices would intersect). Next we
remove those two matched vertices and repeat the argument. Eventually all b− a “out”
vertices are matched with unlabelled vertices by b− a oriented edges. The remaining 2a
unlabelled vertices are joined to 2a vertices on the inner circle F2. These 2a edges divide
the annulus into 2a sectors, which are further subdivided into a number of disc regions
by the oriented edges. Since 2a is even, the disc regions can be alternately coloured black
and white. Each pair of vertices on F1 is then “pinched” into the original marked point;
the colouring can be chosen so that the pinched vertices are corners of black polygons
near F1. The vertices of F2 can then be pinched in pairs in a unique way to produce a
polygon diagram D, where the polygons are the black regions. This polygon diagram D
has b vertices on F1 and a vertices on F2. Finally, each vertex on F2 belongs to a separate
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Figure 5: Reconstructing a cuff diagram from a partial arrow diagram.

polygon with all other vertices on the outer circle. Placing the decorated marked point
on F2 at each vertex gives a distinct cuff diagram of the required type. See figure 5.

If a = 0 then the bijection fails. From the cuff diagram we can still construct a partial
arrow diagram. But when the cuff diagram is being reconstructed from a partial arrow
diagram, there is a single non-disc region, so not every partial arrow diagram gives rise to
a cuff diagram. Call a partial arrow diagram compatible if it yields a cuff diagram. Since
each edge is now separating, the regions divided by the edges can still be alternately
coloured black and white. All regions are discs except one which is an annulus. Again
choose the colouring so that the pairs of vertices labelled i, i′ on F1 are pinched into
corners of black regions. The partial arrow diagram is then compatible if and only if the
annulus region is white. However, when the partial arrow diagram is not compatible,
pinching instead the corners of white regions will then result in a cuff diagram. In other
words, if we rotate all the “out” labels by one spot counterclockwise, the new partial
arrow diagram will be compatible. Conversely, if a partial arrow diagram is compatible,
then rotating its labels one spot clockwise will result in an incompatible partial arrow
diagram. Hence there is a bijection between compatible and incompatible partial arrow
diagrams, and the number of cuff diagrams is exactly half of the number of partial arrow
diagrams, or 1

2

(
2b
b

)
.

When a = b = 0, there is the unique empty cuff diagram.

3.3 Annulus enumeration

Proposition 13.

P0,2(µ1, µ2) =

{(
2µ1−1
µ1

)(
2µ2−1
µ2

) (
2µ1µ2
µ1+µ2

+ 1
)
, µ1, µ2 > 0(

2µ1−1
µ1

)
, µ2 = 0

Proof. If µ2 = 0 then a polygon diagram is just a cuff diagram, hence by proposition 12

P0,2(µ1, 0) = L(µ1, 0) =
1

2

(
2µ1

µ1

)
=

(
2µ1 − 1

µ1

)
.

Note that taking
(−1

0

)
= 1, this works even when µ1 = 0.
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If µ1, µ2 > 0, then as we saw in the introduction, from [22] the number of connected
polygon diagrams (i.e. with at least one edge from F1 to F2) is(

2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)
2µ1µ2

µ1 + µ2

.

If there are no edges between the two boundaries, then the polygon diagram is a union of
two cuff diagrams, hence

P0,2(µ1, µ2) =

(
2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)
2µ1µ2

µ1 + µ2

+ L(µ1, 0) · L(µ2, 0)

=

(
2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)(
2µ1µ2

µ1 + µ2

+ 1

)
as required.

3.4 Decomposition of polygon diagrams

Suppose S is not a disc or an annulus. Then any polygon diagram on S can be decomposed
into a pruned polygon diagram on S together with n cuff diagrams, one for each boundary
component of S. Take an annular collar of each boundary component of S, and isotope
all boundary-parallel edges to be inside the union of these annuli. The inner circle of the
annulus at Fi intersects the polygons in νi > 0 arcs. Pinch each arc into a vertex, choose
one vertex on each inner circle with νi > 0 as a decorated marked point, and cut along each
inner circle. This produces a cuff diagram on each annular collar and a pruned polygon
diagram on the shrunken surface. This decomposition is essentially unique except for the
choice of decorated marked points on the inner circles, i.e. a single polygon diagram will
give rise to

∏n
i=1 νi distinct decompositions. (Recall that ν = ν + δν,0.) See figure 6.

Conversely, starting from such a decomposition, we can reconstruct the unique polygon
diagram by attaching the cuff diagrams to the pruned polygon diagram by identifying
the corresponding decorated marked points along the gluing circles, and “unpinching” all
the vertices on the gluing circles into arcs. Therefore we have the following relationship
between Pg,n and Qg,n, corresponding to the “local decomposition” of arc diagrams in [9].

Figure 6: The decomposition of a polygon diagram.
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Proposition 14. For (g, n) 6= (0, 1) or (0, 2),

Pg,n(µ1, . . . , µn) =
∑

06νi6µi

(
Qg,n(ν1, . . . , νn)

n∏
i=1

L(µi, νi)

νi

)
. (11)

It turns out that dividing by a power of 2 for each of the µi that is zero, we obtain a
nicer form of this result, eliminating the piecewise nature of L(µi, νi). Defining

P ′g,n(µ1, . . . , µn) =
1∏n

i=1 2δµi,0
Pg,n(µ1, . . . , µn),

Q′g,n(ν1, . . . , νn) =
1∏n

i=1 2δνi,0
Qg,n(ν1, . . . , νn),

and applying proposition 12, equation (11) becomes

P ′g,n(µ1, . . . , µn) =
∑

06νi6µi

(
Q′g,n(ν1, . . . , νn)

n∏
i=1

(
2µi

µi − νi

))
. (12)

3.5 Pants enumeration

Proposition 15.

P0,3(µ1, µ2, µ3) =
3∏
i=1

(
2µi − 1

µi

)
×

(
2µ1µ2µ3 +

∑
i<j

µiµj +
3∑
i=1

µ2
i − µi

2µi − 1
+ 1

)

Proof. It is easier to work with P ′ and Q′. We split the sum from (12)

P ′0,3(µ1, µ2, µ3) =
∑

06νi6µi

(
Q′0,3(ν1, ν2, ν3)

3∏
i=1

(
2µi

µi − νi

))

into separate sums depending on how many of the νi are positive. Using proposition 11,
the sum over νi all being positive is given by

∑
06νi6µi

all νi positive

Q′0,3(ν1, ν2, ν3)
3∏
i=1

(
2µi

µi − νi

)
=

∑
06νi6µi

all µi positive

2ν1ν2ν3

3∏
i=1

(
2µi

µi − νi

)

= 2
3∏
i=1

µi∑
νi=1

νi

(
2µi

µi − νi

)
.

Proposition 7 then gives this expression as

2
3∏
i=1

(
2µi
µi

)
2µi − 1

(P0(µi) +Q0(µi)) = 2
3∏
i=1

(
2µi
µi

)
2µi − 1

2µ2
i − µi
2

=

(
2µ1
µ1

)
2
·
(

2µ2
µ2

)
2
·
(

2µ3
µ3

)
2
· (2µ1µ2µ3).
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Similarly, when ν1 = 0 and ν2, ν3 are positive we obtain

∑
06νi6µi

ν1=0,ν2,ν3>0

(
Q′0,3(ν1, ν2, ν3)

3∏
i=1

(
2µi

µi − νi

))
=

(
2µ1

µ1

)
·

 ∑
06νi6µi
ν2,ν3>0

(
1

2
ν2ν3

3∏
i=2

(
2µi

µi − νi

))
=

(
2µ1
µ1

)
2
·
(

2µ2
µ2

)
2
·
(

2µ3
µ3

)
2
· (µ2µ3) .

We now perform a similar calculation with ν1 = ν2 = 0 and ν3 > 0, which yields

∑
06νi6µi

ν1=ν2=0,ν3>0

(
Q′0,3(ν1, ν2, ν3)

3∏
i=1

(
2µi

µi − νi

))
=

(
2µ1

µ1

)
·
(

2µ2

µ2

)
·

 ∑
0<ν36µ3
ν3 even

1

4
ν3

(
2µ3

µ3 − ν3

)
=

(
2µ1
µ1

)
2
·
(

2µ2
µ2

)
2
·
(

2µ3
µ3

)
2
· µ

2
3 − µ3

2µ3 − 1
.

The sum over terms with one νi being positive is given by repeating the above calculation,
interchanging the roles of ν1, ν2, ν3. Finally when all νi are zero we have

∑
06νi6µi

ν1=ν2=ν3=0

(
Q′0,3(ν1, ν2, ν3)

3∏
i=1

(
2µi

µi − νi

))
=

(
2µ1
µ1

)
2
·
(

2µ2
µ2

)
2
·
(

2µ3
µ3

)
2

Note that with our convention of
(−1

0

)
= 1,

(
2µi
µi

)
= 2δµi,0

(
2µi−1
µi

)
. Summing the above

terms, we have P0,3(µ1, µ2, µ3) =
∏n

i=1 2δµi,0P ′0,3(µ1, µ2, µ3) as claimed.

4 Recursions

In this section we will prove recursion relations for both the polygon diagram counts Pg,n
and the pruned polygon diagrams counts Qg,n. The recursion for Pg,n is similar to that
obeyed by the arc diagram counts Gg,n in [9]. The recursion for Qg,n, appears messy
at first sight, but if we only consider the dominant part, it actually differs very little
from the recursion for the non-boundary-parallel arc diagram count Ng,n in [9]. The
top degree component of Ng,n in turn agrees, up to some simple scaling factors, with
the volume polynomials of Kontsevich [21], the Weil–Petersson volume polynomials of
Mirzakhani [23], and the lattice count polynomials of Norbury [25].

We orient each boundary component Fi as the boundary of S. This induces a cyclic
order on the µi vertices on Fi, and we denote by σ(v) the next vertex to v along Fi. If
µi > 2 then σ(v) 6= v for v a vertex on Fi. For any polygon diagram D, orient the edges
of D by choosing the orientation on each polygon to agree with the orientation on S.

the electronic journal of combinatorics 28(4) (2021), #P4.9 18



4.1 Polygon diagram enumeration

We now prove theorem 4, the recursion on Pg,n, which states that for g > 0 and µ1 > 0,
equation (6) holds:

Pg,n(µ1, . . . ,µn) = Pg,n(µ1 − 1,µX\{1}) +
n∑
k=2

µkPg,n−1(µ1 + µk − 1,µX\{1,k})

+
∑

i+j=µ1−1

j>0

[
Pg−1,n+1(i, j,µX\{1}) +

∑
g1+g2=g

ItJ=X\{1}

Pg1,|I|+1(i,µI)Pg2,|J |+1(j,µJ)

]
.

Recall that we let X = {1, 2, . . . , n} and for each I ⊆ X, we let µI = {µi | i ∈ I}.

Proof of theorem 4. Consider the decorated marked point m1 on the boundary component
F1. Suppose it is a vertex of the polygon K of the diagram D. Let γ be the outgoing
edge from m1. If the other endpoint of γ is also m1, then K is a 1-gon, and we obtain
a new polygon diagram D′ by removing K entirely (including m1), and then if µ1 > 2,
we select the new decorated marked point on F1 to be σ(m1). (If µ1 = 1 then there will
be no vertices on F1 in D′, so we do not need a decorated marked point). Conversely,
starting with a polygon diagram D′ on Sg,n with (µ1 − 1, µ2, . . . , µn) boundary vertices,
we can insert a 1-gon on F1 just before the decorated marked point m′1 (if there are no
vertices on F1, simply insert a 1-gon), and then move the decorated marked point to the
vertex of the new 1-gon. These two operations are inverses of each other. This bijection
gives the term Pg,n(µ1 − 1,µX\{1}) in (6).

If the other endpoint v of γ is different from m1, there are various cases.

(A) The edge γ has both endpoints on F1 and is non-separating.
We cut S = Sg,n along γ into S ′ = S ′g−1,n+1, by removing a regular strip γ × (0, ε)
from S, where γ = γ × {0} and {m1} × [0, ε] ⊂ F1 is a small sub-interval of
[m1, σ(m1)). Then F1 splits into two arcs, which together with γ and a parallel
copy γ × {ε}, form two boundary components F ′0 and F ′1 on S ′, with γ part of F ′1.
If σ(m1) = v on F1, then F ′0 contains no vertices. We obtain a polygon diagram D′

on S ′ by collapsing γ into a single vertex m′1 which is the decorated marked point
on F ′1, and setting σ(m1) as the decorated marked point on F ′0 (if there is at least
one vertex on F ′0). The new diagram D′ has i > 0 vertices on F ′0 and j > 1 vertices
on F ′1 with i + j = µ1 − 1. Conversely starting with such a polygon diagram D′

on Sg−1,n+1 with (i, j, µ2, . . . , µn) boundary vertices, we can reconstruct D. First
expand the decorated marked point m′1 on F ′1 into an interval. Then glue a strip
joining this interval on F ′1 to an interval just before the decorated marked point on
F ′0. (If i = 0, we can glue to any interval on F ′0.) This bijection gives the term∑

i+j=µ1−1, j>0 Pg−1,n+1(i, j,µX\{1}) in (6).

(B) The edge γ has both endpoints on F1 and is separating.
This is almost the same as the previous case. As before, we cut Sg,n along γ
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into two surfaces S ′1 and S ′2 with polygon diagrams D′1 and D′2, such that the new
vertex m′1 obtained from collapsing γ is on S ′2. The polygon diagram D can be
uniquely reconstructed from such a pair (D′1, D

′
2). This bijection gives the term∑

i+j=µ1−1, j>0

∑
g1+g2=g, ItJ=X\{1} Pg1,|I|+1(i,µI)Pg2,|J |+1(j,µj) of (6).

(C) The edge γ has endpoints m1 on F1 and v on Fk, for k > 1.
In this case γ is necessarily non-separating. Cutting Sg,n along γ and collapsing γ
following a similar procedure to the previous cases results in a polygon diagram D′

on a surface S ′g,n−1 with µ1 +µk−1 vertices on its new boundary component F ′1, and
the collapsed vertex m′1 as the decorated marked point on F ′1. However this is not a
bijection since the information about the original location of the decorated marked
point on Fk (relative to v) is forgotten in D′. In fact the map D → D′ is µk-to-1.
The decorated marked point mk can be placed in any of the µk locations (relative
to v). All µk such polygon diagrams will give rise to the same D′ after cutting along
γ. Taking the multiplicity µk into account gives the term

∑n
k=2 µkPg,n−1(µ1 + µk −

1,µX\{1,k}) of (6).

4.2 Pruned polygon diagram enumeration

The recursion for pruned polygon diagrams follows from a similar analysis. It is more
involved due to the fact that after cutting along an edge γ, some other edges may become
boundary-parallel, so more care is required.

We previously defined n as n = n if n is a positive integer, and 0 = 1, following [9].
We now introduce another notation of a similar nature.

Definition 16. For an integer µ, let µ̃ = µ if µ is a positive even integer, and 0 otherwise.

Theorem 17. For (g, n) 6= (0, 1), (0, 2), (0, 3), the number of pruned polygon diagrams
satisfies the following recursion:

Qg,n(µ1, . . . , µn) =
∑

i+j+m=µ1
i>1,j,m>0

mQg−1,n+1(i, j,µX\{1}) +
µ̃1

2
Qg−1,n+1(0, 0,µX\{1})

+
∑
µk>0

26k6n

 ∑
i+m=µ1+µk
i>1,m>0

mµkQg,n−1(i,µX\{1,k}) +
∑̃

i+x=µ1−µk
i>1,x>0

xµkQg,n−1(i,µX\{1,k})

+ µ1µkQg,n−1(0,µX\{1,k})

+
∑
µk=0

26k6n

 ∑
i+m=µ1
i>1,m>0

mQg,n−1(i,µX\{1,k}) + µ̃1Qg,n−1(0,µX\{1,k})



+
∑

g1+g2=g
ItJ=X\{1}

No discs or annuli

 ∑
i+j+m=µ1
i>1,j,m>0

mQg1,|I|+1(i,µI)Qg2,|J |+1(j,µJ) +
µ̃1

2
Qg1,|I|+1(0,µI)Qg2,|J |+1(0,µJ)


(13)
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Here “no discs or annuli” means we exclude any terms in which (g1, |I|+1) or (g2, |J |+
1) are equal to (0, 1) or (0, 2). The tilde summation

∑̃
is defined to be

∑̃
i+x=µ1−µk
i>1,x>0

xµkQg,n−1(i,µX\{1,k}) =
∑

i+x=µ1−µk
i>1,x>0

xµkQg,n−1(i,µX\{1,k})

−
∑

i+x=µk−µ1
i>1,x>0

xµkQg,n−1(i,µX\{1,k}).

Note that when µ1 > µk the second sum vanishes; when µ1 < µk the first sum vanishes;
when µ1 = µk both sums vanish.

Proof. Suppose D is a pruned polygon diagram on S. Let γ be the outgoing edge at the
decorated marked point m1 on F1. Since there is no 1-gon in D (they are boundary-
parallel), the other endpoint v of γ is distinct from m1. There are three cases for γ: (A)
it has both endpoints on F1 and is non-separating; (B) it has endpoints on F1 and some
other Fk, or has both endpoints on F1 and cuts off an annulus parallel to Fk; or (C) it
has both ends on F1, is separating, and does not cut off an annulus. Each of these cases,
especially case (B), has various sub-cases, which we now consider in detail.

(A) The edge γ has both endpoints on F1 and is non-separating.
If an edge becomes boundary-parallel after cutting S along γ, then it must be
parallel to γ on S (relative to the endpoints) to begin with. Given two edges β1 and
β2, both parallel to γ, let I be a strip bounded by β1, β2 and portions of F1. This
strip I is unique, because after we cut open along I, β and β′ belong to different
boundary components, so they cannot bound any other strips. There is a unique
minimal strip A : [0, 1]2 → S containing all edges parallel to γ, given by the union
of connecting strips between all pairs of edges parallel to γ. The left (resp. right)
boundary of A is an edge γL (resp. γR) joining two vertices pL and qL (resp. pR and
qR), and the bottom (resp. top) boundary of A is an interval on F1 from pL to pR
(resp. qR to qL). Note that A may be degenerate, i.e. γL and γR may have one or
both of their endpoints in common, or they are the same edge γ.

Observe that all the edges in A, with the possible exception of γL and γR, form a
block of consecutive parallel bigons inside A. Let there be m > 1 polygons with at
least one edge parallel to γ. See figure 7. There are four cases.

(1) All m such polygons are bigons.
In this case the µ1 vertices along F1 are divided into 4 cyclic blocks of con-
secutive vertices: there is a block of m vertices (p1, . . . , pm) followed by j > 0
vertices, followed by another block of m consecutive vertices (qm, . . . , q1), fol-
lowed by i > 0 vertices, such that there is a bigon between each pair of vertices
{pi, qi}, and m1 ∈ {p1, . . . , pm}. Remove all m bigons from the pruned polygon
diagram D and cut S along γ. If j > 0 then let σ(pm) be the decorated marked
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Figure 7: Possible configurations of polygons in case (A).

point on the new boundary component F ′1. If i > 0 then let σ(q1) be the dec-
orated marked point on that new boundary component F ′0. This produces a
pruned polygon diagram D′ on S ′g−1,n+1 with (i, j, µ2, . . . , µn) boundary ver-
tices. The map D → D′ is m-to-1, since m1 can be any one of {p1, . . . , pm}
and still produce the same pruned polygon diagram D′. Conversely D can be
reconstructed from D′ up to the possible location of m1 as one of {p1, . . . , pm}.
Therefore we have the following contribution to (13):∑

i+j+2m=µ1
m>1,i,j>0

mQg−1,n+1(i, j,µX\{1}). (14)

(2) The edge γL is part of a polygon K which is not a bigon, and all other polygons
are bigons.
If γL 6= γR then K and A lie on the opposite sides of γL (otherwise K ⊆ A,
so must be a bigon), and there are m − 1 bigons in A. Remove all bigons,
cut S along γL, collapse γL to a single vertex m′0 which we take to be the
decorated marked point on the new boundary component F ′0, and let σ(pR) be
the decorated marked point on F ′1. This produces a pruned polygon diagram
D′. Similar to the previous case, the map D → D′ is m-to-1, as m1 can any
one of the m vertices between pL and pR. Therefore we have the following
contribution to (13):∑
i+j+2m=µ1
m>1,i,j>0

mQg−1,n+1(i+ 1, j,µX\{1}) =
∑

i+j+2m−1=µ1
i,m>1,j>0

mQg−1,n+1(i, j,µX\{1}).

(15)
Note that this formula includes the contribution from the special case γL =
γR = γ, where m = 1.

(3) The edge γR is part of a polygon K which is not a bigon, and all other polygons
are bigons.
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This is almost identical to the previous case, except now γ cannot be the edge
γR. (If we had γ = γR then, since γ is the outgoing edge from m1, the polygon
containing γ would have to be on the same side of γ as A.) The map D 7→ D′

is now (m − 1)-to-1, as m1 cannot be pR. Therefore we have the following
contribution to (13):∑

i+j+2m=µ1
m>1,i,j>0

(m− 1)Qg−1,n+1(i, j + 1,µX\{1})

=
∑

i+j+2m−1=µ1
j,m>1,i>0

(m− 1)Qg−1,n+1(i, j,µX\{1}). (16)

Note that this formula correctly excludes the special case γL = γR = γ, where
m− 1 = 0 and the formula vanishes.

(4) The edges γL and γR are each part of some polygon which is not a bigon, and
all other polygons are bigons.
We allow γL and γR to be different edges of the same polygon. We obtain a
pruned polygon diagram D′ by removing the m − 2 bigons and collapsing γL
and γR to decorated marked points m′0 and m′1. For the same reason as the
previous case, γ cannot be the edge γR, so the map D → D′ is only (m−1)-to-1.
Therefore the contribution to (13) is∑

i+j+2m=µ1
m>1,i,j>0

(m− 1)Qg−1,n+1(i+ 1, j + 1,µX\{1})

=
∑

i+j+2m=µ1
i,j>1,m>0

mQg−1,n+1(i, j,µX\{1}). (17)

Now we compute the total contribution from cases (A)(1)–(4). We drop the sub-
scripts g−1, n+1 from Qg−1,n+1 and X\{1} from µX\{1} for convenience. Summing
expressions (14) and (17) and separating the terms according to where i, j are zero
or nonzero, we obtain ∑

i+j+2m=µ1
m>1,i,j>0

+
∑

i+j+2m=µ1
i,j>1,m>0

mQ(i, j,µ)

=
∑

i+j+2m=µ1
i,j,m>1

2mQ(i, j,µ) +
∑

j+2m=µ1
j,m>1

mQ(0, j,µ) +
∑

i+2m=µ1
i,m>1

mQ(i, 0,µ) +
µ̃1

2
Q(0, 0,µ)

=
∑

i+j+2m=µ1
i,m>1,j>0

2mQ(i, j,µ) +
µ̃1

2
Q(0, 0,µ). (18)
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Similarly for expressions (15) and (16),∑
i+j+2m−1=µ1
i,m>1,j>0

mQ(i, j,µ) +
∑

i+j+2m−1=µ1
j,m>1,i>0

(m− 1)Q(i, j,µ)

=
∑

i+j+2m−1=µ1
i,j,m>1

(2m− 1)Q(i, j,µ) +
∑

i+2m−1=µ1
i,m>1

mQ(i, 0,µ) +
∑

j+2m−1=µ1
j,m>1

(m− 1)Q(0, j,µ)

=
∑

i+j+2m−1=µ1
i,m>1,j>0

(2m− 1)Q(i, j,µ). (19)

Adding (18) and (19) we have the first line of (13).

(B) The edge γ has endpoints on F1 and Fk, or has both endpoints on F1 and
cuts off an annulus parallel to Fk.
Here k 6= 1. Note that since (g, n) 6= (0, 3), if γ cuts off an annulus parallel to Fk,
the remaining surface is not an annulus. Hence different values of k give different
pruned polygon diagrams. There is no double counting when we sum over k.

To standardise the possibilities for γ, we define a path α from F1 to Fk as follows,
with ᾱ used to denote α with reversed orientation. If γ has endpoints on F1 and
Fk, then let α = γ. In this case, the edges that become parallel after S is cut along
γ must be one of three types of curves: those parallel to the concatenated paths α,
αFkᾱ, and ᾱF1α. On the other hand, if γ has both endpoints on F1 and cuts off an
annulus parallel to Fk, then let α be a curve inside that annulus, connecting F1 to
Fk. In this case, the curves that become boundary-parallel after S is cut along γ
must be parallel to γ. See figure 8.

Figure 8: The paths α and related paths in case (B).

Since S is not an annulus, there is a unique minimal strip A1 containing all edges
parallel to α, bounded by edges γ1

L (resp. γ1
R) joining two vertices p1

L ∈ F1 and
q1
L ∈ Fk (resp. p1

R and q1
R). The top (resp. bottom) boundary of A1 is an interval

on F1 (resp. Fk) from p1
L to p1

R (resp. q1
R to q1

L). Similarly there are unique minimal
strips A2 and A3 containing all edges of the second and third type respectively, with
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analogous notations. Note that edges of the second and third types cannot appear
simultaneously, so A2 and A3 cannot both be non-empty. All three strips Ai may
be degenerate. See figure 9.

Figure 9: The configurations of the strips Ai. In this figure A1, A2 are nonempty.

Call a polygon partially boundary-parallel if at least one of its edges is of the three
types α, αFkᾱ, ᾱF1α. Call a polygon totally boundary-parallel if all of its edges are
of these three types, and mixed if it is partially boundary-parallel but not totally
boundary-parallel. A totally boundary-parallel polygon is either a bigon, or a tri-
angle with two edges parallel to α and the third edge parallel to αFkᾱ or ᾱF1α.
Furthermore there can be at most one totally boundary-parallel triangle. Let there
be m partially boundary-parallel polygons. Note m > 1, since γ lies in a partially
boundary-parallel polygon.

Assume µk > 0. We split into the following sub-cases: all m partially boundary-
parallel polygons are bigons; m−1 bigons and one totally boundary-parallel triangle;
there is a totally boundary-parallel triangle and a mixed polygon; there is a mixed
polygon but no totally boundary-parallel triangles.

(1) All m partially boundary-parallel polygons are bigons.
We then split further into sub-cases accordingly as there are bigons parallel to
αFkᾱ or ᾱF1α, or not.

(a) There are no bigons parallel to αFkᾱ or ᾱF1α.
Then there are m consecutive bigons between F1 and Fk. Removing all
m bigons and cutting S along γ gives a pruned polygon diagram D′ with
i = µ1 + µk − 2m vertices on the new boundary component F ′1. When
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i > 0, the decorated marked point on F ′1 is set to be σ(p1
R) if µ1 > m, and

σ(q1
L) if µ1 = m. The map D 7→ D′ is mµk-to-1, since m1 can be any of m

vertices of the bigons on F1, and mk can be any of the µk vertices on Fk.
Therefore we have the contribution∑

i+2m=µ1+µk
16m6min(µ1,µk),i>0

mµkQg,n−1(i,µX\{1,k}). (20)

(b) There are x > 1 bigons parallel to αFkᾱ.
See figure 10. Since αFkᾱ cuts off an annulus parallel to Fk, the µk vertices
on Fk belong to µk bigons between F1 and Fk. Removing all m = x + µk
bigons and cutting along γ gives a pruned polygon diagram D′ with i =
µ1 −m − x vertices on the new boundary component F ′1. The decorated
marked point on F ′1 is set to be σ(q1

L) if i > 0. The map D 7→ D′ is
(2x + µk)µk-to-1, since m1 can be any of the (2x + µk) vertices of the
bigons on F1. Therefore we have the contribution∑

i+2x=µ1−µk
x>1,i>0

(2x+ µk)µkQg,n−1(i,µX\{1,k}).

Figure 10: Configuration of polygons in case (B)(1)(b).

Splitting the sum by writing 2x+µk as (x+µk)+x and setting m = x+µk,
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we note that i+ 2x = µ1 − µk becomes i+ 2m = µ1 + µk and obtain∑
i+2m=µ1+µk
m>µk+1,i>0

mµkQg,n−1(i,µX\{1,k}) +
∑

i+2x=µ1−µk
x>1,i>0

xµkQg,n−1(i,µX\{1,k}).

(21)

(c) There are x > 1 bigons parallel to ᾱF1α.
This is the same as the previous case with F1 and Fk interchanged. The
map D 7→ D′ is µ1µk-to-1, since the bigons now have µ1 vertices on F1.
Therefore we have the contribution:∑

i+2x=µk−µ1
x>1,i>0

µ1µkQg,n−1(i,µX\{1,k}).

Writing µ1 as (x+ µ1)− x and setting m = x+ µ1, we note that i+ 2x =
µk − µ1 becomes i+ 2m = µ1 + µk, and obtain∑

i+2m=µ1+µk
m>µ1+1,i>0

mµkQg,n−1(i,µX\{1,k})−
∑

i+2x=µk−µ1
x>1,i>0

xµkQg,n−1(i,µX\{1,k}).

(22)

Observe that the index set {i + 2m = µ1 + µk,m > 1, i > 0} is the disjoint
union of index sets {i+ 2m = µ1 + µk, 1 6 m 6 min(µ1, µk), i > 0}, {i+ 2m =
µ1 + µk,m > µk + 1, i > 0}, and {i + 2m = µ1 + µk,m > µ1 + 1, i > 0}. (If
m > µk + 1 then µ1 + µk = i + 2m > 2µk + 2, hence µ1 > µk + 2; similarly if
m > µ1 + 1 then µk > µ1 + 2. So the second and third sets are disjoint.)

Dropping the subscript g, n− 1 from Q and X \ {1, k} from µ for convenience,
we find that the sum of the expressions (20), (21) and (22) is∑
i+2m=µ1+µk
m>1,i>0

mµkQ(i,µ) +
∑

i+2x=µ1−µk
x>1,i>0

xµkQ(i,µ)−
∑

i+2x=µk−µ1
x>1,i>0

xµkQ(i,µ). (23)

(2) There is one totally boundary-parallel triangle and m− 1 bigons.

(a) The triangle has two edges parallel to α and the third edge parallel to
αFkᾱ.
See figure 11. The configuration of bigons and triangle is very similar to
that of case (B)(1)(b), the only difference is the innermost bigon parallel
to αFkᾱ now becomes the totally boundary-parallel triangle. There are
x − 1 bigons parallel to αFkᾱ, 1 totally boundary-parallel triangle, and
µk − 1 bigons parallel to α. An analogous calculation shows we have the
contribution∑
i+2m+1=µ1+µk

m>µk,i>0

mµkQg,n−1(i,µX\{1,k}) +
∑

ix+2x−1=µ1−µk
x>1,i>0

xµkQg,n−1(i,µX\{1,k}).

(24)
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Figure 11: Configuration of polygons in case (B)(2)(a).

(b) The triangle has two edges parallel to α and the third edge parallel to
ᾱF1α.
This is very similar to case (B)(1)(c). An analogous calculation shows we
have the contribution∑
i+2m+1=µ1+µk

m>µ1,i>0

mµkQg,n−1(i,µX\{1,k})−
∑

i+2x−1=µk−µ1
x>1,i>0

(x− 1)µkQg,n−1(i,µX\{1,k}).

(25)

(3) There are some mixed polygons and a totally boundary-parallel triangle.
The edge of the triangle not parallel to α is then parallel to either αFkᾱ or
ᾱF1α; we consider the two possibilities separately.

(a) The third edge of the triangle is parallel to αFkᾱ.
If we view Fk as on the “inside” of an edge parallel to αFkᾱ, it is easy to
see that only the “outermost” edge, γ2

L on the minimal strip A2, can be
an edge of a mixed polygon. Hence there is only one mixed polygon, and
it is on the outside of γ2

L. On the inside of γ2
L we have exactly the same

configuration of totally boundary-parallel polygons as Case (B)(2)(a) and
figure 11. There are µk − 1 bigons parallel to α. Let there be x− 1 bigons
parallel to αFkᾱ, and i vertices on F1 outside γ2

L. Then µ1 = i+2x+µk+1
and m = x + µk. We obtain a pruned polygon diagram D′ by removing
all totally boundary-parallel bigons and triangles, cutting S along γ2

L and
collapsing γ2

L into a new vertex on the new boundary component F ′1 of S ′,
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which we set to be the decorated marked point m′1. Consider the possible
locations of m1. It can be a vertex on F1 of any of the [(x− 1) + (µk − 1)]
bigons, of which there are 2(x − 1) + (µk − 1). It can be either of the
two vertices of the triangle on F1. Or it could be the vertex p2

L, but not
q2
L, once again due to γ being an outgoing edge from m1. (If q2

L is m1,
then γ is γ2

L. If γ2
L is outgoing, then the polygon containing γ2

L is on the
inside of γ2

L, making it totally boundary-parallel, a contradiction.) Since
(2(x−1)+(µk−1)+2+1)µk = (2x+µk)µk, the map D 7→ D′ is (2x+µk)µk-
to-1. An analogous calculation shows we have the contribution∑

i+2m+1=µ1+µk
m>µk+1,i>0

mµkQg,n−1(i+ 1,µX\{1,k})

+
∑

i+2x+1=µ1−µk
x>1,i>0

xµkQg,n−1(i+ 1,µX\{1,k}). (26)

(b) The third edge of the triangle is parallel to ᾱF1α.
This is the same as the previous case with F1 and Fk interchanged. The
map D 7→ D′ is µ1µk-to-1. An analogous calculation shows we have the
contribution. ∑

i+2m+1=µ1+µk
m>µ1+1,i>0

mµkQg,n−1(i+ 1,µX\{1,k})

−
∑

i+2x+1=µk−µ1
x>1,i>0

xµkQg,n−1(i+ 1,µX\{1,k}). (27)

(4) There are some mixed polygons but no totally boundary-parallel triangles.
We now split into cases accordingly as there are edges parallel to αFkᾱ or ᾱFaα
or not. There cannot be edges parallel to both, so we have 3 sub-cases.

(a) There are no edges parallel to αFkᾱ or ᾱF1α.
Consider the minimal strip A1 containing all edges parallel to α. We now
consider the leftmost and rightmost edges of this strip γ1

L and γ1
R, and to

what extent they coincide. They may (i) be the same edge; or (ii) they may
share both endpoints but be distinct edges; or they may share a vertex on
(iii) Fk or (iv) F1 only; or they may be disjoint. When they are disjoint,
(v) γ1

L or (vi) γ1
R or (vii) both may belong to mixed polygons. This leads

to the seven sub-cases below.

(i) We have γ1
L = γ1

R = γ.
Then there are no other edges parallel to γ and thus no bigons. Since
γ is an outgoing edge by assumption, it bounds a mixed polygon to
the left. This configuration will be covered in Case (B)(4)(a)(v) and
we do not include the contribution here.
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(ii) The edges γ1
L and γ1

R are distinct but with the same endpoints.
Then γ1

L and γ1
R bound the bigon A1 and there are no other edges

parallel to γ. This means there are no mixed polygons, contrary to
assumption. Therefore the contribution vanishes in this case.

=

Figure 12: Configuration of polygons in case (B)(4)(a)(iii).

(iii) The edges γ1
L and γ1

R share a common vertex q1 on Fk but not on F1.
See figure 12. Consider the boundary of A1 on Fk, [q1

R, q
1
L]. This

interval could either be a single point q1, or the entire boundary Fk.
If it is a single point, then the polygon containing γ1

L and γ1
R has to

be inside A1, so the diagonal joining p1
L and p1

R is boundary-parallel,
contradicting the assumption of a pruned diagram. In the case [q1

R, q
1
L]

is all of Fk, γ
1
L and γ1

R belong to a single “outermost” mixed polygon,
and there are m − 1 bigons between F1 and Fk. Let i > 0 be the
number of remaining vertices on F1 outside A1. Then i+ µk + 1 = µ1

and we also have m = µk. We obtain a pruned polygon diagram by
removing all m− 1 bigons, cutting along the concatenated edge γ1

Lγ̄
1
R

and collapsing γ1
Lγ̄

1
R into a new vertex. The map D 7→ D′ is mµk-to-1,

as m1 can be a vertex of the m − 1 bigons or p1
L. Therefore we have

the contribution ∑
i+2m+1=µ1+µk

m=µk,i>0

mµkQg,n−1(i+ 1,µX\{1,k}). (28)

(iv) The edges γ1
L and γ1

R share a common vertex p1 on F1 but not on Fk.
This is the same as the previous case with F1 and Fk interchanged.
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The map D 7→ D′ is µ1µk-to-1. An analogous calculation shows we
have the contribution∑

i+2m+1=µ1+µk
m=µ1,i>0

mµkQg,n−1(i+ 1,µX\{1,k}). (29)

(v) The edges γ1
L and γ1

R do not share any vertex, and γ1
L belongs to a

mixed polygon but γ1
R does not.

There are m− 1 > 1 bigons parallel to α. Let i = µi +µk − 2m be the
total number of remaining vertices on F1 and Fk outside A1. We obtain
a pruned polygon diagram D′ by removing all m − 1 bigons, cutting
along γ1

L and collapsing γ1
L into a new vertex. The map D 7→ D′

is mµk-to-1. Note that if we allow m = 1, this exactly covers the
configuration in case (B)(4)(a)(i). Therefore we have the contribution∑

i+2m=µ1+µk
16m6min(µ1,µk),i>0

mµkQg,n−1(i+ 1,µX\{1,k}). (30)

(vi) The edges γ1
L and γ1

R do not share any vertex, and γ1
R belongs to a

mixed polygon but γ1
L does not.

This is almost exactly the same as the previous case, except γ1
R bounds

a mixed polygon to the right, so it cannot be γ. It follows that m1

cannot be p2
R and the map D 7→ D′ is (m − 1)µk-to-1. Therefore we

have the contribution:∑
i+2m=µ1+µk

16m6min(µ1,µk),i>0

(m− 1)µkQg,n−1(i+ 1,µX\{1,k}). (31)

Note that we may allow m = 1 in the summation index because the
summand vanishes for m = 1 anyway.

(vii) The edges γ1
L and γ1

R do not share any vertex, and both belong to
mixed polygons (possibly the same one).
Since there could be 1 or 2 mixed polygons, we instead define m > 2
to be 2 plus the number of bigons in A1. We obtain a pruned polygon
diagram D′ by removing all m − 2 bigons, cutting the strip A1 from
S along γ1

L and γ1
R, and collapsing γ1

L and γ1
R into two new vertices.

Set the decorated marked point to be the new vertex from collapsing
γ1
L. Again since γ cannot be γ1

R, the map D 7→ D′ is (m − 1)µk-to-1.
Therefore we have the contribution (again we trivially include m = 1
in the summation index)∑

i+2m=µ1+µk
16m6min(µ1,µk),i>0

(m− 1)µkQg,n−1(i+ 2,µX\{1,k}). (32)
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(b) There are some edges parallel to αFkᾱ.
This is the same configuration as case (B)(3)(a), just without the single
totally boundary-parallel triangle. An analogous calculation shows we have
the contribution∑

i+2m=µ1+µk
m>µk+1,i>0

mµkQg,n−1(i+ 1,µX\{1,k})

+
∑

i+2x+2=µ1−µk
x>0,i>0

xµkQg,n−1(i+ 1,µX\{1,k}). (33)

(c) There are some edges parallel to ᾱF1α.
This is the same configuration as case (B)(3)(b), just without the single
totally boundary-parallel triangle. An analogous calculation shows we have
the contribution∑

i+2m=µ1+µk
m>µ1+1,i>0

mµkQg,n−1(i+ 1,µX\{1,k})

−
∑

i+2x+2=µk−µ1
x>0,i>0

(x+ 1)µkQg,n−1(i+ 1,µX\{1,k}). (34)

We have exhausted all possibilities in case (B). The total contribution is the sum
of all the expressions (23)–(34), which we now add together. We drop subscripts
g, n− 1 from Q and X \ {1, k} from µ for convenience.

We first calculate the sum of terms with summation over m. The m-summation
terms in (26) and (28), (27) and (29) combine to give∑

i+2m+1=µ1+µk
m>µk,i>0

mµkQ(i+ 1,µ) +
∑

i+2m+1=µ1+µk
m>µ1,i>0

mµkQ(i+ 1,µ)

=
∑

i+2m=µ1+µk
m>µk,i>1

mµkQ(i,µ) +
∑

i+2m=µ1+µk
m>µ1,i>1

mµkQ(i,µ). (35)

We rewrite the m-summation term in (32), using the substitution (m′, i′) = (m −
1, i+ 2), and then adding a vacuous summation index i = 1, since 1 + 2m = µ1 +µk
and m 6 min(µ1, µk)− 1 cannot hold simultaneously. We obtain∑

i+2m=µ1+µk
06m6min(µ1,µk)−1,i>1

mµkQ(i,µ). (36)

Since the index set {i+2m = µ1+µk,m > 0, i > 1} is the disjoint union of index sets
{i+2m = µ1+µk, 0 6 m 6 min(µ1, µk)−1, i > 1}, {i+2m = µ1+µk,m > µk, i > 1},
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and {i+ 2m = µ1 + µk,m > µi, i > 1}, (35) and (36) sum to∑
i+2m=µ1+µk
m>0,i>1

mµkQ(i,µ) =
∑

i+2m=µ1+µk
m>1,i>1

mµkQ(i,µ), (37)

which is the sum of all m-summation terms in (26), (27), (28), (29) and (32).

The m-summation terms in (23) and (37) combine to give ∑
i+2m=µ1+µk
m>1,i>0

+
∑

i+2m=µ1+µk
m>1,i>1

mµkQ(i,µ)

=
∑

i+2m=µ1+µk
m>1,i>1

2mµkQ(i,µ) +
∑

i+2m=µ1+µk
m>1,i=0

mµkQ(i,µ)

=
∑

i+2m=µ1+µk
m>0,i>1

2mµkQ(i,µ) +
˜(µ1 + µk)

2
µkQ(0,µ), (38)

where we use the µ̃ notation of definition 16 in the final term. This is the sum of
all m-summation terms in (23), (26), (27), (28), (29), (32).

We next rewrite the m-summation terms from (30) and (31) with the substitution
(m′, i′) = (m− 1, i+ 1) to obtain∑

i+2m=µ1+µk
16m6min(µ1,µk),i>0

mµkQ(i+ 1,µ) +
∑

i+2m=µ1+µk
16m6min(µ1,µk),i>0

(m− 1)µkQ(i+ 1,µ)

=
∑

i+2m+1=µ1+µk
06m6min(µ1,µk)−1,i>1

(2m+ 1)µkQ(i,µ), (39)

and similarly with (33) and (34) to obtain∑
i+2m=µ1+µk
m>µk+1,i>0

mµkQ(i+ 1,µ) +
∑

i+2m=µ1+µk
m>µ1+1,i>0

mµkQ(i+ 1,µ)

=

 ∑
i+2m+1=µ1+µk

m>µk,i>1

+
∑

i+2m+1=µ1+µk
m>µ1,i>1

 (m+ 1)µkQ(i,µ). (40)
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Now combining the m-summation terms in (24), (25), (39), (40) we obtain∑
i+2m+1=µ1+µk

m>µk,i>0

mµkQ(i,µ) +
∑

i+2m+1=µ1+µk
m>µ1,i>0

mµkQ(i,µ)

+
∑

i+2m+1=µ1+µk
06m6min(µ1,µk)−1,i>1

(2m+ 1)µkQ(i,µ)

+

 ∑
i+2m+1=µ1+µk

m>µk,i>1

+
∑

i+2m+1=µ1+µk
m>µ1,i>1

 (m+ 1)µkQ(i,µ)

=
∑

i+2m+1=µ1+µk
m>0,i>1

(2m+ 1)µkQ(i,µ) +

 ∑
2m+1=µ1+µk

m>µk

+
∑

2m+1=µ1+µk
m>µ1

mµkQ(0,µ)

=
∑

i+2m+1=µ1+µk
m>0,i>1

(2m+ 1)µkQ(i,µ) +
˜(µ1 + µk − 1)

2
µkQ(0,µ). (41)

This is the sum of all m-summation terms in (24), (25), (30), (31), (33), and (34).

Adding (38) and (41), we have the total of all m-summation terms:

∑
i+m=µ1+µk
i>1,m>0

mµkQ(i,µ) +
˜(µ1 + µk)

2
µkQ(0,µ) +

˜(µ1 + µk − 1)

2
µkQ(0,µ). (42)

Now we sum the terms with summation over x. These arise in the expressions
appearing in (23), (24), (25), (26), (27), (33) and (34). The total is∑

i+2x=µ1−µk
x>1,i>0

xµkQ(i,µ)−
∑

i+2x=µk−µ1
x>1,i>0

xµkQ(i,µ) +
∑

i+2x−1=µ1−µk
x>1,i>0

xµkQ(i,µ)

(43)
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This total is

−
∑

i+2x−1=µk−µ1
x>1,i>0

(x− 1)µkQ(i,µ) +
∑

i+2x+1=µ1−µk
x>1,i>0

xµkQ(i+ 1,µ)

−
∑

i+2x+1=µk−µ1
x>1,i>0

xµkQ(i+ 1,µ) +
∑

i+2x+2=µ1−µk
x>0,i>0

xµkQ(i+ 1,µ)

−
∑

i+2x+2=µk−µ1
x>0,i>0

(x+ 1)µkQ(i+ 1,µ)

=
∑

i+2x=µ1−µk
x>0,i>0

xµkQ(i,µ)−
∑

i+2x=µk−µ1
x>0,i>0

xµkQ(i,µ) +
∑

i+2x+1=µ1−µk
x>0,i>0

(x+ 1)µkQ(i,µ)

−
∑

i+2x+1=µk−µ1
x>0,i>0

xµkQ(i,µ) +
∑

i+2x=µ1−µk
x>0,i>1

xµkQ(i,µ)−
∑

i+2x=µk−µ1
x>0,i>1

xµkQ(i,µ)

+
∑

i+2x+1=µ1−µk
x>0,i>1

xµkQ(i,µ)−
∑

i+2x+1=µk−µ1
x>0,i>1

(x+ 1)µkQ(i,µ)

=
∑

i+2x=µ1−µk
x>0,i>1

2xµkQ(i,µ) +
˜(µ1 − µk)

2
µkQ(0,µ)

+
∑

i+2x+1=µ1−µk
x>0,i>1

(2x+ 1)µkQ(i,µ) +
˜(µ1 − µk + 1)

2
µkQ(0,µ)

−
∑

i+2x=µk−µ1
x>0,i>1

2xµkQ(i,µ)−
˜(µk − µ1)

2
µkQ(0,µ)

−
∑

i+2x+1=µk−µ1
x>0,i>1

(2x+ 1)µkQ(i,µ)−
˜(µk − µ1 − 1)

2
µkQ(0,µ)

=
∑

i+x=µ1−µk
x>0,i>1

xµkQ(i,µ)−
∑

i+x=µk−µ1
x>0,i>1

xµkQ(i,µ)

+

(
˜(µ1 − µk)

2
+

˜(µ1 − µk + 1)

2
−

˜(µk − µ1)

2
−

˜(µk − µ1 − 1)

2

)
µkQ(0,µ). (44)

the electronic journal of combinatorics 28(4) (2021), #P4.9 35



It is not hard to verify that for µ1, µk > 1,

µ1 =
˜(µ1 + µk)

2
+

˜(µ1 + µk − 1)

2
+

˜(µ1 − µk)
2

+
˜(µ1 − µk + 1)

2
−

˜(µk − µ1)

2
−

˜(µk − µ1 − 1)

2
.

Hence combining (42) and (43) we have the second line of (13).

If µk = 0, then there are only two possible configurations of partially boundary-
parallel polygons. Either they form m bigons parallel to αFkᾱ, or they form m− 1
bigons and the outermost edge is parallel to αFkᾱ belongs to a mixed polygon.
These two configurations respectively contribute the two terms of∑

i+2m=µ1
i>0,m>1

2mQg,n−1(i,µX\{1,k}) +
∑

i+2m=µ1
i>0,m>1

(2m− 1)Qg,n−1(i+ 1,µX\{1,k}).

Adding a zero term to the first sum and reparametrising the second, this expression
becomes ∑

i+2m=µ1
i>0,m>0

2mQg,n−1(i,µX\{1,k}) +
∑

i+2m+1=µ1
i>1,m>0

(2m+ 1)Qg,n−1(i,µX\{1,k})

=
∑

i+m=µ1
i>1,m>0

mQg,n−1(i,µX\{1,k}) + µ̃1Qg,n−1(0,µX\{1,k}).

This gives the third line of (13).

(C) The edge γ has both ends on S1, is separating, and does not cut off an
annulus.
The configurations in this case are essentially identical to those in case (A), where
γ is non-separating. Moreover the calculation is formally identical, since we simply
substitute the expression Qg1,|I|+1(4,µI)Qg2,|J |+1(�,µJ) in place of the expression
Qg−1,n+1(4,�,µX\{1}) everywhere. We obtain the last line of (13).

4.3 The punctured torus case

With the recursion (13) of theorem 17 in hand, we now obtain the count of pruned polygon
diagrams on punctured tori, using the established count for annuli in proposition 11. Then,
using proposition 14, we obtain the count of general polygon diagrams.

Proposition 18.

Q1,1(µ1) =


µ31−µ1

24
, µ1 > 0 odd,

µ31+8µ1
24

, µ1 > 0 even,

1, µ1 = 0.
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Proof. For (g, n) = (1, 1) the recursion (13) reduces to

Q1,1(µ1) =
∑

i+j+m=µ1
i>1,j,m>0

mQ0,2(i, j) +
µ̃1

2
Q0,2(0, 0).

By Proposition 11, Q0,2(i, j) = iδi,j. If µ1 > 0 is odd, then we have

Q1,1(µ1) =
∑

2i+m=µ1
i,m>1

mi =
1

2

∑
06m6µ1−2
m odd

m(µ1 −m) =
µ1

2

∑
06m6µ1−2
m odd

m− 1

2

∑
06m6µ1−2
m odd

m2.

Lemma 10 gives the two sums immediately, and we obtain

Q1,1(µ1) =
µ1

2

(µ1 − 1)2

4
− 1

2

(µ1 − 2)(µ1 − 1)µ1

6
=
µ3

1 − µ1

24
.

If µ1 > 0 is even, then similarly we have

Q1,1(µ1) =
∑

2i+m=µ1
i,m>1

mi+
µ1

2
=

1

2

∑
06m6µ1−2
m even

m(µ1 −m) +
µ1

2

=
µ1

2

∑
06m6µ1−2
m even

m− 1

2

∑
06m6µ1−2
meven

m2 +
µ1

2
,

and lemma 10 then yields

Q1,1(µ1) =
µ1

2

(µ1 − 2)µ1

4
− 1

2

(µ1 − 2)(µ1 − 1)µ1

6
+
µ1

2
=
µ3

1 + 8µ1

24
.

Proposition 19.

P1,1(µ1) =

(
2µ− 1

µ

)
1

2µ− 1

µ3 + 3µ2 + 20µ− 12

12

Proof. By Proposition 14, for µ1 > 0, and then by proposition 18,

P1,1(µ1) =
∑

ν16µ1,ν1 odd

Q1,1(ν1)

(
2µ1

µ1 − ν1

)
+

∑
ν16µ1,ν1 even

Q1,1(ν1)

(
2µ1

µ1 − ν1

)
=

∑
ν16µ1,ν1 odd

ν3
1 − ν1

24

(
2µ1

µ1 − ν1

)
+

∑
ν16µ1,ν1 even

ν3
1 + 8ν1

24

(
2µ1

µ1 − ν1

)
.

Using the combinatorial identities (8)–(10), this simplifies to
(

2µ−1
µ

)
1

2µ−1
µ3+3µ2+20µ−12

12
.

We have now proved proposition 1, with equation (1) proved in the introduction and
equations (2)–(4) proved in propositions 13, 15 and 19 respectively.
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5 Polynomiality

We now prove theorem 5, that Qg,n(µ1, . . . , µn) is an odd quasi-polynomial for (g, n) 6=
(0, 1), (0, 2). The proof follows in the same fashion as proposition 18.

Proof of theorem 5. We use induction on the negative Euler characteristic 2g − 2 + n.
When 2g − 2 + n = 1, (g, n) = (0, 3) or (1, 1), and the theorem holds by propositions 11
and 18. Fix the parities/vanishings of (µ1, . . . , µn). We split the right hand side of
the recursion of equation (13) for Qg,n into nine partial sums depending on the pari-
ties/vanishings of (i, j). We will show that each partial sum is a polynomial. Within each
partial sum, since the parities/vanishings of (i, j, µ1, . . . , µn) are fixed, Qg−1,n+1, Qg,n−1,
Qg1,|I|+1 and Qg2,|J |+1 are polynomials by the induction assumption. Split each polynomial
into monomials in (i, j, µ1, . . . , µn). To show quasi-polynomiality and oddness it is suffi-
cient to show that for (i, j) with fixed parities/vanishings, and for odd positive integers K
and L, the following statements hold. (The degrees K and L remain odd by the inductive
assumption.)

1. The expression A(µ1) =
∑

i+j+m=µ1
i>1,j,m>0

miKjL is an odd polynomial in µ1.

2. The expression B(µ1, µk) =

(∑
i+m=µ1+µk
i>1,m>0

mµki
K + ˜∑

i+x=µ1−µk
i>1,x>0

xµki
K

)
is an odd

polynomial in µ1 and µk.

3. The expression C(µ1) =
∑

i+m=µ1
i>1,m>0

miK is an odd polynomial in µ1.

For the first statement, we have

A(µ1) =
∑

i+j+m=µ1
i>1,j,m>0

miKjL =
∑

i+j+m=µ1
i,j,m>1

miKjL =
∑

i+j+m=µ1
i,j,m>1,m even

miKjL +
∑

i+j+m=µ1
i,j,m>1,m odd

miKjL.

Since i, j have fixed parities and K,L are odd, it follows from proposition 9 that A(µ1)
is an odd polynomial in µ1. A similar argument shows that C(µ1) is an odd polynomial
in µ1. As for B(µ1, µ2), another application of proposition 9 shows that for some odd
polynomial P (x),

B(µ1, µk) =
∑

i+m=µ1+µk
i>1,m>0

mµki
K +

∑̃
i+x=µ1−µk
i>1,x>0

xµki
K

=

{
µkP (µ1 + µk) + µkP (µ1 − µk), for µ1 > µk,

µkP (µ1 + µk)− µkP (µk − µ1), for µ1 < µk,

= µk[P (µ1 + µk) + P (µ1 − µk)].

That P is odd then implies that B(µ1, µk) is odd with respect to both µ1 and µk.
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If we keep track of the degrees of the polynomials in Proposition 9, we see from the
recursion of equation (13) that only the top degree terms in Qg,n−1, Qg1,|I|+1 and Qg2,|J |+1

can contribute to the top degree component of Q
(Xe,Xo,X∅)
g,n . Going through each term on

the right hand side of (13), it is easy to verify by induction that

• the degree of Q
(Xe,Xo,∅)
g,n is 6g− 6 + 3n (i.e. when X∅ = ∅ and all variables µ1, . . . , µn

are nonzero),

• the degree of Q
(Xe,Xo,X∅)
g,n is at most 6g − 6 + 3n− |X∅| if X∅ is non-empty.

Furthermore, since the leading coefficient of the resulting odd polynomial in Proposition 9
is independent of parities, it again follows by induction that for µ1, . . . , µn > 1, the top
degree component of Qg,n(µ1, . . . , µn) is independent of the choice of parities of µ1, . . . , µn.

Let [Qg,n(µ1, . . . , µn)]top denote this common top degree component of the quasi-
polynomial Qg,n. More generally, we use [ · ]top to denote the top degree component of any
polynomial. Then for positive µ1, . . . , µn the recursion (13) truncates to

[Qg,n(µ1, . . . , µn)]top =

 ∑
i+j+m=µ1
i,j,m>1

m[Qg−1,n+1(i, j,µX\{1})]
top


top

+

 ∑
26j6n

 ∑
i+m=µ1+µk

i,m>1

mµk[Qg,n−1(i,µX\{1,k})]
top +

∑̃
i+x=µ1−µk

i,x>1

xµk[Qg,n−1(i,µX\{1,k})]
top




top

+


∑

g1+g2=g
ItJ={2,...,n}

No discs or annuli

 ∑
i+j+m=µ1
i,j,m>1

m[Qg1,|I|+1(i,µI)]
top[Qg2,|J |+1(j,µJ)]top




top

. (45)

We now compare the pruned polygon diagram counts Qg,n to the non-boundary-
parallel (i.e. pruned) arc diagram counts Ng,n of [9]. We observe from the following
two theorems that Ng,n satisfies some initial conditions and recursion similar to those of
Qg,n.

Proposition 20 ([9] prop. 1.5).

N0,3(µ1, µ2, µ3) =

{
µ1µ2µ3, µ1 + µ2 + µ3 even,

0, µ1 + µ2 + µ3 odd,

N1,1(µ1) =


µ31+20µ1

48
, µ1 > 0 even,

0, µ1 > 0 odd,

1, µ1 = 0.
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Proposition 21 ([9] prop. 6.1). For (g, n) 6= (0, 1), (0, 2), (0, 3) and integers µ1 > 0,
µ2, . . . , µn > 0,

Ng,n(µ1, . . . , µn) =
∑

i,j,m>0
i+j+m=µ1
m even

m

2
Ng−1,n+1(i, j,µX\{1}) +

∑
µk=0

26j6n

 ∑
i,m>0
i+m=µ1
m even

m

2
Ng,n−1(i,µX\{1,k})



+
∑
µk>0

26j6n

 ∑
i,m>0

i+m=µ1+µk
m even

m

2
µkNg,n−1(i,µX\{1,k}) +

∑̃
i,m>0

i+m=µ1−µk
m even

m

2
µkNg,n−1(i,µX\{1,k})


+

∑
g1+g2=g

ItJ={2,...,n}
No discs or annuli

∑
i,j,m>0

i+j+m=µ1
m even

m

2
Ng1,|I|+1(i,µI)Ng2,|J |+1(j,µJ)

Using the same argument as for Qg,n, the first and third authors with Koyama showed
that Ng,n is an odd quasi-polynomial such that

• if
∑n

i=1 µi is odd, then Ng,n(µ1, . . . , µn) = 0,

• if
∑n

i=1 µi is even, then the degree of N
(Xe,Xo,∅)
g,n (µ1, . . . , µn) is 6g− 6 + 3n (i.e. when

all µi are nonzero),

• the degree of N
(Xe,Xo,X∅)
g,n is at most 6g − 6 + 3n− |X∅|.

Furthermore the leading coefficients of Ng,n encode intersection numbers of psi-classes
on the compactified moduli space of curves Mg,n.

Theorem 22 ([9] thm. 1.9). For (g, n) 6= (0, 1) or (0, 2), and µ1, . . . , µn > 1 such that∑
µi is even, the polynomial N

(Xe,Xo,∅)
g,n (µ1, . . . , µn) has degree 6g−6+3n. The coefficient

cd1,...,dn of the highest degree monomial µ2d1+1
1 · · · µ2dn+1

n is independent of (Xe, Xo), and

cd1,...,dn =
1

25g−6+2nd1! · · · dn!

∫
Mg,n

ψd11 · · ·ψdnn .

By comparing the recursions for the top-degree terms of Qg,n and Ng,n, we show they
are equal up to a constant factor.

Proposition 23. For (g, n) 6= (0, 1) or (0, 2), and µ1, . . . , µn > 1 such that
∑
µi is even,

[Qg,n(µ1, . . . , µn)]top = 24g+2n−5[Ng,n(µ1, . . . , µn)]top.
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Proof. The top degree component of Ng,n satisfies the recursion

[Ng,n(µ1, . . . , µn)]top =

 ∑
i,j,m>1

i+j+m=µ1
m even

m

2
[Ng−1,n+1(i, j,µX\{1})]

top


top

+

 ∑
µk>0

26j6n

 ∑
i,m>1

i+m=µ1+µk
m even

m

2
µk[Ng,n−1(i,µX\{1,k})]

top +
∑̃
i,m>1

i+m=µ1−µk
m even

m

2
µk[Ng,n−1(i,µX\{1,k})]

top




top

+


∑

g1+g2=g
ItJ={2,...,n}

No discs or annuli

∑
i,j,m>1

i+j+m=µ1
m even

m

2
[Ng1,|I|+1(i,µI)]

top [Ng2,|J |+1(j,µJ)]top


top

(46)

Since both [Ng,n(µ1, . . . , µn)]top and [Qg,n(µ1, . . . , µn)]top are independent of parities, we
may assume all µi to be even, so that none of Ng−1,n+1(i, j,µX\{1}), Ng,n−1(i,µX\{1,k}),
Ng1,|I|+1(i,µI), Ng2,|J |+1(j,µJ) vanish due to parity considerations.

Compare the right hand sides of equations (45) and (46). They are identical except
for factors of 2, and that Ng,n sums over even m, while Qg,n sums over both even and odd
m. Proposition 9 implies that for Qg,n, the top degree component of the sum over even m
in (45) is the same as that over odd m. This introduces another factor of 2. Comparing
the base cases (proposition 20 for Ng,n, propositions 11 and 18 for Qg,n) and recursions
on top degree terms ((46) for Ng,n and (45) for Qg,n), we obtain by induction the desired
result.

We now prove the remaining theorems from the introduction.

Proof of theorem 6. This follows immediately from theorem 22 and proposition 23.

Proof of theorem 3. This follows the same argument as proposition 15. Recall from sub-
section 3.4 the notation

Q′g,n(µ1, . . . , µn) :=
1∏n

i=1 2δµi,0
Qg,n(µ1, . . . , µn).

Since Qg,n is a quasi-polynomial, so is Q′g,n. Separating Q′g,n into monomials we see that
the right hand side of equation (12)

P ′g,n(µ1, . . . , µn) =
∑

06νi6µi

(
Q′(ν1, . . . , νn)

n∏
i=1

(
2µi

µi − νi

))
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is a sum of terms of the form

∏
i∈Xe

 ∑
06νi6µi
νi even

ν2ni+1
i

(
2µi

µi − νi

) · ∏
i∈Xo

 ∑
06νi6µi
νi odd

ν2ni+1
i

(
2µi

µi − νi

) · ∏
i∈X∅

(
2µi
µi

)
,

where ni 6 3g − 3 + n as the degree of Q
(Xe,Xo,X∅)
g,n is at most 6g − 6 + 3n − |X∅|. By

proposition 7, each expression ∑
16νi6µi

νi fixed parity

ν2ni+1
i

(
2µi

µi − νi

)

is of the form (
2µi
µi

)
(2µi − 1)(2µi − 3) · · · (2n− 2ni − 1)

Pni(µi),

for polynomials Pni . Hence taking a common denominator,

P ′g,n(µ1, . . . , µn) =

(
n∏
1

(
2µi
µi

)
(2µi − 1)(2µi − 3) · · · (2n− 2(3g − 3 + n)− 1)

)
Fg,n(µ1, . . . , µn)

for some polynomial Fg,n. Since
(

2µi
µi

)
= 2δµi,0

(
2µi−1
µi

)
, Pg,n has the required form.

An alternate proof of theorem 3 based on equation (5) is also possible.
A nice way to express the relationship (12) is to package Pg,n and Qg,n into generating

differentials. For g > 0 and n > 1, let

ωPg,n(x1, . . . , xn) =
∑

µ1,...,µn>0

P ′g,n(µ1, . . . , µn)x−µ1−1
1 · · ·x−µn−1

n dx1 · · · dxn

ωQg,n(z1, . . . , zn) =
∑

ν1,...,νn>0

Q′g,n(ν1, . . . , νn) zν1−1
1 · · · zνn−1

n dz1 · · · dzn.

Following [9] and [10], for any quasi-polynomial f ,

ωf (z1, . . . , zn) =
∑

ν1,...,νn>0

f(ν1, . . . , νn) zν1−1
1 · · · zνn−1

n dz1 · · · dzn

is a meromorphic multidifferential, hence ωQg,n is a meromorphic multidifferential. Using
techniques from these previous works, one can show the following.

Proposition 24. The multidifferential ωQg,n is the pullback of ωPg,n under the maps xi =
(1+zi)

2

zi
.

This result gives a way to relate the enumeration Pg,n introduced in this paper with
its pruned counterpart Qg,n at the level of generating functions and its proof relies on
proposition 14. Although the relation appears rather succinct in this language, it is not
clear how one could use it to easily bypass the intricate combinatorics involved in the
proof of theorem 17. For instance, one can observe that using proposition 14 to replace
all instances of Pg,n in the recursion of theorem 4 with expressions involving Qg,n does
not immediately reproduce the recursion of theorem 17.
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A Proofs of combinatorial identities

We now give elementary proofs of the statements from section 2.
Recall proposition 7 states that there are polynomials Pα, Qα such that∑

06i6n even

i2α+1

(
2n

n− i

)
=

(
2n
n

)
(2n− 1)(2n− 3) · · · (2n− 2α− 1)

Pα(n)

∑
06i6n odd

i2α+1

(
2n

n− i

)
=

(
2n
n

)
(2n− 1)(2n− 3) · · · (2n− 2α− 1)

Qα(n).

Proof of proposition 7. For α = 0, we have

i

(
2n

n− i

)
=

(2n− 1)[(2n− 1)− (2n− 2i− 1)]

2(2n− 1)

(
2n

n− i

)
=

[((2n− 1)− (n− i− 1))((2n− 1)− (n− i))− (n− i)(n− i− 1)]

2(2n− 1)

(
2n

n− i

)
=

[
(n− i+ 2)(n− i+ 1)

2(2n− 1)

(
2n

n− i+ 2

)
− (n− i)(n− i− 1)

2(2n− 1)

(
2n

n− i

)]
.

Therefore both sums telescope and∑
06i6n even

i

(
2n

n− i

)
=

1

2(2n− 1)
(n+ 2)(n+ 1)

(
2n

n+ 2

)
=

n(n− 1)

2(2n− 1)

(
2n

n

)
∑

06i6n odd

i

(
2n

n− i

)
=

1

2(2n− 1)
(n+ 1)(n)

(
2n

n+ 1

)
=

n2

2(2n− 1)

(
2n

n

)
.

It follows that P0(n) = n2−n
2

, Q0(n) = n2

2
. For α > 0, we have

i2α+3

(
2n

n− i

)
= n2i2α+1

(
2n

n− i

)
− (n+ i)(n− i)i2α+1

(
2n

n− i

)
= n2i2α+1

(
2n

n− i

)
− 2n(2n− 1)i2α+1

(
2n− 2

n− 1− i

)
.

By induction∑
06i6n even

i2α+3

(
2n

n− i

)
=n2

(
2n
n

)
(2n− 1)(2n− 3) · · · (2n− 2α− 1)

Pα(n)

− 2n(2n− 1)

(
2n−2
n−1

)
(2n− 3) · · · (2n− 2α− 3)

Pα(n− 1)

It follows that

Pα+1(n) = n2[(2n− 2α− 3)Pα(n)− (2n− 1)Pα(n− 1)] (47)
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and similarly

Qα+1(n) = n2[(2n− 2α− 3)Qα(n)− (2n− 1)Qα(n− 1)] (48)

are polynomials in n.

Using P0, Q0 calculated above and the recursions (47) and (48), we immediately obtain
the identities of equations (7)–(10).

Recall proposition 8 states that for positive odd k1, k2 and fixed parities of i1, i2, the
sum of ik11 i

k2
2 over i1, i2 > 1 such that i1 +i2 = n is an odd polynomial of degree k1 +k2 +1,

with leading coefficient independent of choice of parities.

Proof of proposition 8. Let Sk(n), Se
k(n), So

k(n) be the k-th power sum, the even k-th
power sum and the odd k-th power sums:

Sk(n) =
∑

16i6n

ik, Se
k(n) =

∑
16i6n, i even

ik, So
k(n) =

∑
16i6n, i odd

ik.

Let Bi denote the i-th Bernoulli number with the convention B1 = −1
2
. The standard

generating function argument leading to Faulhaber’s formula

Sk(n) =
1

k + 1

∑
06i6k

(−1)i
(
k + 1

i

)
Bin

k+1−i = nk +
1

k + 1

∑
06i6k

(
k + 1

i

)
Bin

k+1−i, (49)

can also be used to show that

Se
k(n) = nk +

1

2(k + 1)

∑
06i6k

2i
(
k + 1

i

)
Bin

k+1−i, if n is even, (50)

So
k(n) = nk +

1

2(k + 1)

∑
06i6k

2i
(
k + 1

i

)
Bi(n

k+1−i − 1), if n is odd. (51)

Since the odd Bernoulli numbers are zero except B1 = −1
2
, equations (49), (50), and (51)

imply that Se
k(n) and So

k(n) are even or odd polynomials depending on the parity of k+1,
with the possible exception of the constant term and the nk term. The coefficient of nk

in Se
k(n) is 1

2
if n is even and 0 otherwise. The coefficient of nk in So

k(n) is 1
2

if n is odd
and 0 otherwise. If n is even, then the constant terms in Se

k(n) and So
k(n) are both 0. If

n is odd, then the constant terms in Se
k(n) and So

k(n) are

±Ck := ± 1

2(k + 1)

∑
06i6k

2i
(
k + 1

i

)
Bi.

Observe that Ck/k! is the coefficient of xk in ( e
x−1
2x

)( 2x
e2x−1

) = 1
ex+1

. Since 1
ex+1

+ 1
e−x+1

= 1,
Ck = 0 for positive even k.
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If the fixed parity of i1 is odd, then∑
i1,i2>1, i1+i2=n

i1,i2 have fixed parities

ik11 i
k2
2 =

∑
16i16n,
i1 odd

ik11 (n− i1)k2 =
∑

06j6k2

(−1)k2−j
(
k2

j

)
njSo

k1+k2−j(n).

Since k1 + k2 + 1 is odd, each term (−1)k2−j
(
k2
j

)
njSo

k1+k2−j(n) is almost an odd poly-

nomial except for the constant term and the nk1+k2−j term in So
k1+k2−j(n). The coeffi-

cient of nk1+k2−j is 1
2

if n is odd and 0 if n is even. Hence the overall contribution to∑
(−1)k2−j

(
k2
j

)
njSo

k1+k2−j(n) is 0 in both cases, as
∑

06j6k2
(−1)j

(
k2
j

)
= 0. The constant

term in So
k1+k2−j(n) is 0 unless k1 + k2 − j is odd, i.e. j is odd, so it contributes an odd

degree term (−1)k2−j
(
k2
j

)
Ck1+k2−jn

j to
∑

(−1)k2−j
(
k2
j

)
njSo

k1+k2−j(n). Therefore overall∑
(−1)k2−j

(
k2
j

)
njSo

k1+k2−j(n) is an odd polynomial of n.
Similarly if i1 is even, then∑

i1,i2>1, i1+i2=n
i1,i2 have fixed parities

ik11 i
k2
2 =

∑
16i16n,
i1 even

ik11 (n− i1)k2 =
∑

06j6k2

(−1)k2−j
(
k2

j

)
njSe

k1+k2−j(n)

is also an odd polynomial of n.
Finally, it follows easily from induction that∑

06i6n

(−1)i

x+ i

(
n

i

)
=

n!

x(x+ 1) · · · (x+ n)
.

Hence by equations (49), (50) and (51), the leading coefficient of
∑

i1,i2>1, i1+i2=n
i1,i2 have fixed parities

ik11 i
k2
2 ,

regardless of the choice of parities, is

∑
06j6k2

(−1)k2−j

2(k1 + k2 + 1− j)

(
k2

j

)
=

(
2(k2 + 1)

(
k1 + k2 + 1

k2 + 1

))−1

> 0.

Therefore the odd polynomial has degree k1 + k2 + 1, and the leading coefficient is inde-
pendent of the choice of parities.

Lemma 10 simply gives explicit expressions for So
1(n), So

2(n), Se
1(n) and Se

2(n), which
follow immediately from (49) and (50).
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[3] Michel Brion and Michèle Vergne, Lattice points in simple polytopes, J. Amer. Math.
Soc. 10 (1997), no. 2, 371–392.

[4] Leonid Chekhov and Bertrand Eynard, Matrix eigenvalue model: Feynman graph
technique for all genera, J. High Energy Phys. (2006), no. 12, 026, 29.

[5] Neil R. Constable, Daniel Z. Freedman, Matthew Headrick, Shiraz Minwalla, Luboš
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