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Abstract

We study the asymptotic behaviour of the statistic (des + ides)W which assigns
to an element w of a finite Coxeter group W the number of descents of w plus
the number of descents of w−1. Our main result is a central limit theorem for the
probability distributions associated to this statistic. This answers a question of
Kahle–Stump and builds upon work of Chatterjee–Diaconis, Özdemir and Röttger.

Mathematics Subject Classifications: 20F55 (Primary), 05A15, 05A16, 60F05
(Secondary)

1 Introduction

Statistical and probabilistic methods in the investigation of combinatorial and algebraic
objects are powerful tools and reveal deeply rooted connections between those fields. Of
greatest significance in probabilistic asymptotics is the central limit theorem (CLT), that
is the convergence in distribution of a sequence of random variables, normalised by its
mean and its standard deviation, towards the standard Gaussian. This paper’s main
result is an equivalent formulation of the central limit theorem for a sequence of random
variables that arises from a statistic on sequences of finite Coxeter groups.

In the symmetric group Sym(n), which is the Coxeter group of type An−1, the descent
statistic is defined as follows: Write the elements of Sym(n) in one-line notation. Then the
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number of descents des(π) of an element π ∈ Sym(n) is given by the number of positions
where an entry is larger than its successor. This concept generalises to arbitrary finite
Coxeter groups, the necessary definitions are presented in Section 2.

Fixing such a Coxeter group W , choosing an element of W uniformly at random and
evaluating the descent statistic gives rise to a random variable DW . Kahle and Stump
recently showed that for sequences (Wn)n of finite Coxeter groups of growing rank1, the
sequence DWn satisfies the CLT if and only if its variance tends to infinity, see [10]. They
asked [10, Problem 6.10] whether for the random variable TW associated to the statistic
t(w) := des(w) + des(w−1), a similar statement holds true. The statistic t was studied by
Chatterjee–Diaconis [7] who were motivated by defining a metric using descents; it also has
a geometric interpretation in terms of a two-sided analogue of the Coxeter complex first
introduced by Hultman [9] and also studied by Petersen [15], for details see Appendix A.
Our main result is a positive answer to the question of Kahle–Stump under an additional
hypothesis on the sequence of Coxeter groups. This hypothesis does not seem to be very
restrictive, see the comments below.

Theorem 1. Let (Wn)n be a well-behaved sequence of finite Coxeter groups such that
rk(Wn)→∞ and let Tn be the random variable associated to the statistic t on Wn. Then
the following are equivalent:

1. (Tn)n satisfies the CLT;

2. V(Tn)→∞.

Item 2 can equivalently be defined in terms of the irreducible components of Wn (see
Theorem 32). It is in particular satisfied if the maximal size of a dihedral parabolic
subgroup in Wn does not grow too fast, e.g. if it is bounded. We give the definition of
“well-behaved” and sufficient conditions in Section 6 but would like to remark that we
were not able to construct a sequence of Coxeter groups that does not have this property.
In particular, sequences (Wn)n that satisfy Item 2 are well-behaved if: the number or rank
of irreducible factors occurring in any Wn are bounded; or there are no irreducible factors
of dihedral type and only boundedly many irreducible components of Wn have rank not
in o(rk(Wn)). An example of a well-behaved sequence with an unbounded number of
irreducible components that have rank not in o(rk(Wn)) is given in Example 33 (i).

We would like to point out that since the first publication of this article, Valentin
Féray [8] has shown how to remove the well-behaved condition from Theorem 1. This is
achieved by applying an inequality of Mallows [12] to our proof, improving on Lemma 21.
This allows to control better the convergence of the irreducible components that do not
have rank in o(rk(Wn)), such that the well-behaved condition is not required.

Special cases of Theorem 1 were known before: For the case where Wn = Sym(n+ 1),
the irreducible Coxeter group of type An, the result is due to Vatutin [19] and was later,
with different methods, reproven by Chatterjee–Diaconis [7] and Özdemir [13]. Following

1The rank of a Coxeter group W is the size of a particular generating set of W (the set of “simple
reflections”). It can be seen as a measure of size or complexity of the group. The rank of the symmetric
group is rk(Sym(n)) = n− 1.
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the approach of Chatterjee and Diaconis, Röttger [16] generalised this to the cases where
Wn is an irreducible Coxeter group of type Bn or Dn. Technical difficulties of these proofs
lie in the dependencies between des(w) and des(w−1), which require probabilistic methods
as for example interaction graphs, see [6], to establish the CLT.

In order to extend these results to arbitrary products of irreducible Coxeter groups, we
take an approach similar to the one used by Kahle–Stump [10] for the descent statistic;
this in particular involves an application of Lindeberg’s theorem for triangular arrays.
There is however a major difference between their approach and ours: The generating
function of the descent statistic is given by the Eulerian polynomial which factors over
the reals and has only negative roots, see [4] and [17]. Kahle and Stump heavily used
this in order to deduce their result. In contrast to that, the generating function of the
statistic t is the two-sided Eulerian polynomial as studied e.g. in [5], [14] and [20]. It does
not have a such a nice factorisation, even in the setting of symmetric groups. In order to
resolve the additional difficulties arising from this, we are led to compute higher moments
of the random variables TW . For this, we use and generalise the work of Özdemir [13].

Structure of article

The structure of the paper is as follows: Section 2 introduces some basic notations, finite
Coxeter groups and the descent statistic. Section 3 explains how to derive recursively
higher moments of the descent statistic and the statistic t. This is done using conditional
expectations and a recursion solver software. In Section 4, we give sufficient conditions
for establishing the CLT for weighted sums of sequences of random variables which all
individually satisfy the CLT. These enable us in Section 5 to apply the Lindeberg The-
orem and obtain the asymptotic normality of TWn for sequences of Coxeter groups Wn

whose irreducible components satisfy a certain maximum condition. Combining these
results, Section 6 delivers our main theorem. In the appendix we present a discussion of
a geometric perspective on the statistic t in the context of the two-sided analogue of the
Coxeter complex defined in [9], as well as a table of moments of the statistics des and t
for Coxeter groups of type A and B.

2 Preliminaries

2.1 Central limit theorems and o-notation

Let (Xn)n be a sequence of random variables with distribution functions (Fn)n. We say
that (Xn)n converges in distribution to a random variable X with distribution function F

(denoted as Xn
D→ X), if for every x where F is continuous, we have limn→∞ Fn(x) = F (x).

We say that a sequence of integrable random variables (Xn)n with finite variance
satisfies the central limit theorem (CLT), if it holds that

Xn − E(Xn)√
V(Xn)

D→ N(0, 1),
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which means that (Xn)n, normalised by its mean and its standard deviation, converges
in distribution towards the standard Gaussian.

The following will become useful for establishing CLTs later on:

Lemma 2. Let (Xn)n be a sequence of integrable random variables with finite variance.
Then (Xn)n satisfies the CLT if and only if every subsequence of (Xn)n has a subsequence
which satisfies the CLT.

Proof. This follows from the following elementary fact: Let (an)n be a sequence in a
topological space A and let a ∈ A. If every subsequence of (an)n has a subsequence which
converges to a, then (an)n converges to a. Apply this to the sequence of distribution
functions.

In this paper, we use little-o and big-O notation. The definitions vary in the literature,
we use the following conventions: Let f and g be maps from N+ or R>0 to R>0. We say that

f(n) = o(g(n)), if it holds that limn→∞
f(n)
g(n)

= 0. Furthermore, we write f(n) = O(g(n)),

if there is a constant C > 0 and N ∈ N such that for all n > N , one has f(n) 6 Cg(n).

We say that f(n) is of order g(n), if limn→∞
f(n)
g(n)

= c where c is a positive constant.

2.2 Coxeter groups

We start with recalling some background about Coxeter groups. For further details, we
refer the reader to [3].

Let S be a set. A matrix m : S × S → N ∪ {∞} is called a Coxeter matrix, if for all
(s, s′) ∈ S × S, the following holds true:

m(s, s′) = m(s′, s) > 1,

m(s, s′) = 1⇔ s = s′.

A group W is called a Coxeter group, if there is a set S ⊆ W and a Coxeter matrix
m : S × S → N ∪ {∞} such that a presentation of W is given by

W =
〈
S
∣∣∣ (ss′)m(s,s′) = 1 for all (s, s′) ∈ S × S

〉
.

In this setting, the pair (W,S) is called a Coxeter system and S the set of simple reflections.
The size of S is called the rank of (W,S), abbreviated by rk(W ). In what follows, when we
talk about a Coxeter group W , we tacitly assume that it comes with a fixed set generating
set S which make (W,S) a Coxeter system. Also, if we write W as a product of Coxeter
groups W = W1×W2× · · · ×Wn, we assume that S = S1 ∪ S2 ∪ . . .∪ Sn, where Si is the
set of simple reflections of Wi.

A Coxeter group W is called irreducible if it cannot be written as a non-trivial product
of Coxeter groups W = W1 ×W2. By the classification of finite reflection groups, every
finite irreducible Coxeter group falls into one of the four infinite families An, Bn, Dn,
I2(m) or is isomorphic to one of seven finite reflection groups of exceptional type. For
combinatorial descriptions of the groups of type An, Bn, Dn, see [3, Chapter 8]. A Coxeter
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group W is said to be a dihedral group or of dihedral type if rk(W ) = 2; if W is irreducible,
this is equivalent to saying that it is of type I2(m) for some m > 3. Any finite Coxeter
group W can be written as a product

W = W1 ×W2 × · · · ×Wk,

where each Wi is an irreducible Coxeter group. This decomposition is unique up to
permutation of the factors and we call the Wi the irreducible components of W .

Example 3. Let W = Sym(n) be the symmetric group on an n element set and let S be
the set of pairwise adjacent transpositions {(i, i + 1)|1 6 i 6 n − 1}. Then (W,S) is a
Coxeter system of rank |S| = n − 1. This gives Sym(n) the structure of the irreducible
Coxeter group of type An−1.

2.3 Coxeter statistics

In this subsection, we fix a finite Coxeter group W with a set S of simple reflections.
Given an element w ∈ W , the descent set of w is defined by

Des(w) := {s ∈ S | lS(ws) < lS(w)} ,

where lS(w) is the length of w with respect to S, i.e. the smallest number n such that
w = s1s2 · · · sn, where si ∈ S for all i. The number of descents gives rise to a statistic
des : W → N on W defined by des(w) := |Des(w)|. Choosing an element of W uniformly
at random and evaluating this statistic yields a random variable D on N.

Example 4. Similar to Example 3, let W be the symmetric group Sym(3) and S its set
of pairwise adjacent transpositions S = {s1 = (12), s2 = (23)}. Let w ∈ Sym(3) be the
3-cycle (123). Then w can be written in terms of the simple reflections as w = s2s1. We
have lS(w) = 2, Des(w) = {s1} and des(w) = |Des(w)| = 1.

The aim of this article is to study the behaviour of the statistic t defined by

t : W → N
w 7→ des(w) + des(w−1).

Just like des, when we choose an element of W uniformly, the statistic t gives rise to a
random variable on N which we denote by T .

We also write desW , DW , tW or TW if we want to emphasise the ambient Coxeter
group corresponding to these statistics and random variables.

Lemma 5. Assume that W decomposes as a product W1×W2 of Coxeter groups W1 and
W2. Then TW can be written as a sum of independent random variables TW = TW1 +TW2.

Proof. Let S1 and S2 be the set of simple reflections of W1 and W2, respectively. By
assumption, we have S = S1 ∪ S2. Every w ∈ W can be uniquely written as a product
w = w1w2 = w2w1, where wi ∈ Wi and one has lS(w) = lS1(w1) + lS2(w2). Consequently,
desW (w) = desW1(w1) + desW2(w2) and tW (w) = tW1(w1) + tW2(w2). The claim now
follows because choosing an element of W uniformly at random is equivalent to choosing
uniformly at random w1 from W1 and independently w2 from W2.
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Theorem 6. Let W be a finite Coxeter group and T as above.

1. E(T ) = rk(W ).

2. If W is a product of dihedral groups, W =
∏k

i=1 I2(mi), then V(T ) =
∑k

i=1
4
mi

.

3. If Wn is a sequence of finite Coxeter groups such that for all n, every irreducible
component of Wn is of non-dihedral type, then V(TWn) is of order rk(Wn).

Proof. Kahle–Stump computed the variance of T for all types of finite irreducible Coxeter
groups in [10, Corollary 5.2]. Using Lemma 5 and additivity of the variance, the result
follows immediately.

3 Fourth moments of T

As defined in Section 2, let DW be the random variable associated to the statistic desW
and let TW be the random variable associated to the statistic tW for a finite Coxeter group
W . The aim of this section is to prove the following theorem:

Theorem 7. Let W be an irreducible Coxeter group of type An, Bn or Dn. Then the fourth
central moment E((TW − E(TW ))4) of TW is of order n2.

In order to show this, we follow and extend the ideas of Özdemir. In [13], he formulated
the conditional laws

E(DAn+1|DAn) =

{
DAn with probability DAn+1

n+1
,

DAn + 1 with probability n−DAn

n+1

(1)

and

E(DBn+1|DBn) =

{
DBn with probability 2DBn+1

2n+2
,

DBn + 1 with probability 2n−2DBn+1
2n+2

.
(2)

Here E(DWn+1|DWn) denotes the conditional expected value where DWn+1 is generated
from DWn . For An, this is done in the one-line notation by inserting n + 2 in a random
position in the permutation of length n + 1. For Bn, we insert n + 1 multiplied with a
binary random variable that assigns equal probability to {±1} in a signed permutation
of length n. See [13] for a detailed overview. Özdemir used these formulas to compute
higher moments of DAn and DBn . An important tool for his computations is the smoothing
theorem (also known as the the law of total expectation) which can be stated as follows:

Theorem 8 (Smoothing Theorem; cf. [2, Theorem 34.4]). Let X and Y be integrable
random variables defined on the same probability space. Then, it holds that

E(E(X|Y )) = E(X).
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Our approach for proving Theorem 7 is to compute inductively higher moments of TW
and DW for the different families of Coxeter groups separately. We start in Section 3.1
by computing the fourth central moment of DW in the case where W is irreducible and of
type A or B. These computations serve as an illustration of the methods we use and the
results will be needed for our inductive method of computing the fourth central moments
of TW later on. Building on this, we prove Theorem 7 for W of type A and B in Section 3.2
and Section 3.3, respectively. We finish the proof in Section 3.4.

3.1 Fourth moment of D

Özdemir showed that the fourth central moment of the random variable DAn is of order n2

[13, p. 3]. Using the RSolve function of Mathematica, we are able to give an explicit
formula for this moment:

Lemma 9. Let Dn be the random variable associated to the statistic des on the Coxeter
group An, n > 3. Then we have:

E((Dn − E(Dn))4) =
1

240
(n+ 2)(5n+ 8).

Proof. From (1), we derive the recursion formula

E((Dn+1 − E(Dn+1))4|Dn) =
(n− 2)(Dn − E(Dn))4

n+ 2
+

(3n+ 4)(Dn − E(Dn))2

2(n+ 2)
+

1

16
.

(3)

By applying E on both sides of (3), the smoothing theorem leads to

E((Dn+1 − E(Dn+1))4) =
(n− 2)E((Dn − E(Dn))4)

n+ 2
+

(3n+ 4)Var(Dn)

2(n+ 2)
+

1

16

and with the formula for the variance found for example in [10, Corollary 5.2], we obtain
a recursive formula for a[n] = E((Dn − E(Dn))4):

a[n+ 1] =
(6n+ 11)

48
+

(n− 2)a[n]

n+ 2
,

which was solved by computing the value a[3] = 23
48

with Sage and using the RSolve
function of Mathematica.

Using the same method and (2), we can compute the same moment in type B:

Lemma 10. Let Dn be the random variable associated to the statistic des on the Coxeter
group Bn, n > 4. Then we have:

E((Dn − E(Dn))4) =
1

240
(n+ 1)(5n+ 3). (4)
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Proof. From (2), we derive the recursion formula

E((Dn+1 − E(Dn+1))4|Dn) =
(n− 3)(Dn − E(Dn))4

n+ 1
+

(3n+ 1)(Dn − E(Dn))2

2(n+ 1)
+

1

16
.

This is the same recursion formula as for type An−1 in (3), so we obtain a recursive formula
for a[n] = E((Dn − E(Dn))4):

a[n+ 1] =
(6n+ 5)

48
+

(n− 3)a[n]

n+ 1
,

which was also solved by computing the starting value a[4] = 23
48

with Sage and using the
RSolve function of Mathematica.

3.2 Moments of T for type An

Throughout this subsection, let Tn = TAn , Dn = DAn and let D′n be the random variable
associated to the statistic

An → N
w 7→ des(w−1).

Clearly, we have Tn = Dn+D′n, but Dn and D′n are not independent. In order to compute
the fourth central moment of Tn, we want to determine inductively mixed moments of
the form E(Dk

nD
′
n
l). To compute these moments recursively, we use the following two-

dimensional conditional law for (Dn+1, D
′
n+1) given (Dn, D

′
n) introduced by Özdemir:

Lemma 11 (see [13, p. 18]). In type An, the conditional law of (Dn+1, D
′
n+1) given

(Dn, D
′
n) is

E((Dn+1, D
′
n+1)|(Dn, D

′
n)) =


(Dn, D

′
n) with prob. P1 = (Dn+1)(D′n+1)+n+1

(n+2)2
,

(Dn + 1, D′n) with prob. P2 = (n+1−Dn)(D′n+1)−n−1
(n+2)2

,

(Dn, D
′
n + 1) with prob. P3 = (Dn+1)(n+1−D′n)−n−1

(n+2)2
,

(Dn + 1, D′n + 1) with prob. P4 = (n+1−Dn)(n+1−D′n)+n+1
(n+2)2

.

We remark that in comparison to this, there is a shift of indices in [13, p. 18] as there,
Dn corresponds to the descent statistic on Sym(n) = An−1. Özdemir used this in order to
compute the asymptotics of E( (Dn − E(Dn))2(D′n − E(D′n))2 ), see [13, Lemma 5.1]. We
obtain his results and generalisations of it in the proof of the following proposition.

Proposition 12. In type An, n > 3, the fourth central moment of Tn is given by

E((Tn − E(Tn))4) =
1

60

(
5n2 + 79n+ 258

)
− 5n+ 2

n(n+ 1)
.
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Proof. Define Un := Dn−E(Dn) = Dn−n and U ′n := D′n−E(D′n). Our goal is to compute

E((Tn − E(Tn))4) = E((Un + U ′n)4).

Multiplying out the right hand side of this equation and using linearity of the expected
value, we see that it suffices to compute E(Uk

nU
′l
n) for all 0 6 k, l 6 4 with k + l = 4.

Using the smoothing theorem and Lemma 11, we derive the following recursion formula
for fixed k and l:

E
(
Uk
n+1(U ′n+1)l

)
= E

((
Un −

1

2

)k (
U ′n −

1

2

)l
P1 +

(
Un +

1

2

)k (
U ′n −

1

2

)l
P2

+

(
Un −

1

2

)k (
U ′n +

1

2

)l
P3 +

(
Un +

1

2

)k (
U ′n +

1

2

)l
P4

)
,

where P1, P2, P3 and P4 are as in Lemma 11 with Dn = Un + n
2

and D′n = U ′n + n
2
. The

right hand side of this equation only depends on E(U i
nU
′
n
j) with i 6 k and j 6 l. Hence,

inductively computing E(U i
nU
′
n
j) for all pairs (i, j) with i 6 k, j 6 l and where at least

one of this inequalities is strict, we obtain a recursion formula for E(Uk
nU
′
n
l).

To obtain the claimed result, we computed the starting values with Sage and solved
the recursion with the RSolve command of Mathematica, just as in Section 3.1. The
intermediate results of these computations can be found in Appendix B.1.

3.3 Moments of T for type Bn

We now turn to type Bn. Let Dn := DBn , Tn := TBn and let D′n be the random variable
associated to

Bn → N
w 7→ des(w−1).

To compute the fourth central moment of Tn = Dn + D′n, we want to take the same
approach as in Section 3.2. For this, we first need an analogue of Lemma 11. We start by
setting

Bn,i,j :=
∣∣{w ∈ Bn

∣∣ des(w) = i and des(w−1) = j}
∣∣ .

These numbers are the coefficients of the type Bn two-sided Eulerian polynomial

Bn(s, t) :=
∑
w∈Bn

sdes(w)tdes(w−1),

as studied by Visontai in [20]. We clearly have

P( (Dn, D
′
n) = (i, j) ) =

Bn,i,j

|Bn|
.
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Lemma 13. The numbers Bn,i,j satisfy the following recursion formula:

nBn,i,j =(n+ i+ j + 2ij)Bn−1,i,j

+ (1− i+ (2n+ 1)j − 2ij)Bn−1,i−1,j

+ (1− j + (2n+ 1)i− 2ij)Bn−1,i,j−1

+ (n(2n+ 3)− (2n+ 1)i− (2n+ 1)j + 2ij)Bn−1,i−1,j−1.

(5)

Proof. In [20, Theorem 15], Visontai shows that the type Bn two-sided Eulerian polynomial
satisfies

nBn(s, t) =(2n2st− nst+ n)Bn−1(s, t)

+ (2nst(1− s) + s(1− s)(1− t)) ∂
∂s
Bn−1(s, t)

+ (2nst(1− t) + t(1− s)(1− t)) ∂
∂t
Bn−1(s, t)

+ 2st(1− s)(1− t) ∂2

∂s∂t
Bn−1(s, t).

From this, (5) follows by computing the derivatives and comparing the coefficients on
both sides.

Using this, we obtain the following analogue of Lemma 11:

Lemma 14. In type Bn, the conditional law of (Dn+1, D
′
n+1) given (Dn, D

′
n) is

E((Dn+1, D
′
n+1)|(Dn, D

′
n))

=


(Dn, D

′
n) with prob. P1 = n+1+Dn+D′n+2DnD′n

2(n+1)2
,

(Dn + 1, D′n) with prob. P2 = −Dn+(2n+1)D′n−2DnD′n
2(n+1)2

,

(Dn, D
′
n + 1) with prob. P3 = (2n+1)Dn−D′n−2DnD′n

2(n+1)2
,

(Dn + 1, D′n + 1) with prob. P4 = (2n+1)(n+1−(Dn+D′n))+2DnD′n
2(n+1)2

.

As in (2), the signed permutation of length n corresponding to (Dn, D
′
n) is generated

from the signed permutation of length n− 1 corresponding to (Dn−1, D
′
n−1) by inserting

n multiplied with a binary random variable that assigns equal probability to {±1} in a
signed permutation of length n− 1.

Proof. Dividing both sides of (5) by n2nn!, we obtain

Bn,i,j

|Bn|
=
n+ i+ j + 2ij

2n2

Bn−1,i,j

|Bn−1|

+
1− i+ (2n+ 1)j − 2ij)

2n2

Bn−1,i−1,j

|Bn−1|

+
1− j + (2n+ 1)i− 2ij)

2n2

Bn−1,i,j−1

|Bn−1|
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+
n(2n+ 3)− (2n+ 1)i− (2n+ 1)j + 2ij

2n2

Bn−1,i−1,j−1

|Bn−1|
,

where we used that |Bn| = 2nn!. From this, the result follows because, as noted above, we
have

Bn,i,j

|Bn|
= P

(
(Dn, D

′
n) = (i, j)

)
and

Bn−1,k,l

|Bn−1|
= P

(
(Dn−1, D

′
n−1) = (k, l)

)
,

and with the law of total probability, we derive the conditional probabilities.

Proposition 15. In type Bn, n > 4, the fourth central moment of Tn is given by

E((Tn − E(Tn))4) =
1

60

(
5n2 + 39n+ 79

)
+

2n− 1

4n(n− 1)
.

Proof. The proof is completely analogous to the one of Proposition 12. Again, we set
Un := Dn − E(Dn) and U ′n := D′n − E(D′n) such that Tn − E(Tn) = Un + U ′n and observe
that it suffices to compute E(Uk

nU
′l
n) for all 0 6 k, l 6 4 with k+ l = 4. This can be done

inductively using the recursion formula

E
(
Uk
n+1(U ′n+1)l

)
= E

((
Un −

1

2

)k (
U ′n −

1

2

)l
P1 +

(
Un +

1

2

)k (
U ′n −

1

2

)l
P2

+

(
Un −

1

2

)k (
U ′n +

1

2

)l
P3 +

(
Un +

1

2

)k (
U ′n +

1

2

)l
P4

)
,

where P1, P2, P3 and P4 are as in Lemma 14 with Dn = Un + n
2

and D′n = U ′n + n
2
.

We solved the corresponding recursions with the RSolve command of Mathematica;
intermediate results can be found in Appendix B.2.

3.4 Proof of Theorem 7

We are now able to prove Theorem 7:

Proof of Theorem 7. For type An and Bn, we obtained the result in Proposition 12 and
Proposition 15, respectively. For type Dn, we exploit the similarity of Bn and Dn to bound
the difference between the respective fourth moments. The group Bn has a more combina-
torial description as a group of signed permutations: It is isomorphic to the group of all
mappings π̃ : {±1, . . . ,±n} → {±1, . . . ,±n} such that π̃(−i) = −π̃(i) (for further details,
see [3, Chapter 8]). Choosing an element of Bn uniformly at random hence is equivalent to
choosing a random permutation π ∈ Sym(n) together with a tuple (b1, . . . , bn) ∈ {±1}n—
we then obtain π̃ ∈ Bn by setting π̃(i) := bi · π(i). In this description, Dn is the subgroup
of Bn given by all signed permutations π̃ such that |{i ∈ {1, . . . , n} | π̃(i) < 0}| is an even
number. Choosing an element of π̃ ∈ Dn uniformly at random is equivalent to choosing
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a random permutation π ∈ Sym(n) together with a tuple (b1, . . . , bn−1) ∈ {±1}n−1 and
setting

π̃(i) :=

{
bi · π(i) , 1 6 i 6 n− 1

(
∏n−1

j=1 bj) · π(i) , i = n.

These considerations imply that we can write

TDn
d
= TBn + Yn,

where Yn is a bounded random variable (cf. [16, Proof of Theorem 3]). Using the
Minkowski inequality, we obtain

E
(
(TDn − E(TDn))4

)
6
((

E
(
(TBn − E(TBn)4

)) 1
4 +O(1)

)4

= E
(
(TBn − E(TBn)4

)
+O

(
n

3
2

)
.

The result now follows from Proposition 15.

Remark 16. The results of this section show the convenience of the conditional expectation
to compute the expected value: Instead of a combinatorial approach as for example in the
proof of [10, Proposition 5.7], one derives a recursion formula and uses a recursion solver
program like RSolve to find the solution. Of course, this approach is only possible if one
can find a conditional expectation as for example in Lemma 14.

Remark 17. In [13, Section 5.7] it is shown how to derive the CLT for T in the case
(Wn)n = (An)n via the martingale convergence theorem and the recursive formulation of
Lemma 11. This is an alternative proof of [7, Theorem 1.1] and one should be able to find
an alternative proof for [16, Theorem 2], i.e. to prove the CLT for T when (Wn)n = (Bn)n
with the given formulas for the moments of TB.

4 CLTs for weighted sums of converging sequences

This section explains how to derive the asymptotic normality of a sequence of random

variables (Xn)n, where Xn =
∑kn

i=1 an,iXn,i, under the assumption that (Xn,i)n
D→ N(0, 1)

for all i. The main idea is to use Lévy’s continuity theorem via the pointwise convergence
of the characteristic function of Xn towards the characteristic function of the standard
normal distribution. We begin with some preparations:

Definition 18. The characteristic function of a random variable X is defined as ψX(s) :=
E
(
eisX

)
for s ∈ R.

For a detailed introduction to characteristic functions, see for example [2]. Now, Lévy’s
continuity theorem states the following:

Theorem 19 (Lévy). For a sequence of random variables (Xn)n, it holds that Xn
D→ X

for some random variable X if and only if lim
n→∞

ψXn(s) = ψX(s) for every s ∈ R.
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Characteristic functions of sums of independent random variables exhibit the following
useful property:

Lemma 20. Let X and Y be real-valued random variables. If X and Y are independent
and a, b ∈ R, it holds that ψaX+bY (s) = ψX(as)ψY (bs) for every s ∈ R.

Using the preceding results, one obtains the following lemma, which describes when a
weighted sum of converging sequences satisfies the CLT. Note that in the following, the
array (Xn,i)n,16i6kn is not required to be triangular.

Lemma 21. For each n ∈ N, let kn ∈ N>0 be a positive natural number. Let an,i ∈ R>0,

1 6 i 6 kn, such that
∑kn

i=1 a
2
n,i = 1 and let Xn,i, 1 6 i 6 kn, be independent centred

random variables with V(Xn,i) = 1. Define Xn =
∑kn

i=1 an,iXn,i. Then if for each i, we

have Xn,i
D→ N(0, 1) and

lim
k→∞

sup
n

(
kn∑
i=k

a2
n,i

)
= 0, (6)

it follows that Xn
D→ N(0, 1).

Before proving this, we give some comments on (6). Let Xk
n :=

∑min(k,kn)
i=1 an,iXn,i be

the random variable that is given by as the sum of the first k summands of Xn. We have
V(Xn) =

∑kn
i=1 a

2
n,i = 1 and

V(Xk
n) =

min(k,kn)∑
i=1

a2
n,i = 1−

kn∑
i=k

a2
n,i.

Hence, (6) is equivalent to

lim
k→∞

sup
n

(
V(Xn)− V(Xk

n)
)

= 0.

This means that the statement of Lemma 21 can roughly be phrased as follows: If all
the columns of the array (Xn,i)n∈N,16i6kn satisfy the CLT and furthermore, the initial
summands of Xn asymptotically contain all of the variance of Xn, then (Xn)n satisfies
the CLT.

Proof of Lemma 21. The characteristic function of the normal distribution is e−
1
2
s2 . To

prove the asymptotic normality of Xn, we therefore show that for all s ∈ R and any δ > 0,
there is an N ∈ N so that |ψXn(s)− e− 1

2
s2| < δ for all n > N . Now,

|ψXn(s)− e−
1
2
s2| 6 |ψXn(s)− ψ∑k

i=1 an,iXn,i
(s)|+ |ψ∑k

i=1 an,iXn,i
(s)− e−

1
2
s2|.
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Condition (6) guarantees that for any ε > 0, there is a finite k such that for all n,

one has
∞∑

i=k+1

a2
n,i 6 ε. We conclude for the first summand with Jensen’s inequality and

|eiα − 1| 6 |α| that

|ψXn(s)− ψ∑k
i=1 an,iXn,i

(s)| = |E(eisXn − eis
∑k
i=1 an,iXn,i)|

6 E|eis
∑∞
i=k+1 an,iXn,i − 1|

6 E|s
∞∑

i=k+1

an,iXn,i|

6 |s|

E

(
∞∑

i=k+1

an,iXn,i

)2
 1

2

6 |s|

(
∞∑

i=k+1

a2
n,i

) 1
2

6 |s|ε
1
2 .

For the second summand, with the uniform convergence of characteristic functions on
compact intervals and the asymptotic normality of (Xn,i)n, i.e. ψXn,i(s) → e−

1
2
s2 , we

obtain for some positive constants C1, C2

|ψ∑k
i=1 an,iXn,i

(s)− e−
s2

2 | 6 |
k∏
i=1

ψXn,i(an,is)−
k∏
i=1

e−a
2
n,i

s2

2 |+ |e−
∑k
i=1 a

2
n,i

s2

2 − e−
s2

2 |

6 C1ε+ |e−
s2

2 (e−(1−
∑k
i=1 a

2
n,i)

s2

2 − 1)|

6 C1ε+ |e−
s2

2 (e−ε
s2

2 − 1)| 6 C2ε.

These considerations imply that for any ε > 0 and some positive constant C3(s), there is

an N ∈ N so that for all n > N it holds that |ψXn(s)− e− 1
2
s2| 6 C3(s)ε = δ.

The following lemma is a consequence of Lemma 21 when kn is globally bounded, but
additionally allows for summands that converge in probability towards zero, instead of
converging in distribution to the standard normal distribution.

Lemma 22. Let (Xn)n be a sequence of centred random variables and suppose that there
is k ∈ N such that for each n, Xn can be written as a sum Xn = Xn,1 + · · · + Xn,k of
independent random variables Xn,i. Assume that for every 1 6 i 6 k, the following holds

true: Either (Xn,i)n satisfies the CLT or
Xn,i√
V(Xn)

P→ 0. Then if at least one sequence

(Xn,i)n satisfies the CLT and V(Xn)→∞, the sequence (Xn)n satisfies the CLT.

Proof. Without loss of generality, we can assume that there is k′ > 1 such that for

1 6 i 6 k′, the sequence (Xn,i)n satisfies the CLT while for all i > k′, we have
Xn,i√
V(Xn)

P→ 0.

This implies that

Zn :=
Xn,k′+1 + · · ·+Xn,k√

V(Xn)

P→ 0
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Using Slutsky’s Theorem [11, Theorem 2.3.3], we see that Xn satisfies the CLT if the
remaining sum X ′n = Xn − Zn = Xn,1 + · · ·+Xn,k′ satisfies the CLT. We can write

X ′n√
V(X ′n)

=
k′∑
i=1

an,i
Xn,i√
V(Xn,i)

, where an,i =

√
V(Xn,i)

V(X ′n)
.

We have

k′∑
i=1

a2
n,i =

∑k′

i=1 V(Xn,i)

V(X ′n)
= 1,

so the claim follows from Lemma 21 as (6) is trivially satisfied.

Lemma 23. In the setting of Lemma 22, the condition
Xn,i√
V(Xn)

P→ 0 holds if
V(Xn,i)

V(Xn)
→ 0.

Proof. The Chebyshev inequality shows that

P

(
|Xn,i|√
V(Xn)

> ε

)
6

V(Xn,i)

ε2V(Xn)
,

which implies the convergence in probability of
|Xn,i|√
V(Xn)

towards zero if
V(Xn,i)

V(Xn)
→ 0.

5 CLT via the Lindeberg Theorem

A collection (Xn,i)
16i6kn
n>1 of random variables is called a triangular array if for each n, all

Xn,i are independent of each other. A triangular array is called centred if E(Xn,i) = 0 for
all n and i. Given such a triangular array, we set

Xn :=
kn∑
i=1

Xn,i, s2
n,i := V(Xn,i) and s2

n := V(Xn) =
kn∑
i=1

s2
n,i.

The array (Xn,i)n,i satisfies the maximum condition if

lim
n→∞

max
16i6kn

s2
n,i

s2
n

= 0. (7)

It satisfies the Lindeberg condition if for every ε > 0,

1

s2
n

kn∑
i=1

E
(
X2
n,i1{|Xn,i|>εsn}

)
→ 0,

where 1{·} denotes the indicator function. The significance of these conditions for us is as
follows:
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Theorem 24 (Lindeberg). Let (Xn,i)n,i be a centred triangular array. Then (Xn,i)n,i
satisfies the Lindeberg condition if and only if it satisfies the maximum condition and the
sequence (Xn)n satisfies the CLT.

The Lindeberg condition is implied by the Lyapunov condition, which is satisfied if for
some δ > 0 it holds that

1

s2+δ
n

kn∑
i=1

E
(
|Xn,i|2+δ

)
→ 0.

To apply this to our setting, let (Wn)n be a sequence of finite Coxeter groups and let

Wn =
kn∏
i=1

Wn,i,

be the decomposition of Wn into its irreducible components. Now, let Tn be the random
variable associated to the statistic t on Wn. By Lemma 5, we have

Tn =
kn∑
i=1

Tn,i,

where Tn,i is the random variable associated to the statistic t on Wn,i. From this, we
obtain a centred triangular array by setting Xn,i := Tn,i − E(Tn,i). By the arguments
above, we have Xn = Tn − E(Tn).

Lemma 25. Let (Wn)n be a sequence of finite Coxeter groups such that V(Tn,1) > . . . >
V(Tn,kn) for all n and such that V(Tn,1) = o(V(Tn)) and V(Tn)→∞. Then (Tn)n satisfies
the CLT.

Proof. As above, let (Xn,i)n,i be the triangular array associated to the sequence (Wn)n. We
want to apply the Lindeberg Theorem. The maximum condition is satisfied by assump-
tion, so we only need to verify the Lindeberg condition. We do so via the Lyapunov con-
dition. To check the Lyapunov condition, we choose δ = 2. We see that E(X4

n,i) = O(s4
n,i)

for the non-dihedral infinite families (cf. Theorem 7). If Wn,i is of dihedral or exceptional
type, |Xn,i| is globally bounded: This is clear for the finitely many exceptional types. For
w ∈ I2(mn,i), it is easy to verify that

0 6 t(w) = des(w) + des(w−1) 6 4.

We have rk(I2(mn,i)) = 2, so by Theorem 6, one has

|Xn,i| = |Tn,i − E(Tn,i)| 6 2.

Therefore, the fourth moment of the dihedral or exceptional type is bounded by a constant,
so E(X4

n,i) = O(1) = O(s4
n,i). Now, as s2

n,1 = o(s2
n) and s2

n =
∑kn

i=1 s
2
n,i, the Lyapunov

condition holds, because

kn∑
i=1

E
(
|Xn,i|4

)
= O

(
kn∑
i=1

s4
n,i

)
= O(s2

n,1s
2
n).
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6 Proof of the main theorem

Throughout this section, let (Wn)n be a sequence of finite Coxeter groups such that
rk(Wn)→∞, let

Wn =
kn∏
i=1

Wn,i

be the decomposition of Wn into its irreducible components and define Tn := TWn and
Tn,i := TWn,i

.

Assumption 26. We assume that the irreducible components are ordered such that for
all n, we have V(Tn,1) > . . . > V(Tn,kn).

In the previous section, we proved the CLT for sequences where the variance of Tn,i
was of smaller magnitude than the variance of Tn (Lemma 25). However, this need not
be the case in general; if the Wn,i are of non-dihedral type, it is possible that for some
i, the rank of Wn,i is of the same order as the rank of Wn. An easy example of this

is given by setting Wn :=
∏k

i=1 An for some k ∈ N; here, we have V(Tn)/V(Tn,i) = k
for all n. An example with a growing number of irreducible components is the sequence
Wn =

∏dlog(n)e
i=1 Ad n

2i
e, so that V(Tn)/V(Tn,i) = 2i. In order to extend our results to these

cases, we need to separate the irreducible components that do not satisfy the maximum
condition (7) from the remaining ones. For this, we make the following definition:

Let f : R>0 → R>0 be a non-decreasing map such that f(n) = o(n). An irreducible
component Wn,i of Wn is called f -small, if V(Tn,i) 6 f(V(Tn)). Let

mn := min{i ∈ N : Wn,i+1 is f -small}.

By Assumption 26, Wn,i is f -small for all i > mn. We define M f
n :=

∏mn
i=1Wn,i and

W f
n :=

∏kn
i=mn+1 Wn,i. For all n, we can write Wn = M f

n ×W f
n . By Lemma 5, we have

Tn = TMf
n

+ TW f
n

=
mn∑
i=1

Tn,i +
kn∑

i=mn+1

Tn,i.

Remark 27. Among the class of all finite irreducible Coxeter groups W of dihedral or
exceptional type, the variance V(TW ) is bounded from above: If W is dihedral, then
V(TW ) 6 2 and there are only finitely many exceptional types. Hence if V(Tn) → ∞,
then for every non-decreasing f : R>0 → R>0 with f(n) = o(n), there is N ∈ N such
that for all n > N , every irreducible component of Wn is either of type A, B or D or it is
f -small.

As was shown by Chatterjee–Diaconis [7] and Röttger [16], the sequences TAn , TBn and
TDn satisfy the CLT. This allows us to apply Lemma 21 if the sequence (Wn)n satisfies
the following property:
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Definition 28. The sequence (Wn)n is well-behaved, if there exists a non-decreasing func-
tion f : R>0 → R>0 with f(n) = o(n), such that

lim
k→∞

sup
n

(
mn∑
i=k

V(Tn,i)

V(TMf
n
)

)
= 0. (8)

Note that the condition (8) relates directly to condition (6) when we are interested in
deriving the CLT for TMf

n
in the case that the Tn,i satisfy the CLT.

Remark 29. While the definition seems to be rather technical, the authors have failed to
construct a sequence that is not well-behaved. A reason why it is hard to find such a
sequence is the following:

A sequence is always well-behaved if mn, the number of irreducible components that
are not f -small, is bounded. This follows because under Assumption 26 we have

mn∑
i=k

V(Tn,i)

V(TMf
n
)
6 max{mn − k, 0} ·

V(Tn,1)

V(TMf
n
)
.

That mn is bounded is for example the case if the rank or the number of irreducible
components in Wn are bounded. It is also the case if there is a J ∈ N such that for all
i > J , the sequence of i-th components (Tn,i)n∈N satisfies (V(Tn,i))n∈N = o((V(Tn))n∈N).
If there are no irreducible components of dihedral type, the latter is satisfied if there is
J ∈ N such that for all i > J , we have (rk(Wn,i))n∈N = o((rk(Wn))n∈N) (see Remark 27
and Theorem 6); in other words, the sequence is well-behaved if there are only boundedly
many irreducible components of Wn that have rank not in o(rk(Wn)).

So if one wants to find a sequence that is not well-behaved, one needs mn to be
unbounded. However, even then well-behavedness occured in all examples that the authors
considered, see e.g. Example 33 (i).

Remark 30. For all L ⊆ N, we obviously have

sup
n∈L

(
mn∑
i=k

V(Tn,i)

V(TMf
n
)

)
6 sup

n∈N

(
mn∑
i=k

V(Tn,i)

V(TMf
n
)

)
for all k.

Thus, every subsequence of a well-behaved sequence is well-behaved again.

Proposition 31. If (Wn)n is well-behaved and V(Tn) → ∞, the sequence (Tn)n satisfies
the CLT.

Proof. Choose f such that (8) is satisfied. As noted above, we have Tn = TMf
n

+ TW f
n
, so

by assumption V(TMf
n
) + V(TW f

n
) = V(Tn)→∞.

By Lemma 2, it suffices to show that every subsequence of (Tn)n∈N has a subsequence
which satisfies the CLT. For any L ⊆ N, the subsequence (Wn)n∈L satisfies all conditions
of the proposition: Obviously, the rank (rk(Wn))n∈L tends to infinity and so does the
variance (V(Tn))n∈L. Furthermore, the sequence is well-behaved as noted in Remark 30.
Hence, it suffices to consider the case where L = N: We will now show that an (arbitrary)
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sequence (Tn)n∈N as in the statement of the proposition has a subsequence that satisfies
the CLT. It then follows that every subsequence of (Tn)n∈N has a subsequence with this
property as well.

If V(TMf
n
) = o(V(Tn)), then V(TW f

n
) is of the same order as V(Tn). Hence, as every

irreducible factor of W f
n =

∏kn
i=mn+1Wn,i is f -small, we have V(Tn,mn+1) = o(V(TW f

n
)).

This allows us to apply Lemma 25 to see that (TW f
n
)n satisfies the CLT. The CLT for (Tn)n

now follows—even without passing to a subsequence—from Lemma 22 and Lemma 23
because V(TMf

n
)/V(Tn)→ 0.

Next assume that V(TMf
n
) 6= o(V(Tn)). In this case, there is L ⊆ N such that

(V(TMf
n
))n∈L → ∞ holds true2. The subsequence (M f

n )n∈L is again well-behaved and

as noted in Remark 27, we can assume that every irreducible component of M f
n is of

type A, B or D. Thus, it follows from [7], [16] and Lemma 21 that the sequence (TMf
n
)n∈L

satisfies the CLT. The asymptotic normality of (Tn)n∈L now follows from Lemma 22 and
Lemma 23: Either V(TW f

n
) is of the same order as V(Tn); because every component of W f

n

is f -small, this implies that after possible passing to a further subsequence, TW f
n

satisfies
the CLT. Or we have V(TW f

n
)/V(Tn)→ 0.

We are now ready to prove our main theorem. Each Wn decomposes uniquely as

Wn = Gn × In,

where no irreducible component of Gn is of dihedral type and

In =
ln∏
i=1

I2(mn,i).

Note that by Remark 27, the sequence (Wn)n is well-behaved if and only if (Gn)n is. We
use this decomposition in order to combine the results obtained so far and show:

Theorem 32. Let Tn be the random variable associated to the statistic t on Wn. Assume
that (Wn)n is well-behaved. Then the following are equivalent:

1. (Tn)n satisfies the CLT;

2. V(Tn)→∞;

3. rk(Gn) +
∑ln

i=1
1

mn,i
→∞.

Proof. “(2) ⇔ (3)”: By Lemma 5, the random variable Tn decomposes as a sum of
independent random variables Tn = TGn + TIn . By Theorem 6, rk(Gn) is of order V(TGn)
and

∑ln
i=1

1
mn,i

is of order V(TIn). Using additivity of the variance, it follows immediately

that Item 2 is equivalent to Item 3.
“(2)⇒ (1)”: That Item 2 implies Item 1 is the statement of Proposition 31.

2Note that (V(TMf
n

))n∈N → ∞ need not be true. This makes it necessary to pass to a subsequence
here—in contrast to the previous paragraph.
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“(1) ⇒ (2)”: Lastly, as Tn − E(Tn) takes only values in Z, the sequence (Tn)n can only
satisfy a CLT if its variance tends to infinity [10, Proposition 6.15]. This shows that
Item 1 implies Item 2.

We note that Item 1 implies Item 2 even without assuming that the sequence is well-
behaved.

Example 33. The following list of examples illustrates Theorem 32. To simplify the
notation, we omit the rounding of the ranks of the irreducible components and write
W k =

∏k
i=1W for the product of k copies of the group W .

(i) Wn =
∏log(n)

i=1 A n

2i
× (B√n)

√
n satisfies the CLT: (B√n)

√
n satisfies (7). We need to

show that the first factor
∏log(n)

i=1 A n

2i
is well-behaved. Note that mn = log(n). We

have V(TAn) = n
6

+O(1), such that

mn∑
i=k

V(Tn,i)

V(TMf
n
)

=

mn∑
i=k

V(Tn,i)

mn∑
i=1

V(Tn,i)
=

mn∑
i=k

( n
2i

+O(1))

mn∑
i=1

( n
2i

+O(1))
=

mn∑
i=k

2−i + o(1)

mn∑
i=1

2−i + o(1)
.

As the geometric series converges, lim
k→∞

sup
n

of the above goes to zero and therefore

the sequence (Wn)n is well-behaved.

(ii) For any 0 < δ < 1, the product Bn×(An1−δ)n
δ

satisfies the CLT: Define f(n) := n1−δ.
Then mn = 1 is bounded and (An1−δ)n

δ
satisfies (7).

(iii) Wn =
∏n

i=1 I2(i) satisfies the CLT, as the harmonic series diverges and therefore
V(Tn)→∞.

(iv) Wn =
∏n

i=1 I2(i2) does not satisfy the CLT, as V(Tn) is bounded.

(v) Wn = An3 × Dn5 × Fn4 ×
∏n

i=1 I2(i2) satisfies the CLT, as mn = 0 and V(Tn) → ∞.
Note that F4 is a Coxeter group of exceptional type.

A Geometric interpretation of t

Throughout this section, let (W,S) be a fixed Coxeter system and let n := |S| be its rank.
In this section, we give an interpretation of the statistic

t : W → N
w 7→ des(w) + des(w−1).

in terms of a boolean complex defined by Hultman [9]. We here use the same notation as
Petersen in [15].
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Associated to W is its Coxeter complex Σ = Σ(W,S), a simplicial complex which is
defined as follows: For I ⊆ S, denote by WI the (parabolic) subgroup of W generated by
I. The faces of Σ are given by all cosets wWI , where w ∈ W and I ⊆ S; the face relation
is defined by

wWI 6Σ w
′WI′ if and only if wWI ⊇ w′WI′ .

Coxeter complexes are classical, well-studied structures that give a geometric way of
investigating properties of Coxeter groups and related structures; for further details, see
e.g. [1, Chapter 3].

In [9], Hultman defines a complex Ξ = Ξ(W,S), which can be seen as a two-sided
Coxeter complex. The faces of Ξ are given by all triples (I,WIwWJ , J), where I, J ⊆ S,
w ∈ W and WIwWJ denotes the corresponding double coset. The face relation is given
by

(I,WIwWJ , J) 6Ξ (I ′,WI′w
′WJ ′ , J

′) if and only if


I ⊇ I ′,

J ⊇ J ′ and

WIwWJ ⊇ WI′w
′WJ ′ .

Petersen [15] showed that Ξ shares several properties with Σ: It is a balanced, shellable
complex and if W is finite, the geometric realisation of Ξ is homeomorphic to a sphere of
dimension 2n − 1. A difference between the two structures is that Ξ is not a simplicial,
but only a boolean complex. A boolean complex (or simplicial poset) is a poset P with
a unique minimal element 0̂ such that every lower interval [0̂, p] is a boolean algebra, i.e.
equivalent to the face poset of a simplex. Such a poset can also be seen as a semi-simplical
set; its maximal faces (or facets) are the maximal elements of P and the face maps are
induced by the partial order of P . Using this description, the vertices are the minimal
elements of P \ {0̂}. The face poset of a simplicial complex is an example of a boolean
complex. The complex Ξ however is not simplicial—in fact, all of its facets share the same
vertex set.

From now on, we assume that W , and hence Ξ, is finite. The statistic t has two inter-
pretations in terms of Ξ. Firstly, it describes the h-vector of this complex and secondly,
it is related to the gallery distance on Ξ:

A.1 h-vectors

The f-vector of a non-empty finite complex X of dimension d − 1 is given by the tuple
f(X) = (f−1, f0, . . . , fd−1), where f−1 = 1 and for i > 0, fi denotes the number of i-faces
of X. The h-vector h(X) = (h0, . . . , hd) is defined from this by the linear relations

hk :=
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1.

Just like the f -vector, the h-vector encodes the number of faces of different dimensions of
X. It has a particularly nice interpretation in the case where X is partitionable (which
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is in particular the case for the shellable complex Ξ), see e.g. [18, Proposition III.2.3].
Hultman showed in [9, Example 5.9, Theorem 5.10] that the h-polynomial of Ξ equals the
generating function of the statistic t, i.e. that one has

h(Ξ, x) =
d∑
i=0

hix
i =

∑
w∈W

xdes(w)+des(w−1).

A.2 Chamber complexes

Let X be a pure complex (i.e. all of its facets have the same dimension). Two facets of
X are called adjacent if their intersection is a face of codimension 1. The complex X is
called a chamber complex if every pair of facets σ, τ ∈ X can be connected by a gallery,
i.e. a sequence of facets σ = τ0, . . . , τl = τ such that for all 0 6 i 6 l, the facets τi and
τi+1 are adjacent. In this setting, l is called the length of the gallery. For two facets σ, τ
of a chamber complex X, the gallery distance d(σ, τ) is defined as the minimal length of
a gallery connecting σ and τ . Galleries of minimal length can be seen as the analogue of
geodesics in the realm of chamber complexes.

To see that Ξ is a chamber complex, we first note that the facets of Ξ are given
by triples (∅, w, ∅), i.e. they are in one-to-one correspondence with the elements of W .
Denote by σw the facet corresponding to w ∈ W . Spelling out the definitions, it is easy
to see that σw and σw′ share a face of codimension 1 if and only if w′ = ws or w′ = sw
for some s ∈ S. Hence, the fact that S generates W implies that for any two facets of Ξ,
there is a gallery connecting the two.

In particular, for every w ∈ W , a gallery between the simplex σe corresponding to the
neutral element e ∈ W and σw corresponds to writing w as a product of the elements in
S. Furthermore, if σe = σw0 , . . . , σwl = σw is a gallery of minimal length, we have

lS(wi) = i for all 0 6 i 6 l,

where lS(·) denotes the word length with respect to S. One consequence of this is that the
gallery distance d(σe, σw) equals the word length lS(w). Furthermore, in such a gallery,
there must be s ∈ S such that wl−1 = ws or wl−1 = sw and lS(wl−1) = lS(w)− 1. Noting
that s ∈ Des(w−1) if and only if

lS(w−1s) = lS((sw)−1) = lS(sw) < lS(w),

we find the following, second interpretation of t in terms of Ξ:

Observation 34. For any w ∈ W , the number of facets of Ξ which are adjacent to σw and
lie on a gallery of minimal length between σe and σw is given by t(w) = des(w)+des(w−1).

In this sense, the statistic t counts the number of geodesics starting at facets in Ξ.
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B Higher moments of T

This section contains the higher moments of the random variables which were described
in the proofs of Proposition 12 and Proposition 15.

Let Dn = DWn , Tn = TWn , let D′n be the random variable associated to the statistic

Wn → N
w 7→ des(w−1)

and define Un := Dn − E(Dn) and U ′n := D′n − E(D′n).
For the proofs of Proposition 12 and Proposition 15, one needs to compute inductively

E(Uk
nU
′
n
l) for all 0 6 k, l 6 4 where Wn = An and Wn = Bn, respectively. Note that

E(Uk
nU
′
n
l) = E(U l

nU
′
n
k). For the sake of completeness, we also list the mixed moments

of (Dn, D
′
n), which can be computed similarly, although they are not needed to prove

Proposition 12 and Proposition 15.

B.1 Type A

For Wn = An we display the list of (joint) moments up to degree 4 in Table 1. The result
for E(U4

n) corresponds to Lemma 9 and the result for E((Tn−E(Tn))4) to Proposition 12.
The moments in boldface were already known before and can be found in [10].

E(·)
Un 0
U2

n
n+2
12

UnU′n
n

2(n+1)

U3
n 0

U2
nU
′
n 0

U3
nU
′
n

n(n+2)
8(n+1)

U4
n

1
240 (n + 2)(5n + 8)

U2
nU
′
n
2 1

144

(
n2 + 4n + 76

)
− 2n+1

3n(n+1)

(Tn − E(Tn))2 n+2
6 + n

n+1

(Tn − E(Tn))3 0
(Tn − E(Tn))4 1

60

(
5n2 + 79n + 258

)
− 5n+2

n(n+1)

Dn
n
2

D2
n

n+2
12 + n2

4

DnD′n
n2

4 + n
2n+2

D3
n

n(n2+n+2)
8

D2
nD
′
n

1
24 (3n3 + n2 + 14n− 12) + 1

2(n+1)

D3
nD
′
n

1
16 (n4 − 4n3 + 15n2 − 36n + 56)− 4

(n+1)

D4
n

1
240 (15n4 + 30n3 + 65n2 + 18n + 16)

D2
nD
′
n
2 1

144 (9n4 + 6n3 + 85n2 − 68n + 148)− 7n+2
6n(n+1)

T2
n n2 + n+2

6 + n
n+1

T 3
n n3 + n2

2 + 4n− 3 + 3
n+1

T 4
n n4 + n3 + 97n2

12 −
281n
60 + 103

10 −
11n+2
n(n+1)

Table 1: List of moments for type An.
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B.2 Type B

For Wn = Bn we display the list of (joint) moments up to degree 4 in Table 2. The result
for E(U4

n) corresponds to Lemma 10 and the result for E((Tn−E(Tn))4) to Proposition 15.
The moments in boldface were already known before and can be found in [10].

E(·)
Un 0
U2

n
n+1
12

UnU′n
1
4

U3
n 0

U2
nU
′
n 0

U3
nU
′
n

n+1
16

U4
n

1
240 (n + 1)(5n + 3)

U2
nU
′
n
2 1

144

(
n2 + 2n + 19

)
+ 2n−1

24n(n−1)
(Tn − E(Tn))2 n+4

6
(Tn − E(Tn))3 0
(Tn − E(Tn))4 1

60

(
5n2 + 39n + 79

)
+ 2n−1

4n(n−1)
Dn

n
2

D2
n

n+1
12 + n2

4

DnD′n
n2+1

4

D3
n

n(n2+n+1)
8

D2
nD
′
n

1
24n(7 + n + 3n2)

D3
nD
′
n

1
16 (1 + n + 4n2 + n3 + n4)

D4
n

1
240 (15n4 + 30n3 + 35n2 + 8n + 3)

D2
nD
′
n
2 1

144 (9n4 + 6n3 + 43n2 + 2n + 19) + 2n−1
24n(n−1)

T2
n n2 + n+4

6
T 3
n n(n2 + n

2 + 2)

T 4
n n4 + n3 + 49n2

12 + 13n
20 + 79

60 + 2n−1
4n(n−1)

Table 2: List of moments for type Bn.
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[16] F. Röttger. Asymptotics of a locally dependent statistic on finite reflection groups.
Electronic Journal of Combinatorics, 27(2):#P2.24, 2020.

[17] C. D. Savage and M. Visontai. The s-Eulerian polynomials have only real roots.
Transactions of the American Mathematical Society, 367(2):1441–1466, 2015.

[18] R. P. Stanley. Combinatorics and Commutative Algebra, volume 41 of Progress in
Mathematics. Springer, 1996.

[19] V. A. Vatutin. The numbers of ascending segments in a random permutation and in
one inverse to it are asymptotically independent. Diskretnaya Matematika, 8(1):41–
51, 1996.

[20] M. Visontai. Some remarks on the joint distribution of descents and inverse descents.
Electronic Journal of Combinatorics, 20(1):#P52, 2013.

the electronic journal of combinatorics 29(1) (2022), #P1.1 25

https://arxiv.org/abs/1901.01719

	Introduction
	Preliminaries
	Central limit theorems and o-notation
	Coxeter groups
	Coxeter statistics

	Fourth moments of T
	Fourth moment of D
	Moments of T for type A
	Moments of T for type B
	Proof of Theorem 7

	CLTs for weighted sums of converging sequences
	CLT via the Lindeberg Theorem
	Proof of the main theorem
	Geometric interpretation of t
	h-vectors
	Chamber complexes

	Higher moments of T
	Type A
	Type B


