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Abstract

A conjecture of the first two authors is that n matchings of size n in any graph
have a rainbow matching of size n−1. We prove a lower bound of 2

3n−1, improving
on the trivial 1

2n, and an analogous result for hypergraphs. For {C3, C5}-free graphs
and for disjoint matchings we obtain a lower bound of 3n

4 −O(1). We also discuss a
conjecture on rainbow alternating paths, that if true would yield a lower bound of
n−
√

2n. We prove the non-alternating (ordinary paths) version of this conjecture.
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1 Introduction

Using a common terminology, a family is a multiset, namely elements may repeat. While
the notation for sets uses curly brackets, families are denoted using ordinary parentheses,
so in the notation (ai | i ∈ I) equality may hold between some ais.

Given a family S = (S1, . . . , Sn) of sets, we write ‖S‖ for
∑

i6n |Si|.
For such S, an S-rainbow set (or just “rainbow set” if the identity of S is clear from

the context) is the range of a partial choice function. That is, it is a set {xij | 1 6 i1 <
i2 < . . . < im 6 n}, where xij ∈ Sij (1 6 j 6 m).

For integers a, b, c, r we write (a, b)→r c if every family of a matchings in an r-uniform
hypergraph, each of size b, has a rainbow matching of size c. If we demand this condition
only for r-partite hypergraphs, we write (a, b) →P

r c. If r = 2 we omit its mention and
write just (a, b)→ c and (a, b)→P c, respectively.

A famous conjecture of Ryser-Brualdi-Stein [8, 14] is that in an n × n Latin square
there exists a transversal (sub-permutation submatrix with distinct symbols) of size n−1,
and that for n odd there exists a transversal of size n. In [1] the first part of this conjecture
was strengthened to:

Conjecture 1 (Aharoni-Berger [1]). (n, n)→ n− 1.

In [1] this was conjectured only for bipartite graphs, but there is no counterexample
known also for general graphs. Here are some known facts:

(F1) (n, 3
2
n)→P n [5].

(F2) (n, 3
2
n + o(n))→ n [9].

(F3) (2n − 1, n) →P n (The Latin rectangle case was proved in [11], the general case in
[1]).

(F4) 2n−1 matchings in a bipartite graph, of respective sizes 1, 2, 3, . . . , n−1, n, n, . . . , n
(n is repeated n times) have a rainbow matching of size n. [6].

(F5) Let m > n. Any 2n− 1 matchings of size m have a matching of size m representing
n of them [1].

(F6) (n, n)→P n−
√
n [15].

(F7) (bk+2
k+1

nc − (k + 1), n)→P n− k [7].

(F8) (3n− 3, n)→ n [3].

(F9) 2n matchings of size n have a rainbow set with a fractional matching of size n [4].

(F10) (n, n + o(n))→P n [13].

(F11) n disjoint matchings of size n + o(n) in any graph have a rainbow matching of size
n. [12].
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It was conjectured in [7] and in [1] that (2n, n)→ n. This would follow, in particular,
from Conjecture 1.

In r-uniform hypergraphs a greedy argument yields (n, n) →r dnr e. We shall improve
this to (n, n) →r

n
r− 1

2

+ O(1
r
). In the case r = 2, the explicit calculation yields (n, n) →

2
3
n− 4

3
. This improves upon the result (n, n)→ 2

3
n− o(n), that follows from (F2). When

the graph is {C3, C5}-free or the given matchings are disjoint, the bound can be improved
to 3

4
n−O(1):

Theorem 2.

1. (n, n)→ 2
3
n− 4

3
.

2. (n, n)→r
n− 1

2
− 3

4r−6

r− 1
2

.

3. If F = (F1, . . . , Fn) is a family of matchings of size n in a {C3, C5}-free graph, then
there exists a rainbow matching of size at least 3

4
n− 9

4
.

4. If F = (F1, . . . , Fn) is a family of disjoint matchings of size n in a graph, then there
exists a rainbow matching of size at least 3

4
n− 9

2
.

Theorem 2 is proved in Section 2.

A main tool used in the study of rainbow matchings is alternating paths. For example,
among facts (F1-F10), only for two, (F4) and (F8), there is no alternating paths proof
known (the existing proofs use topology). Often the proof goes through results on rainbow
directed paths. To state the latter, we need some definitions.

Though the graphs we are considering are all undirected, all paths will be assumed
below to be directed. The initial and terminal vertices of a path P are denoted by in(P )
and ter(P ), respectively.

Definition 3. Given two sets S, T of vertices, a directed path P is called an S − T -path
if in(P ) ∈ S, ter(P ) ∈ T , and V (P ) ∩ (S ∪ T ) = {in(P ), ter(P )}.

Definition 4.

1. Let H be a family of (not necessarily distinct or disjoint) sets of paths. A path
is called strongly rainbow if each of its edges is chosen from a path belonging to a
different F ∈ H.

2. Let M be a matching, and let H be a family of sets of M -alternating paths. An
M -alternating path is called strongly rainbow if each of its non-M edges is chosen
from a path belonging to a different F ∈ H.

This is “double rainbow-ness”: a rainbow set of edges, one from each path in a
rainbow set of paths.
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3. Let F = (P1, . . . , Pm) be an ordered family of directed paths. A directed path P
is called rainbow-monotone (with respect to F) if its edges, as ordered by P , are
(e1, . . . , em), satisfy ei ∈ E(Pji), where j1 < j2 < . . . < jm.

Similar definitions applys to M -alternating paths, where M is a matching, and the
edges referred to in the definitions are the non-M edges.

Here is a list of known facts about rainbow paths. Part (3) was proved in [2], Part (4)
was proved in [5], and the others are taken from [6]. We use the following notation: G is an
undirected graph, M is a matching in G, S, T are subsets of V (G), and Y = V (G)\(S∪T ).
In each of these facts we add something fact that was in fact included in the original proof,
without explicit mention - rainbow monotonicity.

Theorem 5.

1. Let F be a sequence of (not necessarily distinct) directed S− T paths. If S ∩ T = ∅
and |F | > |Y | then there exists a directed S − T rainbow-monotone path.

2. (Corollary of (1)): Let G be bipartite. Let F be sequence of augmenting M-alternating
paths with |F | > |M |. Then there exists a rainbow-monotone augmenting M-
alternating path.

3. nothing In a general graph, if F is a family of augmenting M-alternating paths
with |F | > 2|M | then there exists a rainbow augmenting M-alternating path. (No
monotonicity claim in this case).

4. (Strengthening of (1)): Let H be a family of sets of disjoint directed S−T paths. If
S ∩ T = ∅ and ‖H‖ > |Y | then there exists a directed strongly rainbow S − T path.
(Recall, ‖H‖ =

∑
H∈H |H|.)

The proof in [6] yields a monotonicity, stronger version:

5. For S, T be as above, any sequence of more than |Y | S − T paths has a rainbow-
monotone S − T path.

6. (Corollary of (4)): If G is bipartite, M is a matching, H is a family of sets of sets of
disjoint augmenting M-alternating paths and ‖H‖ > |M |, then there exists a strongly
rainbow augmenting alternating path. Again, this is a corollary of a monotonicity
version.

All these are sharp. For example, the sharpness of (4) is shown by the family H
consisting of the path sv1v2 . . . vmt repeated m times (here S = {s}, T = {t}).

The proof of fact (F5) uses strongly rainbow alternating paths. Extending that proof
to general graphs will require proving the following:

Conjecture 6. Let G be a graph and let M be a matching in G. Let H be a family of
sets of disjoint augmenting M -alternating paths in G. If ‖H‖ > 2|M | then there exists a
strongly rainbow augmenting M -alternating path.
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Let us show how this conjecture implies (n, n)→ n−
√

2n. Let F1, . . . , Fn be matchings
of size n in a general graph. Let M be a maximal size rainbow matching. We claim that
|M | > n −

√
2n. Assume for contradiction that |M | < n −

√
2n. For every i ∈ I we

have |Fi| − |F | >
√

2n, implying that M4Fi contains a set Hi of
√

2n M -augmenting
alternating paths. Let H = (Hi, i ∈ I). Then ‖H‖ > 2n > 2|M |, and by the conjecture
there exists a strongly rainbow M -augmenting path P . Then M4P is a strongly rainbow
matching larger than |M |, a contradiction.

Our second main theorem is the ordinary (non-alternating) path version of Conjecture
6 – a possible first step.

Theorem 7. Let the vertex set of an undirected graph be partitioned into two sets, S, Y .
Let H be a family of sets of paths, each consisting of disjoint S −S paths. If ||H|| > 2|Y |
then there exists a strongly rainbow S − S path.

This is sharp, as shown by the following construction. Let S = {u, v}, and let Y =
{y1, . . . , ym}. Let H consist of 2m families F1, . . . ,F2m, each Fi consisting of a single path
Fi, where Fi = uy1y2 . . . , ymv for i 6 m, and Fi = vymym−1 . . . , y1v for m < i 6 2m.

We shall prove a monotonicity version:

Theorem 8. Let S, Y be as above, and let F be a sequence of 2|Y | + 1 S − S directed
paths. Then there exists a rainbow-monotone S − S directed path.

Theorem 8 implies Theorem 7. Given a system of sets of disjoint directed paths
H = (H1, . . . , Hm), order

⋃
H so that all paths in Hi appear before all paths in Hj

whenever i < j. A rainbow-monotone path is then clearly strongly rainbow.
In Section 3 we shall give two proofs for Theorem 8. They are quite different, and

may point at two possible proof strategies in the conjectured alternating paths case.

Remark 9. Since the submission of this paper, the following beautiful results have been
proved by Correia, Pokrovskiy and Sudakov [10]:

(a) (n, n)→ n− o(n),

(b) (n, n + o(n))→ n.

Part (b) is easily seen to imply part (a). Interestingly, the authors prove (a), and give
a general probabilistic construction showing that (a) implies (b).

2 Proof of Theorem 2

2.1 Definitions and lemmas

Definition 10. Two sets of edges, A,B are orthogonal if |a∩b| = 1 for every a ∈ A, b ∈ B.

The following lemma is (up to niceties) a well-known fact, usually expressed as “there
do not exist n mutually orthogonal Latin squares of order n”.

the electronic journal of combinatorics 29(1) (2022), #P1.10 5



Lemma 11. Let M0,M1, . . . ,Mt be mutually orthogonal matchings in an r-uniform hy-
pergraph, where M0 = {h} and |Mi| = r for 1 6 i 6 t. Then t 6 r.

Proof. Let e ∈ M1 and let u ∈ e \ h. Since the edges in Mi meet e at distinct vertices,
each Mi, 2 6 i 6 t, contains an edge ei meeting h at u. Orthogonality implies that the
edges ei, 2 6 i 6 t, meet h at distinct vertices in h \ e, and hence their number t − 1 is
at most |h \ e| = r − 1.

The proofs of all four parts of Theorem 2 start the same way. Let F = (F1, . . . , Fn)
be a collection of matchings of size n in an r-uniform hypergraph (in the last three parts
of the theorem r = 2). Let R be a rainbow matching of maximal size, say q. Let G be
the collection of matchings in F not represented in R.

Given G ∈ G and e ∈ R we say that e is G-wasteful if either (1) e meets at most r− 1
edges from G (meaning e is not using its full hitting potential with respect to G), or (2)
there exists an edge g ∈ G meeting both e and another edge f ∈ R (meaning e is not
essential for hitting g). For an edge e ∈ R let T (e) be the set of matchings G ∈ G for
which e is non-G-wasteful. By the definition of “wastefulness” the following holds:

(∗) G ∈ T (e) if and only if there exist r edges in G intersecting e and not intersecting
any other edge of R.

For a matching G ∈ G let TG be the set of edges e ∈ R such that G ∈ T (e). Write
t(G) = |TG|.

Lemma 12. |T (e)| 6 r for every e ∈ R.

Proof. Suppose there are r + 1 matchings in T (e). For each G ∈ T (e) let Ge be the set
of edges of G meeting e. Then Ge is a matching of size r orthogonal to e. By Lemma 11
there exist A,B ∈ T (e) such that Ae, Be are not cross-intersecting, meaning that there
are a ∈ Ae and b ∈ Be, such that a ∩ b = ∅. Since A,B ∈ T (e), a and b do not intersect
any edge in R \ {e}. Then R∪{a, b} \ {e} is a rainbow matching, and it is larger than R,
contradicting the maximality of R.

Lemma 12 implies ∑
e∈R

|T (e)| 6 rq. (1)

2.2 Parts (1) and (2) of Theorem 2

Given t = t(G), the maximal size of G is attained when the edges in R \ TG are arranged
in pairs, so that the two edges in each pair meet at most 2r − 1 distinct edges of G, and
the last edge, if it exists (namely if R is odd), meets at most r− 1 additional edges of G.

Since
⋃
R is a cover for G, this implies

n = |G| 6 rt + (q − t)(r − 1

2
) = qr − 1

2
(q − t).
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So, t > 2n−2qr+q. Summing up over all G ∈ G and changing the order of summation,
we get ∑

e∈R

|T (e)| =
∑
G∈G

|TG| > (2n− q(2r − 1))|G| = (2n− q(2r − 1))(n− q).

Combining this with (1) yields

(2n− q(2r − 1))(n− q) 6 rq. (2)

Claim 13. q >
n− 1

2
− 3

4r−6

r− 1
2

.

Proof. Rearranging (2), we get

(2r − 1)q2 − (n + 2rn + r)q + 2n2 6 0.

Solving for q, we have q > q1, where

q1 =
n + 2rn + r −

√
(n + 2rn + r)2 − 8(2r − 1)n2

2(2r − 1)
. (3)

Let

∆ = (n + 2rn + r)2 − 8(2r − 1)n2

= n2(4r2 − 12r + 9) + n(4r2 + 2r) + r2

be the discriminant in (3). Completing ∆ to a square entails

∆ < n2(2r − 3)2 + 2n(2r2 + r) +
(2r2 + r

2r − 3

)2
,

implying that

√
∆ < n(2r − 3) +

2r2 + r

2r − 3
= n(2r − 3) + r + 2 +

6

2r − 3
.

Thus

q1 =
n + 2rn + r −

√
∆

2(2r − 1)

>
n + 2rn + r − n(2r − 3)− r − 2− 6

2r−3

2(2r − 1)

=
n− 1

2
− 3

4r−6

r − 1
2

.

This shows

q >
n− 1

2
− 3

4r−6

r − 1
2

.

The claim entails Part (2) of Theorem 2. Part (1) follows upon plugging in r = 2.
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2.3 More definitions

For the proofs of parts (3) and (4) of Theorem 2 we need additional definitions. For a
matching G ∈ G, we say that a pair of edges {e, f} in R is half-G-wasteful if there are
three edges ge, gf , gef ∈ G satisfying the following:

• ge intersects e and no other edge in R,

• gf intersects f and no other edge in R, and

• gef intersects both e and f .

We also say then that each of e and f are half-G-wasteful. Denote by HW (e) the set of
all G ∈ G for which the edge e ∈ R is half-G-wasteful. Let WG be the set of edges e ∈ R
such that G ∈ HW (e), and write w = |WG|.

Let B be the bipartite graph with respective sides G and R, in which G ∈ G is adjacent
to e ∈ R if and only if e ∈ HW (G). Then∑

e∈R

|HW (e)| =
∑
e∈R

degB(e) = |E(B)|. (4)

Let NB(e) be the neighborhood of e ∈ R in the graph B.
The maximal size of G ∈ G is attained when the edges in R \ (TG ∪WG) are arranged

in triples, so that the three edges in each triple meet at most four distinct edges of G.
Since

⋃
R is a cover of every G ∈ G, we have

n = |G| 6 2t +
3

2
w +

4

3
(q − t− w),

implying 3n− 4q 6 2t + w
2
. Summing over all G ∈ G we obtain

2
∑
e∈R

|T (e)|+ 1

2

∑
e∈R

|HW (e)| =
∑
G∈G

(2|TG|+ 1

2
|WG|)

> (3n− 4q)|G| > (3n− 4q)(n− q).

(5)

2.4 Part (3) of Theorem 2

Assume the conditions of Part (3) of Theorem 2 hold, namely that there is no C3 or C5

in
⋃n

i=1 Fi.

Lemma 14. |T (e)| = 1, hence
∑

e∈R |T (e)| 6 q.

Proof. Assume G,H ∈ T (e). Let g, g′ ∈ G and h, h′ ∈ H be edges intersecting e and not
any other edge in R, such that g, h meet at the same vertex of e. Since the graph contains
no triangles, the set (R \ e)∪{g, h′} is a rainbow matching of size q+ 1, contradicting the
maximality of R.
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Lemma 15. Let f ∈ R and ge, gf , gef ∈ G be edges witnessing the fact that G ∈ HW (e).
Suppose G′ ∈ G, G 6= G′, and there exists g′e ∈ G′ intersecting e in one vertex and not
intersecting any other edge in R. Then ge ∩ g′e ∩ e 6= ∅.

Proof. We have to show that ge and g′e meet e at the same vertex. If not, then since the
graph contains no triangles, the set (R \ e) ∪ {ge, g′e} is a rainbow matching of size q + 1,
contradicting the maximality of R.

Lemma 16.
∑

e∈R |HW (e)| 6 2q.

Proof. By (4) it is enough to show |E(B)| 6 2q.

Claim 17. Let G1, G2 ∈ G and e, f ∈ R. If (e, f) is a half-wasteful pair for both G1, G2

then degB(e) = 2.

Proof of the claim. Clearly, degB(e) > 2 since G1, G2 ∈ NB(e). Assume to the
contrary that NB(e) contains G3 ∈ G so that G3 6= G1, G2. Then by Lemma 15 the edges
in G1, G2, G3 that meet only e intersect at the same vertex of e. Since the graph does not
contain C3, this implies that the edges in G1, G2 that meat both e and f coincide.

Let a ∈ G1 be an edge meeting only f in R, let b ∈ G2 be an edge meeting e, f in R,
and let c ∈ G3 be an edge meeting only e in R. Note that a, c do not intersect since the
graph contains no C5. Replacing e, f in R with a, b, c we obtain a rainbow matching of
size q + 1, a contradiction. ♦

Let D = {e ∈ R | degB(e) > 3}.

Claim 18. For every e ∈ D there exists a subset S(e) ⊆ R with the following properties:

1. |S(e)| = degB(e).

2. For every f ∈ S(e), degB(f) = 1.

3. S(e) ∩ S(f) = ∅ whenever e, f ∈ D and e 6= f .

Proof of the claim. Let e ∈ D and write d = degB(e). Let NB(e) = {G1, . . . , Gd},
and let f1, . . . , fd ∈ R be edges such that (e, fi) is a half-Gi-wasteful pair. Let S(e) =
{f1, . . . , fd}.

To prove (1), we have to show that fi 6= fj if i 6= j. Indeed, if f := fi = fj then
(e, f) is a half-wasteful pair for both Gi, Gj, implying by Claim 17 that degB(e) = 2,
contradicting the fact that e ∈ D.

To prove (2), we show that degB(fi) = 1 for every i. First, Gi is adjacent to fi in
B, showing degB(fi) > 1. Assume for contradiction that there exists G ∈ G, G 6= Gi, so
that fi is also a half-G-wasteful edge. Let j ∈ [d] so that Gj 6= Gi, G (such j exists since
d > 3). Let a ∈ Gi, b ∈ Gj be edges meeting only e in R. Let c ∈ Gi be an edge meeting
both e, fi. Let d ∈ Gi and g ∈ G be edges meeting only f in R. Then by Lemma 15, a, b
meet e at the same vertex and d, g meet f at the same vertex. Since the graph contains
no C3, this implies that b ∩ c = c ∩ g = ∅. Since the graph contains no C5, we have also
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b ∩ g = ∅, implying that (R \ {e, f}) ∪ {b, c, g} is a rainbow matching of size q + 1, a
contradiction.

To prove (3), let e 6= f ∈ D and suppose h ∈ S(e) ∩ S(f). Let G1 ∈ HW (e, h) and
G2 ∈ HW (f, h). Since G1 is a matching G1 6= G2. Let G3 ∈ NB(e) so that G3 6= G1, G2 (it
exists because degB(e) > 3). By Lemma 15, the edges in G1, G2 meeting only h intersect
at the same vertex of h. Let b ∈ G2 be an edge meeting only h in R, let a ∈ G1 be an edge
meeting e, h, and let c ∈ G3 be an edge meeting only e in R. Again, a ∩ b = a ∩ c = ∅
for otherwise we have a C3, and b ∩ c = ∅ for otherwise we have a C5. Then like before,
replacing e, h in R by a, b, c results with a larger rainbow matching, a contradiction. ♦

For i = 1, 2 let Ui = {e ∈ R | degB(e) = i}, and let U3 = D = R \ (U1 ∪ U2). For
i ∈ [3] let Ei be the set of edges in B adjacent to a vertex in Ui.

By Claim 18 |E3| 6 |U1| = |E1|. Therefore,

|E(B)| =
3∑

i=1

|Ei| 6 2|E1|+ |E2| 6 2
3∑

i=1

|Ui| 6 2q.

This completes the proof of the lemma.

Combining (5) with Lemmas 14 and 16 we get

(3n− 4q)(n− q) 6 3q,

entailing (using similar calculations to those in Claim 13) q > 3n
4
− 9

4
. This completes the

proof of Part (3) of the theorem.

2.5 Part (4) of Theorem 2

Assume the conditions of Part (4) of Theorem 2 hold. That is, the matchings F1, . . . , Fn

are pairwise disjoint.
For e ∈ R, let Ee be the set of edges g ∈

⋃
HW (e) intersecting e and no other edge

in R.

Lemma 19. Suppose e ∈ R has degB(e) > 3. Then all the edges in Ee intersect e at the
same vertex (i.e.,

⋂
Ee ∩ e 6= ∅).

Proof. Write e = uv. Let G1, G2, G3 be three distinct matchings in HW (e), and let
gi ∈ Gi be an edge intersecting e and no other edges in R. It is enough to show that
g1, g2, g3 meet e at the same vertex. Assume g1, g2 meet e at v, and g3 meets e at u. Since
G1, G2 are disjoint, g1 6= g2, and thus g3 cannot meet both g1 and g2. Say g1 ∩ g3 = ∅.
Then the set (R \ e) ∪ {g1, g3} is a rainbow matching of size q + 1, contradicting the
maximality of R.

Let D = {e ∈ R | degB(e) > 5}.

Lemma 20. For every e ∈ D there exists a subset S(e) ⊆ R with the following properties:
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1. |S(e)| > degB(e)
2

.

2. For every f ∈ S(e), degB(f) 6 2.

3. If e, f ∈ D and e 6= f , then S(e) ∩ S(f) = ∅.

Proof. Let e ∈ D and write d = degB(e). Let NB(e) = {G1, . . . , Gd}, and let f1, . . . , fd ∈
R be edges so that (e, fi) is a half-Gi-wasteful pair. Let S(e) = {f1, . . . , fd}.

To prove (1) it is enough to show that there do not exist three indices j, k, ` ∈ [d] such
that fj = fk = f`. Assume for contradiction that such j, k, ` exist, and let f := fj =
fk = f`. For i ∈ {j, k, `}, let gie, g

i
f , g

i
ef ∈ Gi be edges witnessing the fact that (e, f) is a

half-Gi-wasteful pair. By Lemma 19, gje ∩gke ∩g`e∩ e 6= ∅, implying gjef ∩gkef ∩g`ef ∩ e 6= ∅.

Since the edges gjef , g
k
ef , g

`
ef meet also f , at least two of them must be equal, contradicting

the fact that the matchings are pairwise disjoint.
To prove (2), let f ∈ S(e) and assume degB(f) > 3. Let H ∈ HW (e, f), with edges

he, hf , hef ∈ H witnessing this fact. Let G,G′ ∈ HW (f) be two matchings different than
H. By Lemma 19, all the edges in Ef meet f ∩ hf , and all the edges in Ee meet e ∩ he.
In particular, no edge in Ef ∪ Ee intersects hef .

Let g ∈ Ef ∩ G and g′ ∈ Ef ∩ G′. Then g, g′ are distinct. Since degB(e) > 4,
Ee \ (H ∪ G′ ∪ G′′) contains at least one edge. Thus there exist edges a ∈ {g, g′} and
b ∈ Ee \ (H ∪ G′ ∪ G′′) such that a, b do not intersect. Replacing e, f in R with a, b and
hef , we get a larger rainbow matching, a contradiction.

To prove (3), let e 6= f ∈ D and suppose h ∈ S(e) ∩ S(f). Let A ∈ HW (e, h) and
B ∈ HW (f, h). Since A,B are matchings, A 6= B. Let ae, ah, aeh ∈ A and bf , bh, bfh ∈ B
be edges witnessing A ∈ HW (e, h) and B ∈ HW (f, h), respectively. By Lemma 19, all
the edges in Ee meet e at the same vertex, and all the edges in Ef meet f at the same
vertex.

Split into two cases.

Case 1: The edges ah and bh intersect h at the same vertex.
Since |Ee \ {ae, be}| > 2 there exists an edge in c ∈ Ee \ {ae, be} not intersecting bh. Thus
(R ∪ {bh, aeh, c}) \ {e, h} is a larger rainbow matching, a contradiction.

Case 2: The edges ah and bh intersect h at two different vertices.
In this case aeh, bfh do not intersect, and clearly, no edge in Ee∪Ef intersect either aeh or
bfh. Since degB(e), degB(f) > 5, there exist edges c ∈ Ee \ {ae, be} and d ∈ Ef \ {af , bf}
so that {c, d, aeh, bfh} is a rainbow matching in G. Thus (R ∪ {c, d, aeh, bfh}) \ {e, f, h} is
a rainbow matching of size q + 1, a contradiction.

Lemma 21.
∑

e∈R |HW (e)| 6 4q

Proof. For i ∈ [4] let Ui be the set of edges in R of degree i in B, and let U5 = D. For
i ∈ [5], let Ei be the set of edges in B adjacent to a vertex in Ui. By Lemma 20 we have,

|E5| 6 2(|U1|+ |U2|).
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Therefore,

|E(B)| =
5∑

i=1

|Ei| 6
4∑

i=1

i|Ui|+ 2(|U1|+ |U2|) 6 4
5∑

i=1

|Ui| 6 4q.

This completes the proof of the lemma.

Combining (1), (5) and Lemma 21 we get

(3n− 4q)(n− q) 6 6q,

implying q > 3n
4
− 9

2
and proving Part (4). This completes the proof of Theorem 2.

Question 22. Does there exist a function f(r) such that (n, n)→r n− f(r)?

3 Two proofs of Theorem 8

For a rooted tree G and a vertex v on it let Gv be the path on G from the root to v. The
tree G is called rainbow-monotone if the directed path Gv is rainbow-monotone for every
v ∈ V (G). For a forest F whose components are rooted trees and a vertex v ∈ V (F),
we write Fv for the path Gv, where G is the component of F containing v. Similarly,
vG denotes the sub-tree of G rooted at v. If K,L are trees sharing a vertex v, we denote
by KvL the edege-wise union of the path Kv and the tree vL. This definition does not
imply that KvL is a tree, but in our applications it will be.

First proof of Theorem 8. Inducting on i, we grow trees Ti(s) rooted at s for every s ∈ S
and i 6 m. At each step we shall denote by Y k

i the set of vertices y ∈ Y that are reached
by precisely k trees Ti(s) (k > 0).

The inductive construction will maintain two conditions:

1. Y k
i = 0 for all k > 2, and

2. Ti(s) is rainbow-monotone for every s ∈ S.

For the base, i = 0, let T0(s) = (s), a single-vertex tree, for every s ∈ S. Condition
(2) is obvious, and (1) is true since Y 0

0 = Y and Y k
0 = ∅ for every k > 0.

Suppose Ti(s) have been defined for all s ∈ S, and that they satisfy (1) and (2). Let
in(Pi+1) = p and ter(Pi+1) = q. Let X = V (Ti(p)) ∪ Y 2

i . Then p ∈ X. Since q ∈ S
we may assume that q 6∈ V (Ti(s)) for any s 6= q, since otherwise the path Ti(s)q is the
desired path.

So, there is an edge xy ∈ E(Pi+1) such that x ∈ X, y 6∈ X.
Case I x ∈ V (Ti(p)). Define then Ti+1(p) = Ti(p) ∪ {xy} (it is a tree since y 6∈ Ti(p))

and Ti+1(s) = Ti(s) for all s 6= p.
Case II x ∈ Y 2

i \V (Ti(p). Since y 6∈ Y 2
i , there exists r ∈ S (possibly r = p) for which

x ∈ V (Ti(r)) and y 6∈ V (Ti(r)). Then defining Ti+1(r) = Ti(r)∪ {xy} and Ti+1(s) = Ti(s)
for all s 6= r maintains the inductive assumptions.

Since at each of the m steps we are adding a vertex in Y to the trees, and since no
vertex in Y appears more than twice, m 6 2|Y |, as desired.
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The second proof is longer, but less of a hocus-pocus. It uses part (5) of Theorem 5.
We give it here since it may contain ideas relevant to Conjecture 6, the alternating paths
version of the theorem.

Second Proof of Theorem 8. First - a blueprint, which will then be given a rigorous for-
mulation.

Assume that there is no rainbow-monotone S−S path. We grow inductively rainbow-
monotone forests Fi, each consisting of trees Ti(s) rooted at s, for all s ∈ S. We also
keep track of sets Wi(t) of paths for each t ∈ S. These are “temporarily wasted” paths,
namely paths not adding an edge to Fi. A “wasted” path in Wi(t) will be used at the
end of the procedure to find a rainbow-monotone path ending at t.

Let F0 consist of the single vertex trees (s), s ∈ S, and W0(t) = ∅ for every t ∈ S.
The inductive step: If there exists an edge xy ∈ E(Pi+1) such that x ∈ V [Fi] and

y 6∈ V [Fi] choose one such edge and add it to Fi to form Fi+1. If not, let Fi+1 = Fi and
let Wi+1(ter(Pi+1)) = Wi(ter(Pi+1))∪{Pi+1}, and Wi+1(t) = Wi(t) for every t 6= ter(Pi+1).

Each non-wasted path Pi adds a vertex of Y to V [Fi]. Hence the number of such paths
is at most |Y |. To get the desired inequality m 6 2|Y |, it suffices then to show that the
number of wasted paths is at most |Y |. This will follow from:

|Wm(t)| 6 |V [Tm(t)] \ {t}| for every t ∈ S.

To see this, assume |Wm(t)| > |V [Tm(t)] \ {t}|. Contract V \ V [Tm(t)] to a single
vertex z. Let Qi, i 6 m consist of the part of the path Pi contained in V [Tm(t)], and let
P ′i be a path in the contracted graph, defined by E(P ′i ) = E(Qi) ∪ {z in(Qi)} (namely,
Qi with z appended to its initial vertex). Then by part (5) of Theorem 5 there is a
rainbow-monotone path (with respect to the paths P ′i ) from z to t, which can then be
extended (by uncontracting z) to a rainbow-monotone s− t path for some s 6= t.

A rigorous argument performs both types of steps together. We use the “wasted”
paths as we go along, instead of waiting till the end of the process.

Below we use the symbol ♦ to mark the conclusion of an intermediate step in a proof.
We construct inductively. for j 6 m, non-decreasing (containment-wise) disjoint trees

Tj(s), s ∈ S, and non-decreasing forests Zj(s), s ∈ S.
The inductive construction will maintain the following properties.

(P1) At each step precisely one Tj(s) or one Zj(s) grows, meaning that it is added a
vertex from Y , not met as yet.

(P2) The tree Tj(s) is rooted at s ∈ S, and V (Tj(s)) ∩ V (Tj(s
′)) = ∅ whenever s 6= s′.

(P3) The union Tj of the trees Tj(s), s ∈ S, is a forest.

(P4) For s ∈ S, the forest Zj(s) is the union of rooted trees, having a special form: each
tree in Zj(s) has its root r in V (Gj(s

′)) for some s′ ∈ S, s′ 6= s, and its other
vertices in V (Tj(s)). We denote such a tree by Zj(s, r).
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(P6) At each step a new vertex from Y is added either to Tj or to Zj(s) for some s ∈ S.

(P7) Edges are added to Zi(s, r) for i > j only after the path Tjr terminating at r has
been constructed.

(P8) The forests Tj and Zj(s) are rainbow-monotone.

(P9) If two trees, U ∈ Zj(s1) and W ∈ Zj(s2) meet, where s1 6= s2, then they share only
one vertex, which is the root of at least one of them.

(The secret wish of the trees in Zj(s) is to reach s. If fulfilled, the path in TjrZj(r, s) going
from the the root s′ of the tree in Tj containing r to s, will then be a rainbow S−S path.)

Combined, these properties yield:

Claim 23. The path Tjr does not meet V (Zj(s, r)) \ {r}, hence TjrZj(s, r) is a tree.

Having introduced the protagonists of the proof and their intended inductively pre-
served properties, let us describe the inductive construction. The preservation of the
properties (P1)-(P8) will be mostly easy to validate - we comment only on those that are
not obvious. Let G(0,0) consist of the singleton trees (s), s ∈ S, and let Z(0,0)(s) = ∅ for
every s ∈ S. Suppose Gj and Zj(s), s ∈ S, have been defined; let j+ = (k, i) be the index
following j in the lexicographic order, and let P = P i

k. We shall use P to extend either Tj
or Zj(s) for some s ∈ S, maintaining monotonicity. Below we assume, for contradiction,
that such an extension is not possible.

Claim 24. V (P ) ⊆ V (Tj).

If not, the first edge on P leaving V (Tj) could be added to Tj. ♦

Claim 25. The forests Tj, as well as the trees TjrZj(s, r), are rainbow-monotone.

Proof of the claim. In the construction we go over the paths P k
i one by one. When an

edge e from P k
i is added, it is at the top of a tree. When we get to P k

j , j > i, we cannot
put an edge from it right after e, because P k

i and P k
j are vertex disjoint. So e will be

put on top of a path in a tree, that consists of edges from P t
z for t < k. This explains

the monotonicity of both Tj(s) and Zj(s, r). By (3) it follows that their concatenation
TjrZj(s, r) is also rainbow-monotone. ♦

Claim 26. If s ∈ S then s 6∈ V (Zj(s)).

Indeed, if s ∈ V (Zj(s, r)) then the path TjrZj(s, r)s terminating at s is a rainbow-
monotone S − S path. ♦

Let t = ter(P ). By Claim 26, t 6∈ V (Zj(t)). Let v be the first vertex on P that belongs
to V (Gj(t)) \ V (Zj(t)), and let u be the vertex preceding it on P . We now add the edge
uv to the forest Zj(t). There are two possible cases.

Case I. u ∈ V (Gj(t)). Then the edge uv is added to the existing tree in Zj(t)
containing u.
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Case II. u 6∈ V (Gj(t)). It is possible that u has been used already as a root of a
tree Zj(t, u) in Zj(t). In this case we add the edge uv to Zj(t, u). Otherwise, a new tree
Zj+(t, u) is created in Zj+(t), consisting of the single edge uv.

Note that in any of these cases Zj(t) is enlarged by the addition of the vertex v.
Since each step uses one path Pi and since at each step either a rainbow S − S path

emerges, or one of the forests Tj or Zj annexes a vertex of Y , it follows that m 6 2|Y |,
as desired.
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