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Abstract

The hat-guessing number is a graph invariant defined by Butler, Hajiaghayi,
Kleinberg, and Leighton. We determine the hat-guessing number exactly for book
graphs with sufficiently many pages, improving previously known lower bounds of
He and Li and exactly matching an upper bound of Gadouleau. We prove that the
hat-guessing number of K3,3 is 3, making this the first complete bipartite graph
Kn,n for which the hat-guessing number is known to be smaller than the upper
bound of n+ 1 of Gadouleau and Georgiou. Finally, we determine the hat-guessing
number of windmill graphs for most choices of parameters.

Mathematics Subject Classifications: 05C57, 91A12, 00A08

1 Introduction

Hat-guessing games are combinatorial games in which players try to guess the colors of
their own hats. In the variant we study, defined by Butler, Hajiaghayi, Kleinberg, and
Leighton [7], each player is assigned 1 of q possible hat colors and is placed at a vertex
of a graph G. Players can see the hat colors of the players at adjacent vertices, but
not their own. Players can communicate to design a collective strategy before the hats
are assigned by the adversary. Once hats are assigned, the players must simultaneously
guess the colors of their own hats, and they collectively win if at least one player guesses
correctly.

Definition 1. The hat-guessing number of the graph G, denoted HG(G), is the largest
number of hat colors q for which the players can guarantee a win in the hat-guessing game
on G.
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This version of the hat-guessing game has found connections to derandomizing auc-
tions [1, 5] and recently to coding theory and finite dynamical systems [8].

The most famous special case of the hat-guessing game, where G = Kn is the complete
graph, was popularized by Winkler [17] in one of his beautiful puzzle collections. Here, n
players can all see each other, and the game is to show that HG (Kn) = n. The strategy
which wins on n colors is as follows: identify the hat colors with the set1 [n]. Player i
guesses the hat color that would make the sum of all the hat colors i (mod n). Since the
actual sum of everyone’s hat colors must take some value in Z/nZ, exactly one player will
guess correctly. Conversely, it is not difficult to show that the players cannot guarantee a
win when n+ 1 colors are available for the adversary.

The hat-guessing numbers of graphs other than the complete graph have proven sur-
prisingly difficult to compute. The value of HG(G) has been determined for trees [7],
cycles [16], extremely unbalanced complete bipartite graphs [2], and certain tree-like de-
generate graphs [11], but outside of these very specific families little is known. In this
paper we add to this list of solved graphs almost all books and windmills, as well as the
graph K3,3, which is in some sense the first “interesting” complete bipartite graph for this
problem.

The book graph Bd,n is obtained by adding n nonadjacent common neighbors to the
complete graph Kd. The d-clique is called the spine of Bd,n and the other n vertices are
called its pages. Book graphs were originally studied by Bosek, Dudek, Farnik, Grytczuk,
and Mazur [6] in this context. They are examples of d-degenerate graphs for which HG(G)
can be exponentially large in d. Independently, Gadouleau [8, Theorem 3] proved a general
upper bound that implies

HG(G) 6 1 +

τ(G)∑
i=1

ii, (1)

where τ(G) is the size the minimum vertex cover of G. As Bd,n is the unique maximal
graph on n vertices with τ(G) = d, determining HG(Bd,n) is actually equivalent to finding
the best possible upper bound on HG(G) in terms of τ(G). Our first main result is that
Gadouleau’s upper bound (1) is tight for books, and thus best possible.

Theorem 2. For d > 1 and n sufficiently large in terms of d, HG (Bd,n) = 1 +
∑d

i=1 i
i.

We make no effort to optimize how large n must be taken in terms of d for the above

theorem, but n =
(
1 +

∑d
i=1 i

i
)d

suffices, as this is the number of possible strategies for a
page vertex.

It was shown by [6] that HG(Bd,n) > 2d for sufficiently large n in terms of d by reducing
upper bounds on HG(Bd,n) to a certain geometric problem about counting projections in2

Nd. He and Li [11] showed that this geometric problem is actually equivalent to determin-
ing HG(Bd,n) for n sufficiently large and improved the lower bound to HG (Bd,n) > (d+1)!.
Our proof of Theorem 2 solves the equivalent geometric problem completely using Hall’s
Marriage Theorem.

1Hereafter, [q] denotes the set {0, 1, . . . , q − 1}.
2Hereafter, N denotes the set of non-negative integers.
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Perhaps the most well-studied case of the hat-guessing game is the complete bi-
partite case. In the paper defining the hat-guessing game [7], it was proved that for
large n, HG (Kn,n) = Ω(log log n). Later, Gadouleau and Georgiou [9] proved that
Ω(log n) 6 HG (Kn,n) 6 n + 1, and most recently, Alon, Ben-Eliezer, Shangguan, and

Tamo [2] improved the lower bound to HG (Kn,n) = Ω(n
1
2
−o(1)). However, the exact value

of HG (Kn,n) was only known in the cases n = 1, 2. Our next result solves the problem
for n = 3.

Theorem 3. For the complete bipartite graph K3,3, we have HG (K3,3) = 3.

This is the first example where the upper bound HG (Kn,n) 6 n + 1 of [9] is known
not to be tight, and suggests that HG (Kn,n) may be smaller than linear in general.

Finally, we consider the hat-guessing numbers of windmill graphs Wk,n, defined as n
disjoint copies of Kk glued together at a single vertex. Thus Wk,n has a total of (k−1)n+1
vertices. One might initially suspect that HG(Wk,n) cannot be much larger than k, since
except for the central vertex, Wk,n consists of n disjoint copies of Kk−1. We show to the
contrary that HG(Wk,n) can be almost twice as large as k in general.

Theorem 4. For k > 2 and n > log2(2k − 2), HG(Wk,n) = 2k − 2.

Theorem 4 determines HG(Wk,n) when n is sufficiently large. Similar methods work
for smaller choices of n.

Theorem 5. For any n > 1 and d > 2, we have HG(Wdn−dn−1+1,n) = dn.

In fact, it is not difficult to generalize this construction and show that HG(Wk,n) ≈
k + k1−1/n in general.

In Section 2, we study book graphs and prove Theorem 2 by solving the equivalent
geometric problem. Then, in Section 3, we prove Theorem 3 by reducing it to certain
partitioning and covering problems in a cube. In Section 4, we study windmill graphs and
prove Theorems 4 and 5. Finally, in Section 5, we present a few of the many attractive
open problems in this area.

2 Books

Recall that the book graph Bd,n is obtained by adding n nonadjacent common neighbors
to the complete graph Kd. The d-clique is called the spine of Bd,n and the other n vertices
are called its pages. The hat-guessing number of books was reduced by [6] and [11] to a
geometric problem.

Definition 6. A set S ⊂ Nd is coverable if there is a partition S = S1tS2t · · · tSd such
that Si contains at most one point along any line parallel to the i-th coordinate axis.

For example, the set [2]2 is coverable in N2 because it has the partition S1 = {(0, 0),
(1, 1)}, S2 = {(0, 1), (1, 0)} so that Si has at most one point along any axis-parallel line,
but the set [2]× [3] has no such partition and is not coverable.
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Let h(Nd) be the largest t such that every t-subset of Nd is coverable. It was shown
by [11] that for n sufficiently large in terms of d, HG(Bd,n) = h(Nd) + 1. In other words
HG(Bd,n) is the size of the smallest non-coverable set in d dimensions. Below we compute
h(Nd) exactly by reformulating coverability as a matching condition and applying Hall’s
Marriage Theorem. The corresponding neighborhood condition is as follows.

Definition 7. A set S ⊂ Nd is numerically coverable if
∑d

i=1 |πi(S)| > |S|, where πi(S)
is the (d − 1)-dimensional projection of S onto the i-th coordinate hyperplane; that is,
πi(S) = {(x1, . . . , x̂i, . . . , xd) | (x1, . . . , xi, . . . , xd) ∈ S for some xi ∈ N}.3

The following key lemma reduces checking coverability to checking numerical cover-
ability.

Lemma 8. A set S ⊂ Nd is coverable if and only if every subset of S is numerically
coverable.

Proof. Suppose first that a set S is coverable by the partition S1 t S2 t · · · t Sd. For any
subset T ⊆ S, let Ti = Si ∩ T , so that T = T1 t T2 t · · · t Td is a partition of T which
certifies the coverability of T . By the definition of coverability, we get |πi(T )| > |Ti| for
all i, so

∑d
i=1 |πi(T )| >

∑d
i=1 |Ti| = |T |. Thus every subset of S is numerically coverable.

Now suppose every subset of S is numerically coverable. We use the asymmetric
version of Hall’s Marriage Theorem [10], which states that a bipartite graph G on sets U
and V contains a perfect matching from U to V if every subset U ′ of U has at least |U ′|
total neighbors in V .

We define a bipartite graph G to apply Hall’s Theorem to as follows. The left side
is our set S, and the right side is the set L of axis-parallel lines intersecting S. An edge
(s, `) ∈ S × L lies in G if and only if line ` contains point s. If every subset of S is
numerically coverable, then every set T ⊆ S of points lies on at least |T | distinct axis-
parallel lines in L, and so the conditions of Hall’s Marriage Theorem are satisfied. Thus,
a perfect matching from S to L exists.

Given a perfect matching from S to L, we can construct a partition for S exhibiting
its coverability. Indeed, let Si be the subset of S matched to lines in L parallel to the
xi-axis. This is a partition of S with the property that Si contains at most one point
along each xi-axis, and so S is coverable, as desired.

Our goal in the next two lemmas is to show that all small enough sets are numeri-
cally coverable. This can be done entirely by applying results of Lev and Rudnev [14]
determining the sets minimizing

∑d
i=1 |πi(S)| for any given fixed size |S|. However, for

simplicity of exposition we break it into two parts.

Lemma 9. Any set S ⊂ Nd of size at most dd is numerically coverable.

Proof. We use a special case of the Loomis–Whitney inequality [15]:

|S|d−1 6
d∏
i=1

|πi(S)|.

3We use x̂i to mean that xi is omitted from the list.
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Applying the arithmetic mean–geometric mean inequality to the inequality above implies

|S|d−1 6

(
1

d

d∑
i=1

|πi(S)|

)d

d|S|
d−1
d 6

d∑
i=1

|πi(S)|. (2)

Since |S| 6 dd, we have |S| 6 d|S| d−1
d , and so (2) gives |S| 6

∑d
i=1 |πi(S)| as desired.

It remains to show that if |S| is between dd and
∑d

i=1 i
i, S is still numerically coverable.

Lemma 10. Any set S ⊂ Nd of size at most
∑d

i=1 i
i is numerically coverable.

Proof. We already know the claim holds for |S| 6 dd by Lemma 9. Thus, we may assume
S satisfies dd < |S| 6

∑d
i=1 i

i.
Assume for the sake of contradiction that the lemma does not hold for all d ∈ N.

Then, there must be some minimum d for which it does not hold. Pick this smallest d
for which the lemma is false and let S be a minimum counterexample in this dimension
d; that is, dd < |S| 6

∑d
i=1 i

i and |S| >
∑d

i=1 |πi(S)|. We may further assume that S

minimizes
∑d

i=1 |πi(S)| among all sets of the same size |S|.
Lev and Rudnev [14] determined the exact sets S of any fixed size minimizing∑d
i=1 |πi(S)|. It is a straightforward deduction from their results that we may assume

that an optimal S contains the hypercube [d]d and that S \ [d]d lies in one hyperface
adjacent to the hypercube. Without loss of generality, say the hyperface in question is
the one with xd = d+ 1. In other words, we assume

[d]d ⊆ S ⊆ [d]d−1 × [d+ 1].

This implies that πi(S) = πi
(
[d]d
)

+ πi
(
S \ [d]d

)
for i = 1, . . . , d − 1 and that πd(S) =

πd
(
[d]d
)
.

Then,

|S| >
d∑
i=1

|πi(S)|

|S| − |[d]d| = |S \ [d]d| >
d∑
i=1

|πi(S)| −
d∑
i=1

|πi
(
[d]d
)
|

|S \ [d]d| >
d−1∑
i=1

πi
(
S \ [d]d

)
Since |S| 6

∑d
i=1 i

i, we see |S \ [d]d| 6
∑d−1

i=1 i
i. Thus πd(S \ [d]d) is a counterexample to

the claim in dimension d− 1, contradicting the minimality of d.
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Now Theorem 2 follows immediately, since Lemmas 8 and 10 together prove that
h(Nd) >

∑d
i=1 i

i, and the matching upper bound was shown by Gadouleau [8]. For
completeness, we include a quick sketch of this upper bound construction.

Lemma 11. For d > 1, we have h(Nd) 6
∑d

i=1 i
i.

Figure 1: A non-coverable 33-set in N3

Proof Sketch. We construct a non-coverable set of size 1+
∑d

i=1 i
i by induction. First, it is

evident that h(N1) = 1. Next, given a set S ⊂ Nd of size 1+
∑d

i=1 i
i that is non-coverable,

we can create a non-coverable set of size 1 +
∑d+1

i=1 i
i in Nd+1 as follows. Simply take a

[d+ 1]d+1 hypercube and position a copy of S inside a coordinate hyperplane adjacent to
one of its faces. In Figure 1, which shows the case d = 3, the white region is the 3× 3× 3
cube, and the gray and black regions are S.

3 The Complete Bipartite Graph K3,3

The hat-guessing number of complete bipartite graphs relates closely to packing combi-
natorial cubes, as defined below.

Definition 12. In three dimensions, an l × m × n combinatorial prism is a Cartesian
product of one l-set, one m-set, and one n-set. If l = m = n, it is called a combinatorial
cube. “Combinatorial prisms” and “combinatorial cubes” will be abbreviated as “prisms”
and “cubes” respectively.

The following lemma explicitly states the relation between cubes and hat-guessing on
complete bipartite graphs. It is a specific case of machinery for complete bipartite graphs
presented in [2].
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Lemma 13. We have HG (K3,3) > 4 if and only if there exist three partitions P , Q, and
R given by

[4]3 = P1 t P2 t P3 t P4 = Q1 tQ2 tQ3 tQ4 = R1 tR2 tR3 tR4

such that Pi ∪Qj ∪Rk contains a 3× 3× 3 cube for all choices of 1 6 i, j, k 6 4.

Proof. We show the proof of the if direction. In K3,3, call the left and right parts VL and
VR = {p, q, r} respectively. Define vL ∈ [4]3 to be the vector of hat color assignments on
VL. Then, the guessing strategies of vertices p, q, and r will be built from the partitions
P , Q, and R, respectively. Specifically, let p guess color i − 1 exactly when vL ∈ Pi.
Similarly define the hat-guessing strategies on q and r in terms of the partitions Q and R
respectively.

It remains to give the guessing strategy on the left hand side. Since we only need one
vertex total to guess correctly, the vertices in VL may assume that each of p, q, and r
guesses incorrectly. If the vertices of VL see colors i− 1, j − 1, and k− 1 on vertices p, q,
and r respectively, this assumption implies that vL 6∈ Pi ∪Qj ∪ Rk. Recalling that every
such union contains a 3× 3× 3 cube, we see that vL must be in the complement of such
a cube. But the complement of a 3× 3× 3 cube C in [4]3 is the Hamming ball of radius 2
about some point (x, y, z) ∈ [4]3; that is, every point outside C shares a coordinate with
(x, y, z). Thus, if the three vertices on the left guess colors x, y, and z, respectively, at
least one of them guesses correctly, as desired.

The only if direction is similar. Given a winning guessing strategy, the partitions P ,
Q, and R are exactly those given by the fibers of the guessing functions of the right hand
side vertices p, q, and r.

It will be convenient to study two-fold, and not mutual, intersections of set families.

Definition 14. A point p is a two-intersection point of a family of sets {S1, . . . , Sn}
(n > 2) if it is contained in at least two distinct sets Si and Sj. The set of all two-
intersection points of {S1, . . . , Sn} is simply called the two-intersection of this family.

Before we complete the proof of Theorem 3, we will need three technical lemmas about
the intersection patterns of cubes and prisms in [4]3.

Lemma 15. If four 3× 3× 3 cubes in [4]3 two-intersect in at most 29 points, then their
two-intersection is either a 3× 3× 3 cube or a 3× 3× 3 cube missing one point.

Lemma 16. Three 3× 3× 3 cubes in [4]3 must two-intersect in at least 20 points.

The preceding two lemmas will be proved in the appendix with finite case checks.

Lemma 17. It is impossible for four 16-sets, each lying inside some 2× 3× 3 prism, to
partition [4]3.
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Proof. We claim that three 3 × 3 × 3 cubes and one 2 × 3 × 3 prism cannot cover [4]3,
from which it follows that four 2 × 3 × 3 prisms cannot cover [4]3. This would certainly
be enough.

Assume for the sake of contradiction that such a covering were possible and look at
the x-coordinates missing from each set. Without loss of generality, the 2× 3× 3 prism is
oriented so that two x-coordinates are missing. One possible x-coordinate is missing from
each of the cubes, for a total of five, so some x-coordinate is missing twice. Therefore in
that 4× 4 cross section of [4]3, only two of the four sets appear. However, it is impossible
to cover a 4× 4 square with at most two 3× 3 squares, so we have arrived at the desired
contradiction.

We are now ready to prove Theorem 3, which states that HG (K3,3) = 3.

Proof of Theorem 3. Since HG (K2,2) = 3 and it is a subgraph of K3,3, HG (K3,3) > 3.
Since HG (Km,n) 6 min(m,n) + 1 by a result of [9], we know that HG (K3,3) 6 4. It
remains to show that HG (K3,3) 6= 4.

Suppose for the sake of contradiction that HG (K3,3) = 4. By Lemma 13, HG (K3,3) =
4 if and only if there are three partitions of a 4 × 4 × 4 cube into four parts each, such
that the union of one part from each partition always contains a 3 × 3 × 3 cube (i.e., a
set of the form4 {p} × {q} × {r}, for p, q, r ∈ [4]).

We will denote the three partitions of [4]3 as P , Q, and R. Without loss of generality,
the parts in P , which are P1, P2, P3, and P4, are labeled such that |P1| 6 |P2| 6 |P3| 6 |P4|.
The parts in Q, which are Q1, Q2, Q3, and Q4, are labeled such that |Q1\P1| 6 |Q2\P1| 6
|Q3\P1| 6 |Q4\P1|. The parts in R, which are R1, R2, R3, and R4, are labeled arbitrarily.

The first part of this proof is to show that partition P must be balanced in order for
all choices of Pi ∪Qj ∪Rk to contain a 3× 3× 3 cube. The idea is to repeatedly exploit
the fact that since the Rk are disjoint sets, Pi ∪ Qj contains the two-intersection of four
3× 3× 3 cubes in [4]3.

By these assumptions, we get |P1| 6 16 and |P1∪Q1| 6 |P1∪Q2| 6 |P1∪Q3| 6 |P1∪Q4|.
Thus, |P1 ∪Q1| 6 1

4

∑4
i=1 |P1 ∪Qi|. Since Q is a partition, any point in P1 is included in

exactly one Qi and excluded from the other three, meaning
∑4

i=1 |P1 ∪Qi| = 64 + 3|P1|.
Then, |P1∪Q1| 6 1

4
(64+3|P1|) 6 28. By Lemma 13, P1∪Q1∪Ri must contain a 3×3×3

cube Di for 1 6 i 6 4. Since the Ri are disjoint,
⋂4
i=1(P1 ∪Q1 ∪ Ri) = P1 ∪Q1. In fact,

any point in the two-intersection of D1, . . . , D4 must lie inside this set P1 ∪Q1 of at most
28 points (see Definition 14). By Lemma 15, if D1, . . . , D4 two-intersect in at most 29
points, then their two-intersection is either a 3×3×3 cube or a 3×3×3 cube missing one
point. It follows that |P1 ∪Q1| > 26, so |Q1 \P1| > 10. We can now apply the pigeonhole
principle to find that |Q2 \ P1| 6 b13(43 − 26)c = 12. We consider whether |Q2 \ P1| > 11
or not.

Claim 18. |Q2 \ P1| 6 10.

4The complement of a set S is denoted by S.
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Proof. Assume for the sake of contradiction that |Q2 \ P1| > 11. Then, we can apply
the pigeonhole principle again to find that |Q3 \ P1| 6 b12(43 − 26 − 11)c = 13. Thus,
|Q1 \ P1| 6 |Q3 \ P1| 6 13 and |Q2 \ P1| 6 |Q3 \ P1| 6 13. Recall that |P1| 6 16. Then,
|P1∪Q1|, |P1∪Q2|, and |P1∪Q3| are all at most 29. Furthermore by applying Lemma 13
and Lemma 15, the sets P1 ∪Q1, P1 ∪Q2, and P1 ∪Q3 must each contain all but at most
one point of some 3× 3× 3 cube.

Since the Qi are disjoint,
⋂3
i=1(P1 ∪Qi) = P1. These three sets, each missing at most

one point from some 3× 3× 3 cube, two-intersect in at most |P1| 6 16 points. However,
by Lemma 16, three full 3×3×3 cubes must two-intersect in at least 20 points. Removing
one point from a 3 × 3 × 3 cube can remove at most one point from the resulting two-
intersection. Thus the two-intersection of {P1 ∪Qi}3i=1 must contain at least 20− 3 = 17
points. This is a contradiction.

Claim 19. The partition P is balanced; that is, all of the parts are of size 16.

Proof. From the previous claim, |Q2 \ P1| 6 10 and we already know that |Q1 \ P1| > 10,
so |Q1 \P1| = |Q2 \P1| = 10. This and Lemma 15 imply that the partition P is balanced,
since the smallest part P1 has to have size at least 16 in order for P1 ∪ Q1 to contain at
least 26 points.

We now know |P1| = 16. Then, since |P1 ∪ Q1| = |P1 ∪ Q2| = 26, P1 is a 16-set such
that adding two disjoint 10-sets, Q1\P1 and Q2\P1, creates two distinct 26-sets contained
inside 3× 3× 3 cubes.

Claim 20. The set P1 consists of 16 points in a 2× 3× 3 prism.

Proof. From the previous claims, P1 ∪Q1 = C1 \ {p1} and P1 ∪Q2 = C2 \ {p2} for some
3 × 3 × 3 cubes C1 and C2 and points p1 and p2. These two sets intersect precisely at
P1, implying that C1 6= C2. On the other hand, two distinct cubes intersect in either a
2 × 2 × 2 cube, a 2 × 2 × 3 prism, or a 2 × 3 × 3 prism. Since P1 is a 16-set that lies
inside this intersection, only the last option is large enough and P1 consists of 16 points
in a 2× 3× 3 prism.

Finally, since the partition P is balanced, the entire argument is symmetric and we
see that every Pi ∈ P consists of 16 points in a 2× 3× 3 prism. By Lemma 17, four sets
of this structure cannot partition [4]3. Thus the sets Pi are not a partition of [4]3, which
is the desired contradiction.

4 Windmills

In this section, we determine the hat-guessing number of most windmill graphs, defined
below. In particular, we prove Theorems 4 and 5.

Definition 21. The windmill graph Wk,n is the graph on (k−1)n+1 vertices obtained by
gluing n copies of Kk together at a single vertex. We call the single distinguished vertex
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the axle of Wk,n and each of the n disjoint copies of Kk−1 not containing the axle a blade
of Wk,n.

Our plan of attack is to reduce hat-guessing on Wk,n to modified hat-guessing problems
on the individual blades, where the set of possible hat assignments is restricted to a
prescribed subset of [q]k−1. The following definition appears in [2].

Definition 22. If G is a graph on n vertices, we say that a set S ⊆ [q]n of possible hat
assignments is a solvable set of G with q colors if the hat-guessing game on G with q colors
can be won with the additional information that the hat assignment is in S. If G and q
are clear from context, we simply say that S is a solvable set.

Thus S = [q]n is a solvable set of G if and only if HG(G) > q. In this section we will
be primarily concerned with solvable sets of complete graphs.

Lemma 23. If q > n > 1, then the size of the largest solvable set of Kn with q colors is
nqn−1.

Proof. First, we show that the size of the largest solvable set of Kn with q colors is at
most nqn−1. Let Si be the set of hat assignments in which player i guesses correctly, xi
be the hat color of the i-th player, and fi be the guessing function of the i-th player.
Then for all (x1, . . . , xn) ∈ Si, xi = fi(x1, . . . , x̂i, . . . , xn). Then |Si| 6 qn−1 because xi is
determined by the other n − 1 hat colors. So the size of the largest solvable set of Kn

with q colors is at most
∑n

i=1 |Si| 6 nqn−1.
Next, we show that the size of the largest solvable set of Kn with q colors is at least

nqn−1. Let S be all of those hat assignments for which the sum of the hat colors is between
0 and n − 1 (mod q). If we index the players from 0 to n − 1, then each player guesses
that its hat color is the one that will make the sum of all their hat colors equal to its
index modulo q. Thus S is a partially q-solvable set for Kn with nqn−1 elements.

Next, we need a simple lemma that reduces hat-guessing on windmills to packing
certain solvable sets on disjoint unions of cliques. It is the analog of Lemma 13 for
windmills.

Lemma 24. We have HG(Wk,n) > q if and only if there exist q disjoint sets in [q](k−1)n

of the form
S1 × S2 × · · · × Sn

where Si ⊆ [q]k−1 is a solvable set of Kk−1.

Proof. We show how to give a winning guessing strategy for Wk,n given such a collection
of q sets. If these sets are P1, P2, . . . , Pq ⊆ [q](k−1)n, arbitrarily expand these sets to a
partition Q1 t · · · t Qq = [q](k−1)n where Pi ⊆ Qi. If v is the axle of Wk,n, this is a
partition of the possible colorings of Wk,n \ {v}. Let v guess color i if it sees a coloring of
Wk,n \ {v} that lies in Qi.

It remains to give the guessing strategies for the other vertices of Wk,n. Suppose
Pi = Si,1 × Si,2 × · · · × Si,n where Si,j ⊆ [q]k−1 is a solvable set of the j-th blade, which is
a copy of Kk−1.
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Fix some 1 6 j 6 n and consider the vertices of the j-th blade of Wk,n. Let cj ∈ [q]k−1

be the vector of hat assignments on these vertices. Since Si,j is a solvable set of Kk−1,
it follows that there exists some guessing strategy gi,j on blade j which guarantees that
some player guesses correctly if cj ∈ Si,j.

The guessing strategy for non-axle vertices will be as follows. Each non-axle vertex
first records the color i as the color of the axle vertex v. Then, the vertices of blade j
restrict their attention to the other vertices of the same blade and follow guessing strategy
gi,j so as to guarantee a win if cj ∈ Si,j.

We see that as long as cj ∈ Si,j for some j, some vertex in blade j guesses correctly and
the players win. On the other hand, if cj 6∈ Si,j for all j, then (c1, c2, . . . , cn) ∈ Pi ⊆ Qi,
and so the axle v guesses color i and thus guesses correctly. In any case, we have a
winning strategy and this completes the proof of the if direction. The only if direction is
similar.

The final ingredient for Theorem 4 is the existence of a specific type of solvable set
for Kk−1 with 2k − 2 colors.

Lemma 25. For all k > 2, there is a set C ⊆ [2k − 2]k−1 such that both C and C are
solvable for Kk−1 with 2k − 2 colors.

Proof. The set C is to be a subset of [2k− 2]k−1. For a binary vector v ∈ {0, 1}k−1 define
the subhypercube Cv ⊂ [2k − 2]k−1 to be

Cv := {x ∈ [2k − 2]k−1 | (k − 1)vi 6 xi < (k − 1)(vi + 1) for all i 6 k − 1}.

Thus, the sets Cv partition [2k − 2]k−1 into 2k−1 hypercubes with side length k − 1. Let
C be the union of those Cv for which v ∈ {0, 1}k−1 has an odd number of 1s.

We now check that C is solvable. Indeed, in the hat-guessing game on Kk−1, each
vertex ui sees the colors on all the other vertices, and can determine from this information
exactly two possible hypercubes Cv, Cv′ in which the hat assignment vector must lie. The
binary vectors v, v′ will differ in exactly coordinate i because ui has no information about
its own color. However, with the additional constraint that the hat assignment is in C,
exactly one of these vectors v, v′ will have an odd number of 1’s. In other words, every
vertex in Kk−1 will be able to determine the (same) hypercube Cv with side length k − 1
in which the hat assignment vector lies.

From this point, the game is reduced to the (k− 1)-color hat-guessing game on Kk−1,
which we know to be a guaranteed win for the players. This proves that C is solvable,
and the proof for C is analogous.

We are ready to prove Theorem 4, which states that for k > 2 and n > log2(2k − 2),

HG(Wk,n) = 2k − 2.

Proof of Theorem 4. We first show the upper bound. Suppose HG(Wk,n) = q > 2k − 1
for the sake of contradiction. By Lemma 24, there exist q > 2 disjoint subsets of [q](k−1)n

which are products of complements of solvable sets of Kk−1.
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Consider two of these subsets, S1 × · · · × Sn and T1 × · · · × Tn, where Si and Ti are
solvable sets of Kk−1. By Lemma 23, the size of the largest solvable set of Kk−1 with q
colors is (k − 1)qk−2. Thus, |Si| 6 (k − 1)qk−2 < 1

2
qk−1 if q > 2k − 1, and similarly for

Ti. This implies Si ∩ Ti 6= ∅ for all i. This contradicts the assumption that the products
S1 × · · · × Sn and T1 × · · · × Tn were disjoint, and we are done.

Now we show the lower bound. By Lemma 24, it suffices to exhibit q = 2k−2 disjoint
sets in [q](k−1)n that are products of complements of solvable sets of Kk−1. By Lemma 25,
there exists a set C such that both C and C are solvable sets of Kk−1 with q = 2k − 2
colors. For convenience, let C0 = C and C1 = C.

For each 0 6 x 6 q − 1, define xi to be the i-th (least significant) digit of x in binary,
and

Px := Cx1 × Cx2 × · · · × Cxn .

Note that since n > log2(2k− 2), we get q− 1 = 2k− 3 6 2n− 1, and so all of the sets Px
above are disjoint. Since each Cxi is a solvable set of Kk−1, this completes the proof.

To prove Theorem 5, we will construct certain guessing strategies using additive com-
binatorics.

Definition 26. We say that a collection {A1, . . . , An} of sets Ai ⊆ Z/mZ is difference-
disjoint if

⋂n
i=1 (Ai − Ai) = {0}.

An equivalent definition is that {A1, . . . , An} is difference-disjoint if and only if for
all (c1, . . . , cn) ∈ (Z/mZ)n, we have |

⋂n
i=1 (Ai + ci) | 6 1. Indeed, this latter intersection

contains at least two elements if and only if there is a pair of elements in each Ai with the
same nonzero difference. We proceed by constructing certain optimal difference-disjoint
collections.

Lemma 27. For all n > 1 and d > 2, there exists a difference-disjoint collection
{A1, . . . , An} of n sets Ai ⊆ Z/dnZ with |Ai| = dn−1 for i = 1, . . . , n.

Proof. Let dd(x, i) be the i-th digit of x in base d, where dd(x, 0) is the least significant
digit; that is dd(x, i) =

⌊
x
di

⌋
− d

⌊
x

di+1

⌋
. Let νd(x) be the largest power of d that divides

x, or equivalently the number of trailing zeros in the base-d representation of x.
With this notation, let Ai = {x | dd(x, i− 1) = 0} for i = 1, . . . , n. We claim that

for each nonzero a ∈ Z/dnZ, a /∈
(
Aνd(a)+1 − Aνd(a)+1

)
. Indeed, suppose a = x − y for

x, y ∈ Aνd(a)+1, so that dd(x, νd(a)) = dd(y, νd(a)) = 0. In this situation, it is impossible
for dd(x− y, νd(a)) 6= 0 unless dd(x− y, t) 6= 0 for some t < νd(a). But this would imply
νd(x− y) < νd(a), which is a contradiction. Thus, the sets Ai form a difference-disjoint
collection as desired.

We can now prove Theorem 5. Recall the statement: for n > 1 and d > 2,

HG(Wdn−dn−1+1,n) = dn.

Our construction is a generalization of a strategy suggested by Alweiss [4] for W3,2.
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Proof of Theorem 5. Let k = dn − dn−1 + 1 and q = dn. We prove separately that
HG(Wk,n) 6 q and HG(Wk,n) > q.

First we show HG(Wk,n) 6 q. Suppose instead that HG(Wk,n) > q+ 1. By Lemma 24
there must exist q + 1 disjoint sets P1, . . . , Pq+1 in [q + 1](k−1)n, where each Pj is of the
form

S1 × S2 × · · · × Sn
where Si is a solvable set of Kk−1 with q + 1 colors. By Lemma 23, any such solvable
set has size at most (k − 1)(q + 1)k−2, and so |Si| 6 (k − 1)(q + 1)k−2. Hence, |Si| >
(q + 1)k−1 − (k − 1)(q + 1)k−2 = (q − k + 2)(q + 1)k−2, and we get

|Pj| =
n∏
i=1

|Si| > ((q − k + 2)(q + 1)k−2)n.

We claim that this is impossible because the sets Pj are simply too large to all fit inside
[q + 1](k−1)n. Indeed,

(q + 1)|Pj| > (q + 1)(k−2)n+1 · (q − k + 2)n = (q + 1)(k−2)n+1 · (dn−1 + 1)n > (q + 1)(k−1)n.

In the last line, we used the inequality (dn−1 + 1)n > (dn + 1)n−1 which holds for all d > 2
and n > 1. This completes the proof that HG(Wk,n) 6 q.

We finish by showing HG(Wk,n) > q. Identify the set of colors [q] with the elements of
Z/qZ, and let {A1, . . . , An} be the difference-disjoint collection in Z/qZ constructed by
Lemma 27, so that |Ai| = dn−1 for each i. For any set of residues A ⊆ Z/qZ, define S(A)
to be the set

S(A) := {(x1, . . . , xk−1) ∈ [q]k−1 | x1 + · · ·+ xk−1 6∈ A}

of all hat assignments to Kk−1 whose sum is not in A.
Our first claim is that for any set A with |A| = dn−1, S(A) is a solvable set of Kk−1.

Indeed, S(A) consists of all hat assignments with sum in A, which has size q − |A| =
dn − dn−1 = k − 1. This set is solvable because we can assign each element bi ∈ A to a
distinct vertex i of Kk−1 and have vertex i guess the color that would make the total sum
of the hat colors bi.

Now, define q = dn sets P0, . . . , Pq−1 by

Pj := S(A1 + j)× S(A2 + j)× · · · × S(An + j).

Here Ai+ j denotes the (mod q)-translation of the set Ai by j. Since S(Ai+ j) is solvable
in Kk−1, it remains to show that the sets Pj are all disjoint in order to apply Lemma 24. If
not, there would exist distinct j, j′ ∈ [q] such that (x1, . . . , xn) ∈ Pj ∩ Pj′ for some vector
(x1, . . . , xn) ∈ [q](k−1)n. Equivalently, writing σ(xi) for the sum of the coordinates of xi,
this means that σ(xi) ∈ (Ai + j) ∩ (Ai + j′) for every i. But then j′ − j ∈ Ai − Ai for
every i, which contradicts the fact that the sets Ai form a difference-disjoint collection.

This completes the construction of q disjoint sets P0, . . . , Pq−1 satisfying the conditions
of Lemma 24, and proves that HG(Wk,n) > q as desired.
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5 Concluding Remarks

Gadouleau and Georgiou proved that HG (Kn,n) 6 n + 1 [9]. This is tight for n = 1 and
n = 2. However, in this paper, we proved that HG (K3,3) = 3. It remains an interesting
open question to determine the value of HG (Kn,n) for n > 3. We conjecture the following
generalization of Theorem 3.

Conjecture 28. For n > 3, HG (Kn,n) 6 n.

The windmill graph W4,3 has hat-guessing number 6, disproving the conjecture that
all planar graphs have hat-guessing number at most 4 from [6]. He and Li [11] previously
gave another planar graph with a hat-guessing number of 6, namely B2,n for sufficiently
large n. Recently, [3] constructed a planar graph with a hat-guessing number of 12. It
remains open whether the hat-guessing number of planar graphs is bounded.

Question 29. Do there exist planar graphs with arbitrarily large hat-guessing number?

Since planar graphs have a Hadwiger number (largest clique minor) of at most 4, a
more general question is whether the hat-guessing number is upper bounded by some
function of the Hadwiger number.

Question 30. Is there a function f such that HG(G) 6 f(h(G)), where h(G) is the
Hadwiger number of G?

All of our results support the following conjecture about the upper bound of all graphs
in terms of the maximum degree ∆. This conjecture, first proposed in [2], tightens the
folklore upper bound of e∆ given by the Lovász Local Lemma.

Conjecture 31. HG(G) 6 ∆ + 1.5

Books and windmills are both generalizations of the complete graph. Books glue
multiple copies of the complete graph together by leaving one vertex unique to each copy.
In contrast, windmills glue multiple copies of the complete graph together at exactly
one vertex. The case of gluing multiple copies of the complete graph at an intermediate
number of vertices remains unexplored.

Perhaps the most interesting question in hat guessing is whether far-apart vertices
can coordinate their guesses in a way that contributes to the hat-guessing number. Al-
most all graphs studied to date—including books, windmills, and the complete bipartite
graph—have a diameter of at most 2. Define a graph to be hat-minimal if every proper
subgraph has a smaller hat-guessing number.

Question 32. Do there exist hat-minimal graphs with arbitrarily large diameter and
hat-guessing number?6

5After the first version of this paper was posted, Latyshev and Kokhas [13] disproved this conjecture.
6After the first version of this paper was posted, [13] answered this question affirmatively.
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Another related question is whether graphs with high girth can have high hat-guessing
number.

Question 33. Do there exist graphs with arbitrarily large girth and hat-guessing number?

It seems that the fundamental roadblock to answering either question is the absence
of guessing strategies in which far-away vertices can coordinate effectively. The only
graphs with higher diameter or girth for which anything interesting is known are cycles,
for which the hat guessing number is at most 3 [16], and graphs with more than one cycle,
for which the hat guessing number is at least 3 [12]. It would already be interesting to find
hat-minimal graphs with hat-guessing number 4 and arbitrarily large girth or diameter.
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6 Appendix

Here we prove Lemmas 15 and 16. In both proofs it will be helpful to study sets which
are complements of 3× 3× 3 cubes.

Definition 34. If p ∈ [4]3, the big Hamming ball about p, denoted B(p), is the set of all
points sharing at least one coordinate with p.

Note that B(p) is always the complement of a 3×3×3 cube. We first prove Lemma 15,
which states that if a two-intersection of four 3× 3× 3 cubes contains at most 29 points,
then it must either be a 3× 3× 3 cube or a 3× 3× 3 cube missing a point.

The relationship of two points can be captured by the following notion.

Definition 35. The Hamming distance of two points p and q, notated d(p, q), is the
number of coordinates that p and q disagree on.

We can then see that for p ∈ [4]3, B(p) is the set of q such that d(p, q) < 3.

Proof of Lemma 15. Suppose we have four 3 × 3 × 3 cubes C1 = B(p1), C2 = B(p2),
C3 = B(p3), and C4 = B(p4). We condition on the set of four points {p1, p2, p3, p4}. We
can assume without loss of generality that p1 = (0, 0, 0). Further, if pi = pj with i 6= j,
then the two-intersection is either a 3×3×3 cube or contains at least 31 points (a 3×3×3
cube with at least 4 extra two-intersections), which is in accordance with our lemma. We
now assume that no two of the four points are equal.

First, suppose two of the four points have Hamming distance 1. Without loss of
generality, this occurs with p2 = (1, 0, 0). If d(p1, p2) = d(p1, p3) = d(p1, p4) = 1, then
the two-intersection is a 3 × 3 × 3 cube missing a point, unless there are three points
in an axis-parallel line, in which case we already have a 4 × 3 × 3 prism, and we are
done. We can then assume that p3 has at least 2 nonzero coordinates. So without loss
of generality, p3 ∈ {(0, 1, 1), (1, 1, 0), (2, 1, 0), (2, 1, 1)}. (These cases are sufficient because
with the existing choices of p1 and p2, only the x-coordinate is distinct while the y- and z-
coordinates are symmetric, and the values 1 and 2 are symmetric with respect to the y- and
z-coordinates.) We consider the cases in turn. (Several of these cases require exhaustively
considering the possibilities for p4, although symmetries make the task easier.)

First, if p3 = (0, 1, 1), then we can create a two-intersection of size 30 by setting
p4 = (0, 1, 0), but one can see that no other choice of p4 achieves a smaller two-intersection.

Second, if p3 = (1, 1, 0), then it is possible to achieve a two-intersection of size 26 by
setting p4 = (1, 0, 1), and this is the 3×3×3 cube missing a point as desired. Further, we
can get a two-intersection of 30 by setting p4 = (0, 0, 1) or p4 = (1, 1, 1), but no smaller
two-intersections are possible besides the 3× 3× 3 cube missing a point.

Third, if p3 = (2, 1, 0), this case can easily be dismissed because the two-intersection
is already size 30.

Fourth, if p3 = (2, 1, 1), we can do a two-intersection of size 32 with p4 = (0, 1, 0), but
no smaller two-intersection is possible, which is not difficult to see once one notes that
the size of the two-intersection is already size 26 after adding the third 3 × 3 × 3 cube,
and the last 3× 3× 3 cube must add at least 6 more.

the electronic journal of combinatorics 29(1) (2022), #P1.12 17



Thus, we have proven the lemma if two points have a Hamming distance of 1 between
them. We now suppose that all pairs of points have a Hamming distance of at least
2 between them. For i = 1, . . . , 4, let pi = (xi, yi, zi). Then, Ci = Si × {zi}, where
Si is the combinatorial square {xi} × {yi}. Because any two points pi and pj have a
Hamming distance of at least 2, we see that they must disagree in at least one of the x-
or y-coordinates, so all of the Si must be distinct.

One can verify that two 3×3 squares in [4]2 must two-intersect in at least 4 points, and
three 3× 3 squares must two-intersect in at least 8 points. Although not as obvious, one
can also verify that four distinct 3×3 squares must two-intersect in at least 12 points (the
minimal two-intersection is achieved with the squares defined by the points (0, 0), (1, 0),
(0, 1), (1, 1)). This implies that given two cubes Ci = Si × {zi} and Cj = Sj × {zj}, the
cubes must two-intersect in at least 4 points in the 4×4 cross section of [4]3 given by a fixed
z-coordinate in {zi} ∩ {zj}. Similarly, given three cubes Ci = Si × {zi}, Cj = Sj × {zj},
Ck = Sk × {zk}, the cubes must two-intersect in at least 8 points in a cross section given
by a fixed z ∈ {zi}∩{zj}∩{zk}. Finally, given four cubes Ci = Si×{zi}, Cj = Sj×{zj},
Ck = Sk × {zk}, and Cl = Sl × {zl}, where all of Si, Sj, Sk, and Sl are distinct, the
four cubes must two-intersect in at least 12 points in a cross-section given by a fixed
z ∈ {zi} ∩ {zj} ∩ {zk} ∩ {zl}.

There are five ways to choose the zi without loss of generality.

(z1, z2, z3, z4) ∈ {(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (2, 1, 0, 0), (3, 2, 1, 0)}

We will rewrite this information in the following way: let ni be the number of sets among
{z1}, {z2}, {z3}, {z4} that contain i. Then,

(n1, n2, n3, n4) ∈ {(0, 4, 4, 4), (1, 3, 4, 4), (2, 2, 4, 4), (2, 3, 3, 4), (3, 3, 3, 3)}

Using the facts from the previous paragraph, this gives us a lower bound for the total
number of two-intersection points for each of these arrangements. For instance, in the
arrangement (0, 4, 4, 4), the four distinct 3× 3× 3 cubes C1, C2, C3, and C4 all share the
z-coordinates 1, 2, and 3. Since these four 3× 3× 3 cubes must two-intersect in at least
12 points for a fixed z-coordinate, there are at least 3 · 12 = 36 two-intersections total.
The other cases can be analyzed similarly; the results are summarized below.

Arrangement Number of two-intersections
(0, 4, 4, 4) > 3 · 12 = 36
(1, 3, 4, 4) > 2 · 12 + 8 = 32
(2, 2, 4, 4) > 2 · 12 + 2 · 4 = 32
(2, 3, 3, 4) > 12 + 2 · 8 + 4 = 32
(3, 3, 3, 3) > 4 · 8 = 32

Since there are at least 30 two-intersection points in all of these cases, none of them
can be a counterexample to the lemma, so the lemma is proved.

We now prove Lemma 16, which states that three 3 × 3 × 3 cubes in [4]3 must two-
intersect at a minimum of 20 points.
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Proof of Lemma 16. Call the 3 × 3 × 3 cubes C1 = B(p1), C2 = B(p2), and C3 = B(p3),
where p1, p2, p3 ∈ [4]3. For each i = 1, 2, 3, let xi be the number of distinct values appearing
in the i-th coordinates of p1, p2, and p3. Let I be the two-intersection of C1, C2, and C3.
By inclusion-exclusion,

|I| = |C1 ∩ C2|+ |C2 ∩ C3|+ |C1 ∩ C3| − 2|C1 ∩ C2 ∩ C3|

We see that a point is in C1 ∩C2 ∩C3 if and only if none of its coordinates is used by p1,
p2, or p3. Thus |C1 ∩ C2 ∩ C3| = (4− x1)(4− x2)(4− x3).

Let d1 = d(p1, p2), d2 = d(p2, p3), and d3 = d(p1, p3) be the Hamming distances
between each pair of points. Then, in a coordinate where p1 and p2 agree, points in
C1 ∩ C2 take on the three values which are not the one p1 and p2 use. In a coordinate
where p1 and p2 disagree, points in C1 ∩ C2 take on the two values which are used by
neither p1 nor p2. Thus |C1∩C2| = 33−d12d1 . By the same argument, |C2∩C3| = 33−d22d2

and |C1 ∩ C3| = 33−d32d3 . Then,

|I| =
3∑
i=1

33−di2di − 2(4− x1)(4− x2)(4− x3)

= 27
3∑
i=1

(
2

3

)di
− 2(4− x1)(4− x2)(4− x3)

> 27 · 3 ·
(

2

3

)(d1+d2+d3)/3

− 2(4− x1)(4− x2)(4− x3),

where the last line above follows from the arithmetic mean–geometric mean inequality.
We now perform a change of variables so aj = |{i : xi = j}| for j ∈ {1, 2, 3}. Then, we
see that d1 + d2 + d3 = 2a2 + 3a3 and (4−x1)(4−x2)(4−x3) = 3a12a2 . Substituting gives

|I| > 27 · 3 ·
(

2

3

)(2a2+3a3)/3

− 3a12a2+1.

Conditioned on aj ∈ N and 0 6 aj 6 3 for j ∈ {1, 2, 3}, with a1 + a2 + a3 = 3, calculating
all cases shows the minimum of the right hand side is 20, attained when a1 = 0, a2 = 3,
and a3 = 0.
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