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Abstract

We prove a vertex isoperimetric inequality for the n-dimensional Hamming ball
Bn(R) of radius R. The isoperimetric inequality is sharp up to a constant factor
for sets that are comparable to Bn(R) in size. A key step in the proof is a local
expansion phenomenon in hypercubes.

Mathematics Subject Classifications: 05C35

1 Introduction

Isoperimetric inequalities allow to control the boundary size or surface area of bodies in
terms of their volume. The classical isoperimetric inequality states that in Euclidean spaces,
balls have the smallest surface area per given volume. Such inequalities are fundamental
in geometry, and are deeply related to many areas of mathematics and physics.

∗Supported in part by an AMS Simons Travel Grant and by U.S. taxpayers through NSF Award
DMS-1953946. Part of the work was done when Z. Jiang was a postdoctoral fellow at Technion – Israel
Institute of Technology, and was supported in part by ISF grant nos 409/16, 936/16.
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In this paper, we consider discrete spaces. For a graph G = (V,E) and a subset X
of vertices, the vertex boundary1 ∂GX of X is the set of vertices in V \ X which have
a neighbor in X. The vertex isoperimetric problems for graphs concern the minimum
possible vertex boundary size of X given its size.

We focus on the vertex isoperimetric problem for Hamming balls. The n-dimensional
Hamming ball Bn(r) of radius r is the graph with vertex set Bn(r) consists of all subsets
of [n] of size at most r, and two subsets are adjacent if they differ by exactly one element.

We establish the following approximate isoperimetric inequality for Hamming balls.

Theorem 1 (Isoperimetric inequality for Hamming balls). For every ρ ∈ (0, 1/2), there
is a positive integer n0 so that the following holds. For every n ⩾ n0, R ⩽ n/2, and
A ⊆ Bn(R), if

|Bn(⌊ρn⌋)| ⩽ |A| ⩽ |Bn(R)| − |Bn(⌊ρn⌋)| ,

then the vertex boundary of A in the Hamming ball Bn(R) satisfies

∣∣∂Bn(R)A
∣∣ ⩾ ρ3/2

18
√
n
min (|A| , |Bn(R) \ A|) .

Theorem 1 is sharp up to a constant factor depending only on ρ for A that are
comparable to Bn(R) in size.

Proposition 2. For every ε ∈ (0, 1/2) and n,R ∈ N such that εn ⩽ R ⩽ n/2, and for
every α ∈ (ε, 1− ε), there exists M ⊆ Bn(R) of size ⌊α |Bn(R)|⌋ such that∣∣∂Bn(R)M

∣∣ ⩽ Oε

(
1/
√
n
)
min(|M| , |Bn(R) \M|).

Our results are discrete analogs of an isoperimetric inequality in Gaussian space. To
illustrate the analogy, we recall the following classical isoperimetric inequalities. The
n-dimensional hypercube Qn is the n-dimensional Hamming ball Bn(n) of radius n.

1. (The Gaussian isoperimetric inequality [ST74, Bor75]) Among all sets of a given
standard Gaussian measure in Rn, half-spaces minimize the Gaussian boundary
measure.

2. (Harper’s theorem [Har66]) Among all vertex subsets of Qn of the size |Bn(R)|, the
Hamming ball Bn(R) has the smallest vertex boundary in Qn.

Harper’s theorem can be seen as a discrete analog of the Gaussian isoperimetric inequality.
Indeed, by viewing a subset of [n] as its indicating vector, the Hamming ball Bn(R) can be
thought of as a half-space whose bounding hyperplane has a normal vector v1 := (1, . . . , 1).

We are concerned with the discrete space Bn(R). Its Gaussian analog should concern
a half-space H ⊆ Rn endowed with the conditional Gaussian measure. It is known
that the minimizers of the boundary measure are sets of the form H ∩ M where M is

1Another interpretation of the term “boundary” for graphs is the edge boundary: the set of edges
exiting X.
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Gaussian Discrete
Space Rn H Qn Bn(R)

Minimizer H H ∩M Bn(R) ?

Table 1: Gaussian isoperimetric problems and their discrete analogs.

another half-space whose bounding hyperplane is perpendicular to that of H (see [Lee06,
Proposition 5.1]).

Which vertex subsets have the smallest vertex boundary in Bn(R)? From Table 1 the
answer should be a discrete analog of H ∩M . Theorem 1 and Proposition 2 answer this
question approximately. Indeed one of the examples in Proposition 2 is defined by

M := {X ∈ Bn(R) : |X ∩ {1, . . . , n/2}| ⩽ |X| /2} ,

which can be seen as the intersection of the half-space Bn(R) with another half-space
whose bounding hyperplane has a normal vector v2 := (1, 1, . . . , 1,−1,−1, . . . ,−1), where
v2 has equal number of 1’s and −1’s. As in the Gaussian analog, the two normal vectors
v1 and v2 are orthogonal.

The key ingredient in the proof of Theorem 1 is a local expansion statement for
hypercubes concerning the lower shadow ∂−

n A and the upper shadow ∂+
n A of A ⊆ Sn(r)

in Qn defined by

∂−
n A := (∂nA) ∩ Sn(r − 1) and ∂+

n A := (∂nA) ∩ Sn(r + 1).

To put it in context, we recall the normalized matching property of hypercubes, which can
be proved by a simple double counting argument.

Proposition 3 (Normalized matching property). Suppose r and s are two positive integers
and n = r + s. For every A ⊆ Sn(r), its lower and upper shadows satisfy∣∣∂−

n A
∣∣ ⩾ r

s+ 1
|A| and

∣∣∂+
n A
∣∣ ⩾ s

r + 1
|A| .

Although Proposition 3 is much weaker than the Kruskal–Katona theorem [Kru63,
Kat68] or a weak form due to Lovász [Lov93, Ex. 13.31(b)], the normalized matching
property is essentially sharp. For example, the lower shadow of A0 := {X ∈ Sn(r) : 1 ̸∈ X}
has size r

s
|A0|, and the upper shadow of A1 := {X ∈ Sn(r) : 1 ∈ X} has size s

r
|A1|.

The two sets A0 and A1 are very different. It is natural to ask if the two inequalities
in Proposition 3 can be essentially sharp for the same A. Certainly, when A = ∅ or
A = Sn(r), equalities hold for both inequalities. However, we dash the hopes of a non-
trivial set that behaves like both A0 and A1. We abbreviate ∂Qn by ∂n throughout the
article.

Theorem 4 (Local expansion). Suppose r, s are two positive integers and n = r + s. For
every A ⊆ Sn(r) of size α

(
n
r

)
, the vertex boundary of A in Qn satisfies

|∂nA| ⩾
(

r

s+ 1
+

s

r + 1

)
|A|+

√
n

rs
α(1− α)

(
n

r

)
. (1)
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Remark 5. This phenomenon is reminiscent in the sum-product theorem of Bourgain,
Katz and Tao [BKT04]. Given a subset A of a finite field Fp, the sum set A + A =
{a+ b : a, b ∈ A} could have size comparable to A if A behaves like an arithmetic pro-
gression, and the product set A · A = {a · b : a, b ∈ A} could have size comparable to A
if A behaves like a geometric progression. However, the sum-product theorem indicates
that a “non-trivial” A cannot simultaneously behave like an arithmetic progression and a
geometric progression.

Our proof of Theorem 4, given in Section 3, is inspired by the work of Christofides,
Ellis and Keevash [CEK13]. They established a vertex isoperimetric inequality for the
graph Sn(r) with the vertex set Sn(r), where two subsets are adjacent if their symmetric
difference has size two. Their inequality is an approximate version of a folklore conjecture
[BL04, Conjecture 1] reported by Bollobás and Leader. Using a construction in [CEK13],
we show that Theorem 4 is sharp for r, s ⩾ εn up to a constant factor depending only on
ε and α.

Proposition 6. For every ε ∈ (0, 1/2) and n, r, s ∈ N and r, s ⩾ r0 such that n = r + s
and r, s ⩾ εn, and for every α ∈ [0, 1], there exists C ⊆ Sn(r) of size ⌊α

(
n
r

)
⌋ such that

|∂nC| ⩽
(

r

s+ 1
+

s

r + 1

)
|C|+Oε

(
1/
√
n
)(n

r

)
.

2 Isoperimetric inequality for Hamming balls

We need the following simple estimate of |Sn(r)| in terms of |Bn(r)|. We postpone its
proof to Appendix A

Lemma 7. For every 0 ⩽ r < n,

|Sn(r)|
|Bn(r)|

⩾
|Sn(r + 1)|
|Bn(r + 1)|

.

If in addition n ⩾ 3 and r ⩽ n/2, then

|Sn(r)| ⩾ |Bn(r)| /
√
n.

The next technical lemma readily gives a lower bound on the vertex boundary in
Hamming balls.

Lemma 8. For every n,R ∈ N such that R ⩽ n, and every nonempty A ⊆ Bn(R), set

ε :=
R

2n
, r0 := min {r ⩽ R : |Bn(r)| ⩾ ε |A|} , c := 1− 1

|Bn(R)| / |A| − ε
.

If n ⩾ 80 and R ⩽ n − r0, then the vertex boundary of A in the Hamming ball Bn(R)
satisfies ∣∣∂Bn(R)A

∣∣ ⩾ 2c
√
r0

5n
ε |A| .
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Proof. We may assume that r0 ⩾ 1 and c > 0; otherwise the vertex isoperimetric inequality
would become trivial. Because r0 ⩽ R ⩽ n− r0, we know that R ⩾ 1 and

r0 ⩽ n/2. (2)

By our choice of r0, we get
|Bn(r0 − 1)| < ε |A| . (3)

Our goal is prove
R∑

r=0

br ⩾
2c
√
r0

5n
ε |A| , (4)

where
br := |∂nA ∩ Sn(r)| for 0 ⩽ r ⩽ R.

We shall analyze the distribution of A under the partition Bn(R) =
⋃R

r=0 Sn(r). To that
end, we set Ar := A ∩ Sn(r) for 0 ⩽ r ⩽ R.

Claim 1. If |AR| ⩾ (1− 1.94ε) |A|, then (4) holds.

Proof of Claim 1. From Proposition 3, we know that∣∣∂−
n AR

∣∣ ⩾ R

n−R + 1
|AR| ,

which implies that

bR−1 ⩾
∣∣∂−

n AR

∣∣− |AR−1| ⩾
R

n−R + 1
|AR| − (|A| − |AR|)

=
n+ 1

n−R + 1
|AR| − |A| ⩾

(
n+ 1

n−R + 1
(1− 1.94ε)− 1

)
|A| .

Using ε = R/(2n) and the assumptions that n ⩾ 3 and R ⩾ 1, we can simplify the
coefficient of |A| above as follows:

n+ 1

n−R + 1
(1− 1.94ε)− 1 =

2n− 1.94(n+ 1)

n−R + 1
ε =

0.06n− 1.94

n−R + 1
ε.

Because n ⩾ 80, one can check that

0.06n− 1.94

n−R + 1
⩾

0.06n− 1.94

n
⩾

√
2n

5n
,

which implies that
R∑

r=0

br ⩾ bR−1 ⩾

√
2n

5n
ε |A|

(2)

⩾
2
√
r0

5n
ε |A| . ⊡
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Because of Claim 1, hereafter we only consider the case that

|AR| ⩽ (1− 1.94ε) |A| . (5)

In particular (5) implies that |Bn(R− 1)| ⩾ |A| − |AR| ⩾ ε |A|, and so

1 ⩽ r0 ⩽ R− 1.

Claim 2. At least one of the following holds:

R−1∑
r=r0

|αr − αr+1| ⩾ 4c/7, (6a)

αr ⩽ 1− 3c/7, for r0 ⩽ r ⩽ R− 1, (6b)

where the density of Ar is defined by αr := |Ar| / |Sn(r)|.

Proof of Claim 2. For the sake of contradiction assume that neither (6a) nor (6b) holds.
The negation of (6a) implies that αr′ − αr < 4c/7 for all r0 ⩽ r, r′ ⩽ R. The negation of
(6b) means that αr′ > 1− 3c/7 for some r0 ⩽ r′ ⩽ R− 1. Therefore

αr > αr′ − 4c/7 > 1− c, for r0 ⩽ r ⩽ R,

which implies that

|A| ⩾
R∑

r=r0

αr |Sn(r)| > (1− c) (|Bn(R)| − |Bn(r0 − 1)|) (3)
=⇒ 1− c <

1

|Bn(R)| / |A| − ε

contradicting the definition of c. ⊡

The proof proceeds by analyzing two different scenarios arising from (6a) and (6b) —
the former deals with sets Ar whose densities are not equally distributed, whereas the
latter deals with sets Ar whose densities are not very close to 1.

Case 1. Suppose (6a) holds. For every r0 ⩽ r ⩽ R, since R ⩽ n − r0, we know that
|Sn(r)| ⩾ |Sn(r0)|. Since r0 ⩽ R ⩽ n− r0, and in particular r0 ⩽ n/2, and the assumption
that n ⩾ 3, Lemma 7 gives |Sn(r0)| ⩾ |Bn(r0)| /

√
n. Because |Bn(r0)| ⩾ ε |A|, we know

that

|Sn(r)| ⩾ ε |A| /
√
n

(2)

⩾

√
2r0
n

ε |A| ⩾
7
√
r0

5n
ε |A| , for r0 ⩽ r ⩽ R.

By Proposition 3, for every 0 ⩽ r ⩽ R− 1, we have

br ⩾
∣∣∂−

n Ar+1

∣∣− |Ar| ⩾
r + 1

n− r
|Ar+1| − |Ar| = (αr+1 − αr) |Sn(r)| ,

br+1 ⩾
∣∣∂+

n Ar

∣∣− |Ar+1| ⩾
n− r

r + 1
|Ar| − |Ar+1| = (αr − αr+1) |Sn(r + 1)| .
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Combining the last three inequalities, for every r0 ⩽ r ⩽ R− 1, we obtain

max(br, br+1) ⩾ |αr − αr+1|
7
√
r0

5n
ε |A| .

Summing over r implies (4):

R∑
r=0

br ⩾
1

2

R−1∑
r=r0

max(br, br+1) ⩾
1

2

(
R−1∑
r=r0

|αr − αr+1|

)
7
√
r0

5n
ε |A|

(6a)

⩾
2c
√
r0

5n
ε |A| .

Case 2. Suppose (6b) holds. By Proposition 3, we know that

δ+r :=
∣∣∂+

n Ar

∣∣− n− r

r + 1
|Ar| ⩾ 0, for 0 ⩽ r ⩽ R− 1

δ−r :=
∣∣∂−

n Ar

∣∣− r

n− r + 1
|Ar| ⩾ 0, for 1 ⩽ r ⩽ R.

Using δ+r and δ−r , we can estimate br and br+1 more precisely:

br ⩾
∣∣∂−

n Ar+1

∣∣− |Ar| =
r + 1

n− r
|Ar+1|+ δ−r+1 − |Ar| ,

br+1 ⩾
∣∣∂+

n Ar

∣∣− |Ar+1| =
n− r

r + 1
|Ar|+ δ+r − |Ar+1| ,

which implies for 0 ⩽ r ⩽ R− 1 that

n− r

n
br +

r + 1

n
br+1 ⩾

n− r

n
δ−r+1 +

r + 1

n
δ+r .

Summing over r0 − 1 ⩽ r ⩽ R− 1, we obtain

R∑
r=0

br ⩾
R−1∑

r=r0−1

n− r

n
br +

R∑
r=r0

r

n
br =

R−1∑
r=r0−1

n− r

n
br +

r + 1

n
br+1

⩾
R−1∑

r=r0−1

n− r

n
δ−r+1 +

r + 1

n
δ+r ⩾

R−1∑
r=r0

n− r + 1

n
δ−r +

r + 1

n
δ+r .

From Theorem 4, we know that

δ−r + δ+r ⩾
√

n

r(n− r)
(1− αr) |Ar|

(6b)

⩾
3c

7

√
n

r(n− r)
|Ar| .

For r0 ⩽ r ⩽ R− 1, because R ⩽ n− r0, we obtain

n− r + 1

n
δ−r +

r + 1

n
δ+r ⩾ min

(
n− r

n
,
r

n

)
(δ−r + δ+r )

⩾
3c

7
min

(√
n− r

rn
,

√
r

n(n− r)

)
|Ar| ⩾

3c
√
r0

7n
|Ar| .
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Therefore we obtain
R∑

r=0

br ⩾
3c
√
r0

7n

R−1∑
r=r0

|Ar| ,

which implies (4) through the following fact:

R−1∑
r=r0

|Ar| ⩾ |A| − |AR| − |Bn(r0 − 1)|
(3,5)

⩾ 0.94ε |A| .

Proof of Theorem 1. Suppose ρ ∈ (0, 1/2), R ⩽ n/2 and A ⊆ Bn(R) such that

|Bn(⌊ρn⌋)| ⩽ |A| ⩽ |Bn(R)| − |Bn(⌊ρn⌋)| . (7)

We break the proof into two cases.

Case 1. Suppose |A| ⩽ |Bn(R)| /2. We would like to apply Lemma 8 to A. Recall the
definitions of ε, r0 and c in Lemma 8:

ε := R/(2n), r0 := min {r ⩽ R : |Bn(r)| ⩾ ε |A|} , c := 1− 1

|Bn(R)| / |A| − ε
.

Because R ⩽ n/2, we have ε ∈ (0, 1/4), and so

c ⩾ 1− 1

2− 1/4
=

3

7
.

Moreover, the assumption (7) implies that |Bn(R)| ⩾ 2 |Bn(⌊ρn⌋)|. Hence R > ρn and

ε > ρ/3.

Let r1 be a positive integer to be chosen later. By Lemma 7, we have

ε |A| ⩾ ρ

3
|Bn(⌊ρn⌋)| ⩾

ρ

3

(
|Sn(⌊ρn⌋)|

|Sn(⌊ρn⌋ − 1)|

)r1

|Bn(⌊ρn⌋ − r1)|

⩾
ρ

3

(
1− ρ

ρ

)r1

|Bn(⌊ρn⌋ − r1)| .

Because ρ ∈ (0, 1/2), for some r1 depending only on ρ, we have

ε |A| ⩾ |Bn(⌊ρn⌋ − r1)| .

Therefore r0 ⩾ ⌊ρn⌋ − r1. For n ⩾ n0, where n0 depends only on ρ, Lemma 8 yields

∣∣∂Bn(R)A
∣∣ ⩾ 2c

5

√
r0
n

ε |A| ⩾ 6

35

√
⌊ρn⌋ − r1

n

ρ

3
|A| ⩾ ρ3/2

18
√
n
|A| .
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Case 2. Suppose |A| > |Bn(R)| /2. Set

Ac := Bn(R) \ A and A′ := Ac \ ∂nA.

We would like to apply Lemma 8 to A′. The parameters in Lemma 8 are

ε := R/(2n), r′0 := min {r ⩽ R : |Bn(r)| ⩾ ε |A′|} , c′ := 1− 1

|Bn(R)|/|A′| − ε
.

Note that |A′| ⩽ |Ac| ⩽ |Bn(R)| /2. In this case,

c′ ⩾ 1− 1

2− 1/4
=

3

7
.

We may assume that
∣∣∂Bn(R)A

∣∣ ⩽ |Ac| /2, because otherwise we are done. Thus

|A′| = |Ac| −
∣∣∂Bn(R)A

∣∣ ⩾ 1

2
|Ac| = 1

2
(|Bn(R)| − |A|) ⩾ 1

2
|Bn(⌊ρn⌋)| .

Similarly to Case 1, r′0 ⩾ ⌊ρn⌋ − r2 for some r2 depending only on ρ. Lemma 8 yields

∣∣∂Bn(R)A′∣∣ ⩾ 2c′

5

√
r′0
n

ε
∣∣A′∣∣ ⩾ 6

35

√
⌊ρn⌋ − r2

n

ρ

3

∣∣A′∣∣ = 2

35

ρ3/2 −O(1/n)√
n

(
|Ac| −

∣∣∂Bn(R)A
∣∣) .

Observe that ∂Bn(R)A′ ⊆ ∂Bn(R)A. Indeed, if v ∈ ∂Bn(R)A′ then v ̸∈ A′ ∪A which implies
v ∈ ∂Bn(R)A. Thus

∣∣∂Bn(R)A
∣∣ ⩾ 2

35

ρ3/2 −O(1/n)√
n

(
|Ac| −

∣∣∂Bn(R)A
∣∣) .

For n ⩾ n0, where n0 depends only on ρ, we can rewrite the above∣∣∂Bn(R)A
∣∣ ⩾ 1

1 +O(1/
√
n)

2

35

ρ3/2 −O(1/n)√
n

|Ac| ⩾ ρ3/2

18
√
n
|Ac| .

3 Local expansion estimate

Our proof of Theorem 4 is by induction, and its outline is similar to the proof in [CEK13].
However ours differs in one key aspect — we need to choose “where to apply induction”,
whereas in [CEK13] this was immaterial. Besides there are several other technical difficulties
we need to overcome.

We shall utilize the following criterion for two interlacing real-rooted quadratic polyno-
mials.

Proposition 9. Let p1(x) = x2+B1x+C1 and p2(x) = x2+B2x+C2 be two monic quadratic
polynomials with real coefficients. Suppose pi(x) has two distinct real roots x−

i < x+
i for

i ∈ {1, 2}. If x−
1 < x−

2 , x
+
1 < x+

2 and (C1 − C2)
2 + (B1 − B2)(B1C2 − B2C1) < 0, then

x−
2 < x+

1 .
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Proof. Notice that p1(x) = p2(x) at x = x0 := −(C1−C2)/(B1−B2). Since p1(x0) = p2(x0)
and

p1(x0) =

(
C1 − C2

B1 −B2

)2

−B1

(
C1 − C2

B1 −B2

)
+ C1 =

(C1 − C2)
2 + (B1 −B2)(B1C2 −B2C1)

(B1 −B2)2
< 0,

we know that x−
2 < x0 < x+

1 .

Proof of Theorem 4. Without loss of generality, we assume

α := |A| / |Bn(r)| ∈ (0, 1);

because (1) would follow from Proposition 3 immediately when α ∈ {0, 1}. We may
also assume that r ⩽ s, since Theorem 4 is symmetric with respect to r and s. Indeed,
if we replace A ⊆ Sn(r) by A′ = {[n] \X : X ∈ A} ⊆ Sn(n − r), then |A| = |A′| and
|∂nA| = |∂nA′|, while the right hand side of (1) is invariant under this replacement.

For the r = 1 base case, we know ∂−
n A and ∂+

n A precisely:

∂−
n A = Sn(0) and ∂+

n A = {X ∈ Sn(2) : X ∩ (∪A) ̸= ∅} .

Estimate |∂nA| as follows:

|∂nA| −
(

s

r + 1
+

r

s+ 1

)
|A| =

(
n

0

)
+

(
n

2

)
−
(
n− αn

2

)
−
(
n− 1

2
+

1

n

)
αn

= (1− α)
(α
2
n2 + 1

)
⩾ (1− α)2

√
α

2
n ⩾

√
2(1− α)αn ⩾

√
n

n− 1
α(1− α)n.

For the inductive step, let r ⩾ 2. We first choose where to apply induction. Since each
set in A has size r, by the pigeonhole principle, some element of [n] appears in at least
r
n
|A| = r

n
· α
(
n
r

)
= α

(
n−1
r−1

)
sets of A. Without loss of generality, we may assume that n is

this element. Decompose the projection of A onto [n− 1] into two families:

A0 := {X ⊆ [n− 1] : X ∈ A} and A1 := {X ⊆ [n− 1] : X ∪ {n} ∈ A} .

Thus, A0 ⊆ Sn−1(r), A1 ⊆ Sn−1(r − 1), and |A1| ⩾ α
(
n−1
r−1

)
. We set some notation.

Notation. Set

α0 := |A0| /
(
n− 1

r

)
and α1 := |A1| /

(
n− 1

r − 1

)
.

As |A| = |A0|+ |A1|, we have α
(
n
r

)
= α0

(
n−1
r

)
+ α1

(
n−1
r−1

)
, which implies

α =
s

n
α0 +

r

n
α1. (8)

Since |A1| ⩾ α
(
n−1
r−1

)
, we know that α1 ⩾ α, and hence α0 ⩽ α ⩽ α1. Set

x := α1 − α0. (9)
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Because 0 ⩽ α0 ⩽ α1 ⩽ 1, we know that

0 ⩽ x ⩽ x∗, where x∗ :=
n

s
(1− α).

The following constants arise from the induction hypothesis.

c :=

√
n

rs
, c0 :=

√
n− 1

r(s− 1)
, c1 :=

√
n− 1

(r − 1)s
, t :=

s

r + 1
− r

s+ 1
⩾ 0.

It is easy to check:
c < c0 ⩽ c1. (10)

Two estimations. By the induction hypothesis, we estimate the vertex boundary of A0:

|∂n−1A0|(
n
r

) ⩾

(
s− 1

r + 1
+

r

s

)
|A0|(
n
r

) + c0α0(1− α0)

(
n−1
r

)(
n
r

)
=

(
s− 1

r + 1
+

r

s

)
α0

s

n
+ c0α0(1− α0)

s

n

=

(
s

r + 1
+

r

s+ 1

)
s

n
α0 −

t

n
α0 + c0α0(1− α0)

s

n
.

(11)

Similarly, we estimate the vertex boundary of A1:

|∂n−1A1|(
n
r

) ⩾

(
s

r + 1
+

r

s+ 1

)
r

n
α1 +

t

n
α1 + c1α1(1− α1)

r

n
. (12)

Now, we can bound |∂nA| from below in two ways:

|∂nA| ⩾ |∂n−1A0|+ |∂n−1A1| , (13a)

|∂nA| ⩾ |∂n−1A1|+
∣∣∂+

n−1A0

∣∣+ |A1| . (13b)

On the one hand, (13a) holds because

∂n−1A0 ⊆ {X ∈ ∂nA : n ̸∈ X} and {X ∪ {n} : X ∈ ∂n−1A1} ⊆ {X ∈ ∂nA : n ∈ X} .

On the other hand, (13b) holds because

{X ∪ {n} : X ∈ ∂n−1A1} ⊆ {X ∈ ∂nA : n ∈ X} ,
∂+
n−1A0 ⊆

{
X ∈ ∂+

n A : n ̸∈ X
}
, and A1 ⊆

{
X ∈ ∂−

n A : n ̸∈ X
}
.

Combining (13a), (11) and (12), we obtain the first estimation:

|∂nA|(
n
r

) ⩾

(
s

r + 1
+

r

s+ 1

)( s
n
α0 +

r

n
α1

)
+

t

n
(α1−α0)+ c0α0(1−α0)

s

n
+ c1α1(1−α1)

r

n

(8,9)
=

(
s

r + 1
+

r

s+ 1

)
α +

1

n

[
tx+ c0α0(1− α0)s+ c1α1(1− α1)r

]
. (14)
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From Proposition 3, we get∣∣∂+
n−1A0

∣∣ ⩾ s− 1

r + 1
|A0| =

s− 1

r + 1

s

n
α0

(
n

r

)
,

which together with (13b) and (12) yields the second estimation:

|∂nA|(
n
r

) ⩾

(
s

r + 1
+

r

s+ 1

)
r

n
α1 +

t

n
α1 + c1α1(1− α1)

r

n
+

s− 1

r + 1

s

n
α0 +

r

n
α1

=

(
s

r + 1
+

r

s+ 1

)( s
n
α0 +

r

n
α1

)
+

t+ r

n
(α1 − α0) + c1α1(1− α1)

r

n

(8,9)
=

(
s

r + 1
+

r

s+ 1

)
α +

1

n

[
(t+ r)x+ c1α1(1− α1)r

]
. (15)

To simplify notation, denote by L1(x) and L2(x) the expressions in the last brackets of
(14) and (15) respectively:

L1(x) := tx+ sc0α0(1− α0) + rc1α1(1− α1),

L2(x) := (t+ r)x+ rc1α1(1− α1).

It suffices to show that for all α ∈ (0, 1) and x ∈ [0, x∗],

max(L1(x), L2(x)) ⩾ ncα(1− α) =: Q.

Verification. Using (8) and (9), we can express α0, α1 in terms of α and x:

α0 = α0(x) := α− r

n
x and α1 = α1(x) := α +

s

n
x. (16)

Thus we can view L1 and L2 as quadratic functions of x with coefficients determined by
r, s and α:

L1(x) = tx+ sc0

(
α− r

n
x
)(

1− α +
r

n
x
)
+ rc1

(
α +

s

n
x
)(

1− α− s

n
x
)
,

L2(x) = (t+ r)x+ rc1

(
α +

s

n
x
)(

1− α− s

n
x
)
.

We first study the evaluations of L1(x) at x = 0 and x = x∗ respectively. Observe that

L1(0) = sc0α(1− α) + rc1α(1− α)
(10)
> (r + s)cα(1− α) = Q.

If L1(x
∗) ⩾ Q, we are done because the leading coefficient of L1(x) is −r2sc0/n

2−rs2c1/n
2,

which is negative, and so L1(x) ⩾ Q for x ∈ [0, x∗]. Hereafter we may assume that

L1(x
∗) < Q.

Claim 1. If L1(x
∗) < Q, then α < (t+ r)/(sc).
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Proof of Claim 1. Because α0(x
∗) = α− r

s
(1− α) and α1(x

∗) = 1, we have

L1(x
∗)−Q = t

(n
s
(1− α)

)
+ sc0

(
α− r

s
(1− α)

)(
1− α +

r

s
(1− α)

)
− ncα(1− α),

which after multiplying s/(n(1− α)) equals:

t+ c0(nα− r)− scα = (nc0 − sc)α− (rc0 − t).

Because nc0 − sc ⩾ nc− sc = rc > 0, from the last inequality above, we know that

α <
rc0 − t

nc0 − sc
.

The claim is implied by the following inequality involving constants determined by r and
s only.

rc0 − t

nc0 − sc
<

t+ r

sc
. (17)

We carry out the routine verification of (17) in Appendix B. ⊡

Next we study the evaluations of L2(x) and the following variation of L2(x) at x = 0
and x = x∗:

L−
2 (x) := (t+ r)x+ rcα1(1− α1) = (t+ r)x+ rc

(
α +

s

n
x
)(

1− α− s

n
x
)
.

Using the fact that 0 ⩽ α1(x) ⩽ 1 for x ∈ [0, x∗], we observe that

L2(x)
(10)

⩾ L−
2 (x) for x ∈ [0, x∗].

Using the fact that α1(x
∗) = 1 and Claim 1, we observe that

L2(x
∗) = L−

2 (x
∗) = (t+ r)x∗ = (t+ r)

n

s
(1− α) > ncα(1− α) = Q.

Because the leading coefficient of L2(x) is −rcs2/n2, which is negative, we may assume
that

L2(0) < Q.

Claim 2. There exist two roots x−
1 and x+

1 of L1(x) = L2(x) such that x−
1 < 0 < x+

1 < x∗,
and there exist two roots x−

2 and x+
2 of L−

2 (x) = Q such that 0 < x−
2 < x∗ < x+

2 , and
moreover x−

2 < x+
1 (see Figure 1).

Proof of Claim 2. Note that L1(x) − L2(x) is a quadratic polynomial in x with leading
coefficient −r2s0/n

2, which is negative, and moreover L1(0) > L2(0) and L1(x
∗) < L2(x

∗).
We know that L1(x)− L2(x) has two roots x−

1 and x+
1 such that x−

1 < 0 < x+
1 < x∗. Note

that the leading coefficient of L−
2 (x) − Q is −rs2c/n2, which is negative, and moreover

L−
2 (0) < Q < L−

2 (x
∗). We know that L−

2 (x) − Q has two roots x−
2 and x+

2 such that
0 < x−

2 < x∗ < x+
2 .

the electronic journal of combinatorics 29(1) (2022), #P1.15 13



0 x−
2 x+

1 x∗

L1(x) L2(x) L−
2 (x) y = Q

Figure 1: The graphs of L1(x), L2(x), L
−
2 (x) and y = Q for x ∈ [0, x∗], and the intersections

for both L1(x) = L2(x) and L−
2 (x) = Q.

We consider the following two monic quadratic polynomials:

P1(x) := − n2

r2sc0
(L1(x)− L2(x)) = x2 +B1x− C1,

P2(x) := − n2

rs2c

(
L−
2 (x)−Q

)
= x2 −B2 + C2,

where

B1 :=
n

r
(1− 2α) +

n2

rsc0
, C1 =

n2

r2
α(1− α),

B2 :=
n

s
(1− 2α) +

n2(t+ r)

rs2c
, C2 =

n2

rs
α(1− α).

To prove x−
2 < x+

1 , by Proposition 9, it suffices to check

(C1 + C2)
2 < (B1 +B2)(B2C1 −B1C2),

which is equivalent to the following inequalities:(
n2

r2
+

n2

rs

)2

α2(1− α)2 <

(
n2

rs
(1− 2α) +

n2

rsc0
+

n2(t+ r)

rs2c

)(
n4(t+ r)

r3s2c
− n4

r2s2c0

)
α(1− α),

which after multiplying both sides by r4s3/(n6α(1− α)) is equivalent to:

s

r
α(1− α) <

(
1− 2α +

t+ r

sc
+

1

c0

)(
t+ r

rc
− 1

c0

)
.

We have successfully eliminated x and reduced the problem to a quadratic inequality
of α:

−s

r
α2 + 2

(
s

2r
+

t+ r

rc
− 1

c0

)
α−

(
1 +

t+ r

sc
+

1

c0

)(
t+ r

rc
− 1

c0

)
< 0,
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which is ensured if its discriminant is negative. Finally, we note that the negativity of the
discriminant is equivalent to(

s

2r
+

t+ r

rc
− 1

c0

)2

<
s

r

(
1 +

t+ r

sc
+

1

c0

)(
t+ r

rc
− 1

c0

)
. (18)

We carry out the routine verification of (18) in Appendix B. ⊡

Recall that L2(x) ⩾ L−
2 (x) for x ∈ [0, x∗]. In particular L2(x

−
2 ) ⩾ L−

2 (x
−
2 ) = Q,

which implies that L2(x
−
2 ) ⩾ Q for x ∈ [x−

2 , x
∗] by the concavity of L2(x). Particularly

L1(x
+
1 ) = L−

2 (x
+
1 ) > Q, which implies that L1(x) > Q for x ∈ [0, x+

1 ] by the concavity of
L1(x). Since x−

2 < x+
1 from Claim 2, we get the desired inequality max(L1(x), L2(x)) ⩾ Q

for all x ∈ [0, x∗] for the inductive step.

4 Sharpness

A random variable H is said to have the hypergeometric distribution with parameters
r,m, n, written as H ∼ H(r;m,n), if its probability mass function is given by

Pr(H = k) =

{(
m
k

)(
n−m
r−k

)
/
(
n
r

)
if k = 0, 1, . . . , r,

0 otherwise.

We need the following simple fact about hypergeometric distribution. We shall use the
inequality

(
2m
m

)
⩾ 22m/(2

√
m) (see, for example, [MN09, Proposition 3.6.2] for a proof).

Proposition 10. If H ∼ H(r; ⌊n/2⌋, n), then for all k ∈ N,

Pr(H = k) ⩽ O

(√
n

r(n− r)

)
.

Proof. Put m := ⌊n/2⌋. Using
(
n
r

)
⩽
(

n
⌊n/2⌋

)
= Θ(2n/

√
n), we compute

Pr(H = k) =

(
m

k

)(
n−m

r − k

)
/

(
n

r

)
=

(
r

k

)(
n− r

m− k

)
/

(
n

m

)
⩽ O

(
2r√
r

2n−r

√
n− r

√
n

2n

)
.

Now we are ready to prove Propositions 2 and 6.

Proof of Proposition 2. Given ε ∈ (0, 1/2) and α ∈ (ε, 1 − ε). Consider n,R ∈ N such
that εn < R ⩽ n/2. Set Y := {1, . . . , ⌊n/2⌋}, and for all integers k, put

C(k) := {X ∈ Bn(R) : |X ∩ Y | ⩽ |X| /2 + k} .

Because C(k) = ∅ for k < −R/2, and C(k) = Bn(R) for k > R/2, we can take M such
that C(k − 1) ⊆ M ⊆ C(k), for some integer k, and |M| = ⌊α |Bn(R)|⌋. Note that

∂Bn(R)M ⊆ {X ∈ Bn(R) : |X ∩ Y | − ⌊|X| /2⌋ ∈ {k, k + 1}} .
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Thus we estimate the size of ∂Bn(R)M by

∣∣∂Bn(R)M
∣∣ ⩽ R∑

r=0

Pr(Hr − ⌊r/2⌋ ∈ {k, k + 1})
(
n

r

)
.

By Proposition 10, we know that, for R/2 ⩽ r ⩽ R,

Pr(Hr − ⌊r/2⌋ ∈ {k, k + 1}) = O

(√
n

r(n− r)

)
= Oε

(
1/
√
n
)
.

Thus we further estimate the size of ∂Bn(R)M by∣∣∂Bn(R)M
∣∣ ⩽ Oε

(
1/
√
n
)
|Bn(R)|+ |Bn(R0)| ,

where R0 := ⌊R/2⌋. By Lemma 7, we know that

|Bn(R0)|
|Bn(R)|

⩽
|Sn(R0)|
|Sn(R)|

=

(
n
R0

)(
n
R

) =
R(R− 1) . . . (R0 + 1)

(n−R0)(n−R0 − 1) . . . (n−R + 1)

⩽

(
R

2R−R0

)R−R0

⩽

(
2

3

)εn/2

⩽ Oε

(
1√
n

)
.

Thus
∣∣∂Bn(R)M

∣∣ ⩽ Oε (1/
√
n) |Bn(R)| ⩽ Oε (1/

√
n)min(|M| , |Bn(R) \M|).

Proof of Proposition 6. Given ε ∈ (0, 1/2) and α ∈ [0, 1], consider n, r, s ∈ N such that

r + s = n and εn ⩽ r, s ⩽ (1− ε)n.

Set Y := {1, . . . , ⌊n/2⌋} and for all integers k,

C(k) := {X ∈ Sn(r) : |X ∩ Y | ⩽ r/2 + k} .

Because C(k) = ∅ for k < −r/2, and C(k) = §n(r) for k > r/2, we can take C such that
C(k − 1) ⊆ C ⊆ C(k), for some integer k, and |C| = ⌊α |Sn(r)|⌋. Set

C+ := {X ∈ Sn(r + 1): |X ∩ Y | ⩽ r/2 + k − 1} .

Because ∂−
n C+ ⊆ C(k − 1) ⊆ C, Proposition 3 gives that∣∣C+

∣∣ ⩽ s

r + 1

∣∣∂−
n C+

∣∣ ⩽ s

r + 1
|C| .

Note that

∂+
n C \ C+ ⊆ {X ∈ Sn(r + 1): |X ∩ Y | − ⌊r/2⌋ ∈ {k, k + 1}} .

The right hand side of the above has size

Pr(Hr+1 ∈ {⌊r/2⌋+ k, ⌊r/2⌋+ k + 1})
(

n

r + 1

)
, where Hr+1 ∼ H(r + 1; ⌊n/2⌋, n).

the electronic journal of combinatorics 29(1) (2022), #P1.15 16



Thus by Proposition 10, we can estimate |∂+
n C| as follows:∣∣∂+

n C
∣∣ ⩽ ∣∣C+

∣∣+O

(√
n

(r + 1)(s− 1)

)(
n

r + 1

)
⩽

s

r + 1
|C|+Oε

(
1/
√
n
)(n

r

)
.

The lower shadow of C can be estimated similarly:∣∣∂−
n C
∣∣ ⩽ r

s+ 1
|C|+Oε

(
1/
√
n
)(n

r

)
.
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A Proof of Lemma 7

Proof of Lemma 7. Observe that for every k ⩽ r, we have(
n
k

)(
n
r

) =
k + 1

r + 1
· n− r

n− k
·
(

n
k+1

)(
n

r+1

) ⩽

(
n

k+1

)(
n

r+1

) ,
which implies that

|Bn(r)|
|Sn(r)|

=
r∑

k=0

(
n
k

)(
n
r

) ⩽
r∑

k=0

(
n

k+1

)(
n

r+1

) ⩽
r+1∑
k=0

(
n
k

)(
n

r+1

) =
|Bn(r + 1)|
|Sn(r + 1)|

.

In particular, when r ⩽ n/2,

|Sn(r)|
|Bn(r)|

⩾
|Sn(⌊n/2⌋)|
|Bn(⌊n/2⌋)|

.

Case: n is even. We know that

|Sn(⌊n/2⌋)| =
(

n

n/2

)
and |Bn(⌊n/2⌋)| = 2n−1 +

1

2

(
n

n/2

)
.

Since
(

n
n/2

)
⩾ 2n/(

√
2n) and n ⩾ 3, we get

|Sn(⌊n/2⌋)|
|Bn(⌊n/2⌋)|

=
1

2n−1/
(

n
n/2

)
+ 1/2

⩾
1√

2n/2 + 1/2
⩾

1√
n
.

Case: n is odd. We know that

|Sn(⌊n/2⌋)| =
(

n

(n− 1)/2

)
and |Bn(⌊n/2⌋)| = 2n−1.

Since
(

n
(n−1)/2

)
= 1

2

(
n+1

(n+1)/2

)
⩾ 2n/

√
2(n+ 1) and n ⩾ 3, we get

|Sn(⌊n/2⌋)|
|Bn(⌊n/2⌋)|

=

(
n

(n−1)/2

)
2n−1

⩾
2√

2(n+ 1)
⩾

1√
n
.

B Verification of (17) and (18)

Proof of (17). Eliminating the denominators, (17) is equivalent to the following inequalities

sc(rc0 − t) < (t+ r)(nc0 − sc) ⇐⇒ rsc(c0 + 1) < (t+ r)nc0.

Recall c < c0 from (10). Because c(c0 + 1) < c0(c+ 1), it suffices to check

rs(c+ 1) ⩽ (t+ r)n ⇐⇒ c ⩽ t

(
1

r
+

1

s

)
+

r

s
.
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Recall that

c =

√
n

rs
=

√
1

r
+

1

s
and t =

s

r + 1
− r

s+ 1
⩾ 0.

It suffices to check the following is non-negative:((
s

r + 1
− r

s+ 1

)(
1

r
+

1

s

)
+

r

s

)2

−
(
1

r
+

1

s

)
,

which after multiplying r2(r + 1)2s(s+ 1)2 equals

(s− r)5

+(7r + 2)(s− r)4

+(r3 + 17r2 + 9r + 1)(s− r)3

+r(4r3 + 17r2 + 10r + 1)(s− r)2

+r(r + 1)2(r3 + 3r2 − 3r − 1)(s− r)

+(r − 2)r2(r + 1)4,

which clearly is non-negative for r ⩾ 2 and s ⩾ r.

Proof of (18). After expanding both sides a bit, (18) is equivalent to

s2

4r2
+

(
t+ r

rc
− 1

c0
+

s

r

)(
t+ r

rc
− 1

c0

)
<

(
s

r
+

r(t+ r)

c
+

s

rc0

)(
t+ r

rc
− 1

c0

)
⇐⇒ s2

4r2
<

((
r +

1

r

)
t+ r

c
+

r + s

rc0

)(
t+ r

rc
− 1

c0

)
,

which after multiplying both sides by r2 and expanding the right hand side is equivalent to

s2

4
<

(r2 + 1)(t+ r)2

c2
+

(s− r3)(t+ r)

cc0
− r(r + s)

c20

=
(r2t+ t+ r)(t+ r)

c2
+

s(t+ r)

cc0
+

r3(t+ r)

c

(
1

c
− 1

c0

)
− r(r + s)

c20
.

Using c < c0 from (10), it suffices to check the following is positive:

(r2t+ t+ r)(t+ r)

c2
+

s(t+ r)

c20
− r(r + s)

c20
− s2

4
=

(r2t+ t+ r)(t+ r)

c2
+

st− r2

c20
− s2

4
,

which after substituting c2 = (r + s)/(rs) and c20 = (r + s− 1)/(r(s− 1)) equals

(r2t+ t+ r)(t+ r)rs

r + s
+

(st− r2)r(s− 1)

r + s− 1
− s2

4
,
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which after multiplying 4(r + 1)2(s+ 1)2(r + s)(r + s− 1) equals

(4r3 + 3r2 + 6r − 1)(s− r)6

+(4r5 + 32r4 + 32r3 + 51r2 − 2r − 1)(s− r)5

+(24r6 + 100r5 + 122r4 + 160r3 + 3r2 − 14r + 1)(s− r)4

+(52r7 + 152r6 + 208r5 + 232r4 − 12r3 − 59r2 − 2r + 1)(s− r)3

+r(48r7 + 112r6 + 163r5 + 156r4 − 48r3 − 96r2 − 11r + 4)(s− r)2

+r2(r + 1)2(16r5 + 32r3 − 23r2 − 14r + 5)(s− r)

+2r3(r + 1)4,

which clearly is positive for r ⩾ 2 and s ⩾ r.
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