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Abstract

Schubert polynomials are refined by the key polynomials of Lascoux-Schützen-
berger, which in turn are refined by the fundamental slide polynomials of Assaf-
Searles. In this paper we determine which fundamental slide polynomial refinements
of key polynomials, indexed by strong compositions, are multiplicity free. We also
give a recursive algorithm to determine all terms in the fundamental slide polyno-
mial refinement of a key polynomial indexed by a strong composition. From here,
we apply our results to begin to classify which fundamental slide polynomial refine-
ments, indexed by weak compositions, are multiplicity free. We completely resolve
the cases when the weak composition has at most two nonzero parts or the sum has
at most two nonzero terms.

Mathematics Subject Classifications: 05E05, 05E10, 14N15

1 Introduction

Schubert polynomials were introduced by Lascoux-Schützenberger [13], and represent co-
homology classes of Schubert cycles in flag varieties. They are also generalizations of the
well-known Schur polynomials and are generating functions for pipe dreams. Lascoux-
Schützenberger showed in [14] that Schubert polynomials expand as a positive linear
combination of key polynomials, which are not only a tool for studying Schubert poly-
nomials but also arise as characters for the Demazure modules of type A [12, 15, 16].
Recently multiplicity free key polynomials in terms of monomials have arisen in the study
of spherical Schubert geometry [10] and multiplicity free key polynomials in terms of
monomials were recently succinctly classified by Hodges-Yong in [11].
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This result joins a myriad of other multiplicity free classifications in algebraic combi-
natorics including multiplicity free products of Schur functions in terms of Schur functions
[18], and analogously for multiplicity free Schur P -function products [3], multiplicity free
skew Schur functions in terms of Schur functions [9, 19], multiplicity free Schur P -functions
in terms of Schur functions [17], multiplicity free Stanley symmetric functions in terms
of monomials [5], multiplicity free Schubert polynomials in terms of monomials [7], and
multiplicity free Schur functions in terms of fundamental quasisymmetric functions [4].
This latter result is as follows.

Theorem 1 (Theorem 3.3, [4]). For λ a partition of n, the Schur function sλ has a
multiplicity free expansion into a sum of fundamental quasisymmetric functions if and
only if λ or its transpose is one of

(1) (3, 3) if n = 6,

(2) (4, 4) if n = 8,

(3) (n− 2, 2) if n > 4,

(4) (n− k, 1k) if n > 1 and 0 6 k 6 n− 1.

Fundamental quasisymmetric functions themselves are an active area of study, being
the weight enumerators of chains in the theory of P -partitions [8] and being isomorphic
to the irreducible characters of the 0-Hecke algebra [6]. They are also the stable limits of
fundamental slide polynomials [2, Theorem 4.4] that were introduced by Assaf-Searles to
study Schubert polynomials [1] who similarly showed that key polynomials are the stable
limits of Schur functions [2, Corollary 4.9].

Since Schur functions and fundamental quasisymmetric functions are stable limits of
key polynomials and fundamental slide polynomials respectively, as described in Theo-
rem 6, it is natural to ask if we can classify key polynomials that are expanded as a
multiplicity free sum of fundamental slide polynomials. In this paper we consider the
multiplicity free expansion of key polynomials into fundamental slide polynomials, and
obtain the following classification in Theorem 26.

Theorem. For α a strong composition, the key polynomial κα has a multiplicity free
expansion into a sum of fundamental slide polynomials if and only if α = (α1, . . . , α`)
satisfies all three of the following conditions:

(a) There is no i < j < k such that αi < αj < αk.

(b) There is no i < j < k < l such that αi, αj < αl < αk.

(c) There is no i < j < k < l such that αi, αj + 1 < αk = αl.

More precisely our paper is structured as follows. In Section 2 we recall the relevant
background before classifying when a key polynomial is equal to a fundamental slide poly-
nomial in Theorem 13 and the sum of two fundamental slide polynomials in Theorem 22.
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We then restrict our attention to key polynomials indexed by strong compositions and
their multiplicity free expansion into fundamental slide polynomials in Section 4, gener-
alizing Theorem 1. In particular we classify this in Theorem 26 and give an algorithm
to compute the terms in general in Subsection 4.1. In Section 5 we work towards a full
classification, including when a key polynomial whose index has two nonzero parts is a
multiplicity free expansion of fundamental slide polynomials in Subsection 5.1.

2 Tableaux and polynomials

In this section we recall the background needed in order to state and prove our results.
A weak composition a = (a1, . . . , a`) of length ` is a finite sequence of nonnegative

integers, and a strong composition α = (α1, . . . , α`) of length ` is a finite sequence of
positive integers. For a weak composition a, we let flat(a) be the strong composition
obtained by removing zeros from a and sort(a) be the partition obtained by rearranging
the parts of flat(a) into weakly decreasing order. For example, if a = (0, 0, 2, 3) then
flat(a) = (2, 3) and sort(a) = (3, 2). Given two weak compositions a = (a1, . . . , a`) and
b = (b1, . . . , b`) we say that b dominates a denoted by b > a, if b1 + · · ·+bi > a1 + · · ·+ai
for all i = 1, . . . , `. Given two strong compositions α = (α1, . . . , α`) and β = (β1, . . . , β`′),
we say that β refines α if there is a sequence 0 = i0 < i1 < i2 < · · · < i` = `′ such that
βij−1+1 + · · ·+ βij = αj for j = 1, . . . , `.

A diagram is a finite subset of N×N where the coordinate (i, j) represents the cell at
the ith row from the bottom and the jth column from the left.

We now come to two central definitions, which define the tableaux that we will be
using.

Definition 2. For a weak composition a = (a1, . . . , a`), a Kohnert tableau of content a is
a diagram filled with ai is for i = 1, . . . , `, satisfying the following conditions:

(i) For each i = 1, . . . , `, there is exactly one i in each column from 1 through ai.

(ii) Each entry in row i is at least i for all i.

(iii) For each i = 1, . . . , `, the cells filled with i weakly descend from left to right.

(iv) If i < j appear in a column with i above j, then there is an i in the column
immediately to the right of and strictly above the cell containing the j.

A Kohnert tableau of content a is called a quasi-Yamanouchi Kohnert tableau if it
satisfies an additional condition:

(v) If a row is not empty, say the ith row, then

- either there is a cell filled with i in the ith row,

- or there is a cell in the (i + 1)th row that lies weakly right of a cell in the ith
row.
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Definition 3. For a weak composition a = (a1, . . . , a`), let KT(a) be the set of Kohnert
tableaux and QKT(a) be the set of quasi-Yamanouchi Kohnert tableaux of content a. For
T ∈ KT(a) we let wt(T ) be the weak composition whose ith part is the number of cells in
the ith row of T . The basic quasi-Yamanouchi Kohnert tableau of content a is the unique
Kohnert tableau T with ai cells in row i filled with i for i = 1, . . . , `, namely wt(T ) = a.

Example 4. Figure 1 illustrates some Kohnert tableaux that are quasi-Yamanouchi. Note
that the leftmost one is basic. Figure 2 illustrates some Kohnert tableaux that are not
quasi-Yamanouchi.

4 4

3 3 3

4

3 4

3 3

4

3 3 3

4

3 3 3

4 4

3 3

4 3

4

Figure 1: Quasi-Yamanouchi Kohnert tableaux of content (0, 0, 3, 2).

4 4
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3

4

4

3 3 3

4 4

3 3 3

4

3

3 3

4

4

3 4

3

3

Figure 2: Some Kohnert tableaux of content (0, 0, 3, 2) that are not quasi-Yamanouchi.

For a weak composition b = (b1, . . . , b`), we use xb to denote the monomial xb11 · · ·x
b`
` .

We are now ready to define key polynomials, fundamental slide polynomials, each of their
stable limits, and the relationship between them.

Definition 5. For a weak composition a of length `,

(1) the key polynomial κa = κa(x1, . . . , x`) is defined as

κa =
∑

T∈KT(a)

xwt(T ) ,

(2) the fundamental slide polynomial Fa = Fa(x1, . . . , x`) is defined as

Fa =
∑
b>a

flat(b) refines flat(a)

xb .
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If we let sλ denote the Schur function indexed by the partition λ and Fα denote the
fundamental quasisymmetric function indexed by the strong compsition α, then we have
the following.

Theorem 6 ([2]). For a weak composition a, we have

lim
m→∞

κ0m×a = ssort(a) , (1)

lim
m→∞

F0m×a = Fflat(a) , (2)

where 0m × a means prepending m 0s to a.

Proposition 7 (Theorem 2.13, [2]). For a weak composition a, the key polynomial in-
dexed by a is

κa =
∑

T∈QKT(a)

Fwt(T ) .

Example 8. In Figure 1, all quasi-Yamanouchi Kohnert tableaux of content (0, 0, 3, 2)
are given, and due to Proposition 7 we have

κ(0,0,3,2) = F(0,0,3,2) + F(0,2,2,1) + F(0,1,3,1) + F(0,2,3,0) + F(1,2,2,0) .

3 Initial results

We now prove some initial multiplicity free classifications, which will be useful later. In
particular we classify when a key polynomial is equal to a fundamental slide polyno-
mial or the sum of two fundamental slide polynomials. In each case we give the precise
decomposition.

3.1 Classifying when κa = Fa

Before establishing our classification we prove four lemmas.

Lemma 9. Let a = (a1, . . . , ak, 0, . . . , 0︸ ︷︷ ︸
m

, ak+m+1) for positive integers a1 > · · · > ak, a

nonnegative integer ak+m+1 6 ak and a nonnegative integer m. Then κa = Fa.

Proof. The basic quasi-Yamanouchi Kohnert tableau of content a is the unique element
of QKT(a). Due to Proposition 7, we can conclude that κa = Fa.

Lemma 10. Let a = (a1, . . . , ak, a01, 1) for positive integers a1 > · · · > ak > 1 and a01 a
finite sequence of 0s and 1s. Then κa = Fa.

Proof. The basic quasi-Yamanouchi Kohnert tableau of content a is the unique element
of QKT(a). Due to Proposition 7, we can conclude that κa = Fa.
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Lemma 11. If a weak composition a = (a1, . . . , a`) has two nonzero entries 0 < ai < aj
with i < j, then the key polynomial κa has at least two different terms in its expansion
into fundamental slide polynomials.

Proof. Choose i < j with 0 < ai < aj so that (j−i) is minimal. Then ai+1 = · · · = aj−1 =
0, and moving the last cell of row j of the basic quasi-Yamanouchi Kohnert tableau down
to row i produces another tableau in QKT(a).

Lemma 12. Suppose that a weak composition a = (a1, . . . , a`) has two nonzero entries
ai, aj with i < j and at least one of ai and aj is strictly bigger than 1. If there is h < i such
that ah = 0, then the key polynomial κa has at least two different terms in its expansion
into fundamental slide polynomials. Moreover, if ai 6= 1 then one term F(b1,...,b`) has
bh 6= 0.

Proof. Let h be the smallest index such that ah = 0 but ah+1 6= 0, and let i = h + 1.
Then, by assumption we can find the smallest j > h+ 1 with aj > 0 so that at least one
of ai, aj is strictly bigger than 1. There are three cases to consider.

If 1 = ai < aj, then the result follows by Lemma 11.
If 1 < ai 6 aj, then ak = 0 for all k = i+ 1, . . . , j − 1. Therefore, moving the last i in

row i down to row i− 1 = h and the last j− i+ 1 entries in row j down to row i from the
basic quasi-Yamanouchi Kohnert tableau will produce another tableau in QKT(a). See
Figure 3.

j ··· j j ··· j

i ··· i i

j ··· j

i ··· i j ··· j

i

j

i

h

j

i

h

Figure 3: Two quasi-Yamanouchi Kohnert tableaux when 1 < ai 6 aj and ah = 0.

If ai > aj > 1, then ak = 0 for all k = i + 1, . . . , j − 1. Therefore, moving the last
j in row j down to row i− 1 = h from the basic quasi-Yamanouch Kohnert tableau will
produce another tableau in QKT(a). See Figure 4.

Finally note that in both the ai 6= 1 cases row h has a cell in it.

Theorem 13. For a weak composition a, the key polynomial κa has a unique term in the
expansion into fundamental slide polynomials, that is κa = Fa, if and only if a is one of
the following weak compositions.

(1) Every nonzero part of a is 1.

(2) a has only one nonzero part.
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j ··· j j

i ··· i i i ··· i

j ··· j

i ··· i i i ··· i

j

j

i

h

j

i

h

Figure 4: Two quasi-Yamanouchi Kohnert tableaux when ai > aj > 1 and ah = 0.

(3) a = (a1, . . . , ak, 0, . . . , 0︸ ︷︷ ︸
m

, ak+m+1) for positive integers a1 > · · · > ak, a nonnegative

integer ak+m+1 6 ak and a nonnegative integer m.

(4) a = (a1, . . . , ak, a01, 1) for positive integers a1 > · · · > ak > 1 and a01 a finite
sequence of 0s and 1s.

Proof. It is easy to check that if either (1) or (2) is the case, then κa = Fa, and Lemma 9,
Lemma 10, Lemma 11 and Lemma 12 complete the proof.

Example 14. If a = (3, 0, 0, 2), then κ(3,0,0,2) = F(3,0,0,2).

Corollary 15. For a strong composition α, κα = Fα if and only if α is a partition.

3.2 Classifying when κa = Fa + Fb

We will first deal with the case of a strong composition and then apply this case to obtain
the full result. We begin with two lemmas.

Lemma 16. For a strong composition α, Fα and Fsort(α) are always (not necessarily
distinct) terms in κα.

Proof. Fα comes from the basic quasi-Yamanouchi Kohnert tableau. Fsort(α) comes from
the quasi-Yamanouchi Kohnert tableau obtained from the basic one by bottom justifying
each column with its entries written in increasing order from bottom to top. If α = sort(α),
then these two quasi-Yamanouchi Kohnert tableaux are the same tableau.

Definition 17. For a strong composition α = (α1, . . . , α`), a pair (i, j), i < j, is an
inversion of α if 0 < αi < αj, and we let inv(α) be the number of inversions of α.

Example 18. If α = (2, 3), then inv(α) = 1.

Lemma 19. If inv(α) = 1, then the unique inversion must be the pair (i, i+ 1) for some
i. If α = (α1, . . . , αi−1, αi, αi +m,αi+2, . . . , α`) where m > 0 and α1 > · · · > αi > αi+2 >
· · · > α`, is a strong composition with only one inversion, then

κα =
m∑
t=0

F(α1,...,αi−1,αi+t,αi+m−t,αi+2,...,α`) .
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Proof. If αi > αi+1 for all i, then inv(α) = 0. Hence, if inv(α) = 1 then αi < αi+1 must
hold for some i and this must be the unique such i, plus αi+1 6 αk for all 1 6 k 6 i− 1.

All Kohnert tableaux are the ones obtained by moving cells in row (i+1) down to row
i one by one from the rightmost cell and these are all quasi-Yamanouchi, which proves
the given equation.

We remark that the weight of T ∈ QKT(α) for a strong composition α, is a strong
composition since row i of the first column of any Kohnert tableau of content α is filled
with i. Hence we know that if Fa appears in the expansion of κα, then a must be a strong
composition of the same length as α.

Proposition 20. For a strong composition α, κα = Fα + Fβ if and only if inv(α) = 1
and αi+1 = αi + 1 for the unique inversion (i, i + 1) of α. Furthermore, β = sort(α) in
this case.

Proof. Suppose that κα = Fα + Fβ for some strong composition β. Then, by Lemma 16,
β must be sort(α) and inv(α) > 0. Let i be the smallest index such that (i, i + 1) is an
inversion of α. Then αi+1 = αi + 1 must hold, since otherwise at least three terms will
appear in the expansion of κα into fundamental slide polynomials by moving cells in row
i + 1 down to row i one by one from the rightmost cell. Now, if αi+2 > αi then either
αi+2 > αi+1 or αi+2 = αi+1 must hold and in either case, by moving cells in row i + 1
down to row i and then moving cells in row i + 2 down to row i + 1, there are at least
three terms in the expansion of κα. Hence we have αi+2 6 αi. Since if there is j > i + 2
such that (j, j+ 1) is an inversion of α, then this will make at least two more terms in the
expansion of κα, we can conclude that the only inversion of α is (i, i+1) and αi+1 = αi+1.

The proof of the other direction is immediate from Lemma 19.

Example 21. If α = (2, 3), then κ(2,3) = F(2,3) + F(3,2).

We now apply our classification for strong compositions to obtain our full classification.
We also need the following generalization of sort(a). For a weak composition a we let
sort0(a) be the weak composition whose nonzero parts are the parts of sort(a) taken in
weakly decreasing order, and the ith part of sort0(a) is 0 if and only if the ith part of a
is 0. For example, if a = (0, 2, 0, 3) then sort0(a) = (0, 3, 0, 2).

Theorem 22. For a weak composition a, κa = Fa + Fb if and only if a satisfies both the
following conditions:

(a) inv(flat(a)) = 1 and flat(a)i+1 = flat(a)i + 1 for the unique inversion (i, i + 1) of
flat(a),

(b) either

• flat(a) = (1, 2), or

• a = (a1, . . . , ak, 0, . . . , 0︸ ︷︷ ︸
m

, ak+m+1) for positive integers a1, . . . , ak, a nonnegative

integer ak+m+1 and a nonnegative integer m, or
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• a = (a1, . . . , ak, a01, 1) for positive integers a1, . . . , ak > 1 and a01 a finite
sequence of 0s and 1s.

Furthermore, b = sort0(a) in this case.

Proof. Let α be a strong composition with κα 6= Fα + Fβ and a be a weak composition
such that flat(a) = α. Then κa 6= Fa + Fb. This is because if |QKT(α)| > 2 then by
adding empty rows and increasing the numbers in the cells by the number of empty rows
inserted below we will produce more than two tableaux in QKT(a).

Hence flat(a) must satisfy the conditions of Proposition 20, giving us the first condi-
tion. By Lemma 16 and noting that we can produce members in QKT(a) from QKT(α)
by adding empty rows and increasing the numbers in the cells by the number of empty
rows inserted below, we know that κa = Fa + Fsort0(a) plus perhaps other terms. To
complete the proof note that Lemma 12 then guarantees that we will have other terms
unless flat(a) = (1, 2), or a = (a1, . . . , ak, 0, . . . , 0︸ ︷︷ ︸

m

, ak+m+1) for positive integers a1, . . . , ak,

a nonnegative integer ak+m+1 and a nonnegative integer m, or a = (a1, . . . , ak, a01, 1) for
positive integers a1, . . . , ak > 1 and a01 a finite sequence of 0s and 1s. In this case, by the
definition of quasi-Yamanouchi Kohnert tableaux and Proposition 7 no further terms are
produced, giving us the second condition.

Example 23. If α = (2, 0, 0, 3), then κ(2,0,0,3) = F(2,0,0,3) + F(3,0,0,2).

4 Classifying when κα is multiplicity free for α a strong com-
position

In this section, we restrict our attention to strong compositions.

Theorem 24. Let α = (α1, . . . , α`) be a strong composition.

(1) If there exist i < j < k such that αi < αj < αk, then κα is not multiplicity free.

(2) If there exist i < j < k < l such that αi, αj < αl < αk, then κα is not multiplicity
free.

(3) If there exist i < j < k < l such that αi, αj+1 < αk = αl, then κα is not multiplicity
free.

Example 25. The key polynomials κ(1,2,3), κ(1,1,3,2) and κ(1,1,3,3) are not multiplicity free.

Proof. Suppose that there are i < j < k such that αi < αj < αk. We may assume that
k > j is the smallest k such that αj < αk and i < j is the largest i such that αi < αj,
which imply that αx 6 αj for all j < x < k and αy > αj for all i < y < j. The basic
tableau of weight α is the first one in Figure 5, in which A is a subtableau contained in the
first αj columns. The second and the third tableaux of Figure 5 are quasi-Yamanouchi
Kohnert tableaux of the same weight with content α and we can conclude that κα is not
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multiplicity free. We remark that the row filled with ∗s in the first tableau of Figure 5
may not exist in which case the bottom two rows in the second and the third tableaux
will be a single row without ∗s.

k ··· k k k k ··· k

j ··· j j

∗ ··· ∗ ∗ ∗ ··· ∗

i ··· i

k ··· k k

j ··· j k

∗ ··· ∗ j k ··· k

i ··· i ∗ ∗ ··· ∗

k ··· k k

j ··· j j

∗ ··· ∗ k k ··· k

i ··· i ∗ ∗ ··· ∗

A A A

Figure 5: Basic tableau and two tableaux of same weight in QKT(α) when α satisfies
(1).

Now we will make a remark, which will be used often throughout the remainder of
the proof, and will be referred to as “the remark above.” We remark that if there is a
row that is strictly longer than the rows we consider in a Kohnert tableau, then we can
move cells across that row without violating any condition for being a quasi-Yamanouchi
Kohnert tableau. We thus do not take account of the rows that are strictly longer than
the rows we are considering.

Suppose that there are i < j < k < l such that αi, αj < αl < αk. If there is x > k
such that αx > αk, then we have αj < αk < αx and Case (1) is satisfied with j < k < x
and hence κα is not multiplicity free. Hence, we may assume that αx 6 αk for all x > k,
and l > k is the smallest l such that αl < αk. Then, αx = αk for all k < x < l. On the
other hand, if αi < αy < αk for any i < y < k, then Case (1) is satisfied and hence κα
is not multiplicity free. Therefore, for all i < y < k, αy 6 αi so αj 6 αi and moreover
we can assume that j = k − 1 and i = k − 2. The basic tableau of weight α is the first
one in Figure 6 for αi = αj = α` − 1. The second and the third tableaux of Figure 6
are quasi-Yamanouchi Kohnert tableaux of the same weight with content α and we can
conclude that κα is not multiplicity free. The figures for αj < αi, and other suitable α`,
are almost identical.

Suppose that there are i < j < k < l such that αi, αj + 1 < αk = αl. We choose the
smallest k and largest j so that there is no y such that j < y < k and αy = αk or αy = αj.
We may assume there is also no y such that j < y < k and αj < αy < αk since this is
Case (1). Thus by the remark above we may assume that αy < αj for all j < y < k. In
Figure 7 we will not draw these rows, which we will fix.

Now we choose the smallest l so that there is no x such that k < x < l and αx = αl.
Then by the remark above we may assume that for all k < x < l, αx < αl. Furthermore
we may assume αx 6 αj for all k < x < l to ensure there is no x such that j < x < l and
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l ··· l l

k+t ··· k+tk+tk+tk+t ··· k+t

k+1 ··· k+1k+1k+1k+1 ··· k+1

k ··· k k k k ··· k

j ··· j

i ··· i

l ··· l

k+t ··· k+t l

k+tk+t

k+t ··· k+t

k+1 ··· k+1

k ··· k k+1k+1

j ··· j k k+1 ··· k+1

i ··· i k k ··· k

l ··· l

k+t ··· k+tk+t

k+t

k+t ··· k+t

k+1 ··· k+1k+1

k ··· k k k+1

j ··· j k k+1 ··· k+1

i ··· i l k ··· k

· · ·
· · ·

· · ·

· · ·
...

· · ·

· · ·

Figure 6: Basic tableau and two tableaux of same weight in QKT(α) when α satisfies
(2).

αj < αx < αl, since this is Case (1). Hence

αx 6 αj < αk − 1⇒ αx 6 αk − 2.

In Figure 7 we will not draw these rows, which we will fix. Now we choose the largest i so
there is no z such that i < z < j and αz < αk. Furthermore we can assume that αz > αk
for all i < z < j as otherwise we can choose z < j < k < l such that αz, αj + 1 < αk = αl.
Thus by the remark above we can assume that αz = αk. In Figure 7, we will denote the
rows i < z < j where αz = αk collectively by ∗ and ?. We note that our construction also
works if j = i+ 1.

We now consider the various cases for αi and αj. We do not need to consider the
case αi < αj since this is Case (1). For the case αi = αj + 1 we have that the basic
tableau of weight α is the first one in Figure 7. The second and third tableaux of Figure 7
are quasi-Yamanouchi Kohnert tableaux of the same weight with content α and we can
conclude in this case that κα is not multiplicity free. The figures for the cases αi = αj
and αi > αj + 1 are almost identical.

We are now ready to give our classification of when κα, for α a strong composition,
is multiplicity free, and see that the conditions in Theorem 24 classify when κα has
multiplicities.

Theorem 26. κα is multiplicity free if and only if α satisfies all three of the following
conditions:

(a) There is no i < j < k such that αi < αj < αk.

(b) There is no i < j < k < l such that αi, αj < αl < αk.

(c) There is no i < j < k < l such that αi, αj + 1 < αk = αl.
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l ··· l ··· ··· l l

k ··· k ··· ··· k k

j ··· j

∗ ··· ∗ ··· ··· ∗ ∗

? ··· ? ··· ··· ? ?

i ··· i i

l ··· l ··· ··· l

k ··· k ··· ··· k

j ··· j l

∗ ··· ∗ ··· ··· ∗ k

? ··· ? ··· ··· ? ∗

i ··· i i ?

l ··· l ··· ··· l

k ··· k ··· ··· l

j ··· j k

∗ ... ∗ ··· ··· ∗ k

? ··· ? ··· ··· ? ∗

i ··· i i ?

Figure 7: Basic tableau and two tableaux of same weight in QKT(α) when α satisfies
(3).

Proof. We use an induction on the number `(α) of parts of α.
If `(α) = 1 or `(α) = 2 and inv(α) = 0, then κα = Fα by Corollary 15. If `(α) = 2

and inv(α) = 1 then by Lemma 19 κα is multiplicity free.
We assume that the statement is true for all strong compositions β with `(β) < `

for an ` > 2. Let α = (α1, . . . , α`) be a strong composition with ` parts, that satisfies
Conditions (a), (b) and (c). Since inv(α) = 0 implies κα = Fα by Corollary 15, we assume
that inv(α) > 0 and let i be the smallest index such that αi < αi+1. We let T1 and T2 be
two quasi-Yamanouchi Kohnert tableaux in QKT(α) of the same weight. Then we claim
that the first row of T1 and T2 are identical. We deal with two cases i = 1 and i > 1
separately to show the claim.

i = 1: We will break this part of the proof into three parts. In the first part we will
deduce the generic structure of our basic tableau in QKT(α) when α1 < α2,
resulting in Figure 8. In the second part we will make three crucial obser-
vations on producing tableaux in QKT(α). In the third part we will apply
these observations to prove our claim using a proof by contradiction.

Deducing the structure: Note first that since α1 < α2 and α satisfies
Condition (a), αj 6 α2 for j > 2. Moreover, if there are 2 6 j < k such that
αj < αk, then αj must be at most α1, that is, αj 6 α1 due to Condition
(a).

Let us suppose that αj 6 α1 < αk, αk+1 for 2 6 j < k. Then because of
Condition (a), αl 6 αk for all l > k and αk+1 is at most αk. If αk+1 < αk,
then 1 < j < k < k + 1 gives a counterexample of Condition (b) and this
implies that αk+1 = αk. If α1 + 1 < αk+1 = αk, then 1 < j < k < k + 1 is
a counterexample of Condition (c) and we can conclude that αk = αk+1 =
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α1 + 1. We now suppose that αj < α1, then 1 < j < k < k + 1 is again a
counterexample of Condition (c), hence αj = α1.

Consequently the basic tableau looks like Figure 8, where we let {n1 <
n2 < · · · < nx} be the set {αj | j > 2, α1 < αj} and let Bm = {j |αj = nm},
m = 1, 2, . . . , x, be the set of rows in the basic quasi-Yamanouchi Kohnert
tableau of content α having nm cells.

Note that if x = 1, then α2 = α3 = · · · = α` and it is easy to see that by
the definition of quasi-Yamanouchi Kohnert tableaux that the claim that
the first row of T1 and T2 are identical is true. Therefore, let us assume
that x > 1.

If x > 1, then B2 ∪ B3 ∪ · · · ∪ Bx = {2, 3, . . . ,max(B2)}, that is, there is
no row shorter than α1 + 1 among rows 2, 3, . . . ,max(B2) by the definition
of Bm. The yellow box in Figure 8 shows the rows with α1 cells. There
can be more than one pair of the yellow box consisting of rows of length
α1 and B1 consisting of rows of length α1 + 1. Above that there can be a
block that satisfies Conditions (a), (b), (c), of rows of length at most α1

at the top of the diagram of α. We draw only one pair of such blocks (the
yellow box and B1) in Figure 8, since the rows above B1 do not have any
effect on the first row of T1 and T2 since the entries in these rows cannot
be moved to the first row.

Three observations: We now make three crucial observations on creating
tableaux in QKT(α).

i) The first row of a tableau in QKT(α) is obtained by moving some
of the rightmost numbers in the lowest row of each block Bm (of the
basic tableau) down to the first row so that the contiguous cells that
are moved down to the first row from each block is apart by at least
one empty cell. This follows by the definition of quasi-Yamanouchi
Kohnert tableaux. For example, the gray cells in Figure 8 can be
moved down to the first row.

As a consequence we have the next two observations.

ii) If an entry of the lowest row of B1 is moved down to the first row
of a tableau in QKT(α), then the only possible moves from rows r >
max(B2) in the basic quasi-Yamanouchi Kohnert tableau is to move
entries either to the first row or within rows between max(B2) + 1 and
`.

iii) If an entry of the lowest row of Bm, m > 1, is moved down to the
first row of a tableau in QKT(α), then it is straightforward to verify
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that the only possible moves from rows r > min(Bm) in the basic
quasi-Yamanouchi Kohnert tableau is to move entries either down to
the first row or no lower than the first row of Bm.

Concluding identical first rows: Towards a contradiction, suppose that
the first row of T1 and T2 are different and let m be the smallest such that
numbers of entries in the first row of T1 and T2 from Bm are different. By
our second and third observations we immediately get the following. If
m = 1, then the number of entries in the last rows (above B2) of T1 and
T2 are different and T1 and T2 cannot be of a same weight. If m > 1, then
the number of entries in B1 ∪ B2 ∪ · · · ∪ Bm of T1 and T2 are different and
T1 and T2 cannot be of a same weight. This contradicts that T1 and T2 are
the same weight. Hence the first row of T1 and T2 are identical.

1 1 · · · 1
Bx

Bx−1

Bx−2

· · ·

B2

B1

· · ·

Figure 8: The basic tableau in QKT(α) when α1 < α2.

i > 1: First note that αj 6 αi+1 must hold for all j > i + 1 since α satisfies
Condition (a), and α1 > α2 > · · · > αi < αi+1 by our assumption on i.
There are two cases to consider:

If α1 > αi+1, then the first row of any tableau in QKT(α) must only contain
α1 1s.

If not, then α1 < αi+1 and only (i+ 1)s can be moved down to the first row
of a quasi-Yamanouchi Kohnert tableau. This is because if j > i + 1 can
appear in the first row of a quasi-Yamanouchi Kohnert tableau, then α2 6
α1 < αj < αi+1, by the definition of quasi-Yamanouchi Kohnert tableaux,
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must hold but this violates Condition (b). Therefore, two tableaux of the
same weight must have the same first row consisting of 1s and (i+ 1)s.

Now, we know that T1 and T2 have the same first row and we let T ′1 and T ′2 be the
tableaux obtained by deleting the first row from T1, T2, respectively and subtracting 1
from every remaining entry. Then T ′1 and T ′2 are quasi-Yamanouchi Kohnert tableaux of
content β, where β is obtained by subtracting the content > 1 of the first row of T1 (or
T2) from the relevant respective parts of α. Then since there is still a cell in every row
of the first column of T ′1 and T ′2 it follows that β is a strong composition with `(α) − 1
parts. It is straightforward to check that β does not contain any of the patterns (a), (b),
(c). By the induction hypothesis, T ′1 and T ′2 must be the same tableau and hence we can
conclude that T1 and T2 must be the same tableau too.

When we restrict our attention to strong compositions α, we are also able to give an
algorithm to produce all the tableaux required to expand a key polynomial as a sum of
fundamental slide polynomials, that is, produce all the elements of QKT(α).

4.1 Recursive algorithm to produce all elements of QKT(α)

For a strong composition α = (α1, . . . , α`), let Tα be the basic quasi-Yamanouchi Kohnert
tableau with content α.

• If inv(α) = 0, then QKT(α) = {Tα}.

• If inv(α) = s > 0, then let i be the smallest such that αi < αi+1 and let α̂ be the
strong composition with inv(α̂) = s− 1, obtained by interchanging the ith and the
(i+ 1)th parts of α; α̂ = (α1, . . . , αi−1, αi+1, αi, . . . , α`).

For each T̂ ∈ QKT(α̂), do

– from columns c = αi + 1, αi + 2, . . . , change all i into i+ 1 and change all i+ 1
into i, call the resulting tableau T0; let S(T̂ ) := {T0}

– for k = αi + 1, . . . , αi+1, do

if the cell in row (i+ 1) and column k of T0 is empty and the cell in row i and
column k contains i+1, then swap the cells in row i and row i+1 from column
αi + 1 to k and note the resulting tableau Tk; let S(T̂ ) := S(T̂ ) ∪ {Tk}.

Theorem 27. For a strong composition α, the above algorithm produces all quasi-Yaman-
ouchi Kohnert tableaux of content α, that is

QKT(α) =
⋃

T̂∈QKT(α̂)

S(T̂ ) .

Proof. It is easy to see that given any T ∈ QKT(α), we can find a corresponding T̂ ∈
QKT(α̂) by noting the rightmost i + 1 in row i + 1 in column k and swapping all cells
in row i and row i + 1 from column αi + 1 to k. Then for all columns αi + 1, αi + 2, . . .
change all i into i+ 1 and change all i+ 1 into i.
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Example 28. Let α = (2, 1, 4, 3). Then i = 2 and α̂ = (2, 4, 1, 3).

If we let T̂ = 4 4

3

2 2 4

1 1 2 2

∈ QKT(α̂), then T0 = 4 4

3

2 3 4

1 1 3 3

∈ QKT(α̂).

The empty cell in the third row and the second column of T0, since the cell below
it is filled with i + 1 = 3, will make the following quasi-Yamanouchi Kohnert tableau of
content α.

T2 = 4 4

3 3

2 4

1 1 3 3

5 Classifying when κa is multiplicity free for a a weak composi-
tion

At present classifying in general when a key polynomial is a multiplicity free expansion
of fundamental slide polynomials seems substantially more complex than the strong com-
position case. However, we are able to make progress in some special cases. In particular
we focus on the cases related to Theorem 1, namely, hooks and two nonzero parts.

Lemma 29. Let α be a strong composition with κα is not multiplicity free and a be a
weak composition with flat(a) = α. Then κa is not multiplicity free.

Proof. If there are two different tableaux of the same weight in QKT(α), then by adding
empty rows and increasing the numbers in the cells by the number of empty rows inserted
below we will produce two different tableaux of the same weight in QKT(a).

Lemma 30. If ssort(a) is multiplicity free, then κa is multiplicity free.

Proof. Suppose that κa is not multiplicity free. Then, similar to the proof of Lemma 29,
certainly κ0m×a is not multiplicity free for all m and we can conclude that ssort(a) is not
multiplicity free due to Theorem 6.

Corollary 31. Let a be a weak composition with sort(a) = (n − k, 1k). Then κa is
multiplicity free.

5.1 When a has two nonzero parts

To give an idea of how the complexity increases with the relaxing from strong compositions
to weak compositions, note that this case splits into three, depending on whether the
number of leading 0s is at least two, one or none.
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Theorem 32. For a weak composition a with two nonzero parts and at least two leading
0s, κa is multiplicity free if and only if

(1) sort(a) = λ for the partitions λ = (3, 3), (4, 4), (n − 2, 2) for n > 4, (n − 1, 1) for
n > 2, or

(2) flat(a) = (4, 3).

Proof. Lemma 30 together with Theorem 1 shows that κa is multiplicity free if sort(a) is
one of (3, 3), (4, 4), (n−2, 2) or (n−1, 1). We can check by hand that κa for a = (0, 0, 4, 3)
and a = (0, 0, 0, 4, 3) is multiplicity free. Moreover, more zeros at the front will keep
the key polynomial multiplicity free since by the definition of quasi-Yamanouchi Kohnert
tableaux no cell can move to these added rows with 0 cells. Similarly adding zeros between
the nonzero parts will keep the key polynomials multiplicity free. Hence, if flat(a) = (4, 3)
then κa is multiplicity free.

To prove the other direction, for each of the following Cases (1)–(4) we explicitly find
two different tableaux of same weight in QKT(0, 0, α1, α2). We note that adding zeros at
the front does not reduce the multiplicity. Moreover, all tableaux we give can be naturally
extended when we add zeros between α1 and α2, which shows the general cases also.

(1) α1 = α2 > 5; see Figure 9.

(2) α1 > α2 > 4; see Figure 10.

(3) α1 − 1 > α2 = 3; see Figure 11.

(4) α2 > α1 > 3; see Figure 12.

4 4

3 4 4

3 3 4 4 ··· 4

3 3 3 ··· 3

4 4

3 3 4

3 4 4 4 ··· 4

3 3 3 ··· 3

Figure 9: Two tableaux in QKT(0, 0, α1, α2) of same weight when α1 = α2 > 5.

In the proof of Theorem 32, two given quasi-Yamanouchi Kohnert tableaux of the
same weight for Case (4) given in Figure 12, have empty first rows. This means that there
are at least two tableaux in QKT(0, α1, α2) when α1, α2 satisfy Case (4).

Lemma 33. Let a be a weak composition with at least one leading 0 and flat(a) = (α1, α2)
for α2 > α1 > 3. Then κa is not multiplicity free.

Theorem 34. For a weak composition a with two nonzero parts and exactly one leading
0, κa is multiplicity free if and only if
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4

3 3 3

4 3 3 3 ··· 3

4 4 4 ··· 4 3 ··· 3

4

3 4 4

3 3 4 4 ··· 4

3 3 3 ··· 3 3 ··· 3

Figure 10: Two tableaux in QKT(0, 0, α1, α2) of same weight when α1 > α2 > 4.

3 3 3

4 3 3

4 4 3 ··· 3

3 3 3

4 4 3

4 3 3 ··· 3

Figure 11: Two tableaux in QKT(0, 0, α1, α2) of same weight when α1 − 1 > α2 = 3.

(1) sort(a) = λ for the partitions λ = (3, 3), (4, 4), (n − 2, 2) for n > 4, (n − 1, 1) for
n > 2, or

(2) flat(a) = (α1, α2), for α1 > α2.

Proof. We know from Lemma 33, that cases other than the ones in the theorem have
multiplicities. Hence, we only need to show that in Cases (1) or (2), κa is multiplicity
free.

Lemma 30 together with Theorem 1 shows that κa is multiplicity free if sort(a) is one
of (3, 3), (4, 4), (n− 2, 2) or (n− 1, 1).

Before we prove that weak compositions in (b) are multiplicity free, we note the
following: If T is a tableau in QKT(0, α1, 0, . . . , 0︸ ︷︷ ︸

m

, α2) for m > 0, then the row i, i =

3, . . . , 2 +m, of T is empty, due to the definition of quasi-Yamanouchi Kohnert tableaux.
Hence it is enough to consider the weak compositions (0, α1, α2) for the proof.

4 4

3 3 4 4 ··· 4

3 3 ··· 3 4 4 ··· 4

4 4

3 4 4 ··· 4 4

3 3 3 ··· 3 4 ··· 4

Figure 12: Two tableaux in QKT(0, 0, α1, α2) of same weight when α2 > α1 > 3.
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Suppose that α1 = α2 = a. By the definition of (quasi-Yamanouchi) Kohnert tableaux
Part (iv) we know that none of the a 3s can appear in row 1. Thus row 1 will contain
x 2s, row 3 will contain y 3s, and row 2 will contain the remaining 2s and 3s. Since the
weight of each of these tableaux is uniquely determined by the number of cells in row 1
and in row 3, it follows that κ(0,a,a) is multiplicity free.

Now suppose that α1 > α2 > 4, or α1 > 5 and α2 = 3. If only x, for 1 6 x 6 α1,
cells from row 2 move down to row 1, then we do not obtain a quasi-Yamanouchi Kohnert
tableau. If only y, for 0 6 y 6 α2, cells from row 3 move down to row 1, then we obtain
a quasi-Yamanouchi Kohnert tableau of weight

(y, α1, α2 − y).

If cells from rows 2 and 3 move down to row 1, then, by definition, row 2 has at least
α2 + 1 cells but < α1 cells, and row 3 has < α2 cells. Lastly, if cells from row 2 move
down to row 1, and cells from row 3 move down to row 2, then, by definition, row 2 has
at most α2 cells and row 3 has < α2 cells. In every case the weight is unique, and hence
κ(0,α1,α2) is multiplicity free.

Finally, κ(0,4,3) is multiplicity free since κ(0,0,4,3) is multiplicity free as we showed in
Theorem 32.

Theorem 35. For a weak composition a with two nonzero parts and no leading 0, κa is
multiplicity free.

Proof. Let flat(a) = (α1, α2) = α. If α1 > α2, then κa is multiplicity free by the third
part of Theorem 13. If α1 < α2, then κα is multiplicity free by Lemma 19. Adding zeros
between the nonzero parts will keep the key polynomial multiplicity free by definition,
and so κa is multiplicity free.
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