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Abstract

Let f(n) denote the smallest integer such that every directed graph with chro-
matic number larger than f(n) contains an acyclic subgraph with chromatic number
larger than n. The problem of bounding this function was introduced by Addario-
Berry et al., who noted that f(n) 6 n2. The only improvement over this bound was
obtained by Nassar and Yuster, who proved that f(2) = 3 using a deep theorem of
Thomassen. Yuster asked if this result can be proved using elementary methods. In
this short note we provide such a proof.

Mathematics Subject Classifications: 05C15, 05C20

1 Introduction

The relation between the chromatic number of a graph and properties of orientations of
its edges have long been investigated. For the sake of brevity, we refer the reader to [4]
for a general survey on this topic, and to the discussions in [3, 6], which are more closely
related to our investigation here.

We consider the following problem introduced by Addario-Berry, Havet, Sales, Reed
and Thomassé; given an integer n, what is the smallest integer f(n) so that if G has
chromatic number more than f(n) then in every orientation of G’s edges, one can find
an acyclic subgraph of chromatic number more than n. The best known general upper
bound for this function is f(n) 6 n2. This follows from taking any oriented version of
G, splitting it into two acyclic subgraphs, denoted G1, G2, and applying the well known
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fact that the chromatic number of G is at most the product of the chromatic numbers of
G1, G2. The only known improvement over this general bound was obtained by Nassar
and Yuster [6] who proved that f(2) = 3, by establishing the following.

Theorem 1 (Nassar–Yuster [6]). Suppose G is a graph of chromatic number 4. Then
every orientation of its edges contains an acyclic odd cycle.

The proof in [6] relied on a deep theorem of Thomassen [7], which confirmed a conjec-
ture of Toft [8]. Yuster [9] asked if one can prove Theorem 1 using elementary methods.
In this short paper we give such a proof. The main idea is to take advantage of properties
of 4-critical graphs.

2 An elementary proof of Theorem 1

We may and will assume that G is 4-critical, that is, that the removal of every edge of G
reduces its chromatic number. This will allow us to use important properties of 4-critical
graphs. We proceed by induction on |V (G)|, with the base case being K4. It is easy to
see that every orientation of K4 contains an acyclic K3 (in fact, two) so the base case
holds. We now proceed with the induction step. We consider separately the case where
G is 3-connected (in which case we will not need induction) and the case where it has a
separating pair of vertices.

Assume first that G is 3-connected, and let C be a shortest odd cycle in G. Since C
must be induced and G has chromatic number 4, there must be a vertex v 6∈ C. Since G
is assumed to be 3-connected, there are 3 vertex disjoint paths connecting v to C. Let
P,Q,R denote these paths, and p, q, r denote their meeting points with C, see Figure 1a.
If C is acyclic we are done, so suppose wlog that C is oriented as in Figure 1a. Clearly
not all three paths P ∪ Q, P ∪ R and Q ∪ R can be directed paths, as they all intersect
internally in the vertex v. Assume wlog that P ∪ Q is not directed. Then, since |C| is
odd, one of the cycles P ∪Q ∪ Ppq or P ∪Q ∪ Prp ∪ Pqr is an acyclic odd cycle.
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Figure 1: The two cases considered in the proof
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Suppose now that G is not 3 connected, that is, it has a pair of vertices u, v whose
removal breaks it into at least two (non-empty) connected components. In what follows,
if (u, v) 6∈ E(G) then we use G + (u, v) to denote the graph obtained by adding the edge
(u, v) to G. We use G/{u, v} to denote the graph obtained from G by contracting u, v,
that is, the graph obtained by replacing u, v with a new vertex and connecting it to all
the vertices that were connected to either1 v or u. We will need the following well known
result of Dirac [2], see also Problem 9.22 in [5] for a short proof.

Lemma 2 (Dirac [2]). Let k > 4 be an integer, let G be a k-critical graph, and let
u, v ∈ V (G) be such that G \ {u, v} (the graph obtained from G by deleting the vertices
u, v) is disconnected. Then:

1. u 6= v, that is, G is 2-connected;

2. (u, v) 6∈ E(G);

3. G \ {u, v} has exactly two components;

4. There are unique proper induced subgraphs G1, G2 of G such that G = G1 ∪ G2,
V (G1) ∩ V (G2) = {u, v}, and the graphs G1 \ {u, v} and G2 \ {u, v} are the two
components of G\{u, v}. Also, u, v have no common neighbor in G2, and G1+(u, v)
and G2/{u, v} are k-critical.

By induction and Lemma 2, the graph G2/{u, v} has an acyclic odd cycle C2. If C2

does not contain the vertex w that resulted from contracting {u, v}, it is also a cycle in
G and we are done. Also, if the two neighbors of w on C2 are both neighbors of v or both
neighbors of u, then we can again conclude that C2 is also an acyclic odd cycle in G. So
assume one neighbor of w is a neighbor of v and one is a neighbor of u. Then we may
infer that in G we have a path P2 connecting u and v, so that |P | is even and P is not
directed from u to v or from v to u. See Figure 1b.

By induction and Lemma 2, the graph G1 + (u, v) has an acyclic odd cycle C1 (no
matter how we orient the edge (u, v)). If C1 does not use the edge (u, v), it is also
an acyclic odd cycle in G and we are done. Suppose then that it does, implying that G
contains a path P1 connecting u to v with |P1| odd. Then item (4) in Lemma 2 guarantees
that |P1 ∪P2| = |P1|+ |P2| − 2 so P1 ∪P2 is an odd cycle. The assertion at the end of the
previous paragraph guarantees that it is acyclic. This completes the proof of Theorem 1.
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1We will only apply this operation when u, v are not connected and have no common neighbor, so this
operation will not create loops or parallel edges.
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