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Abstract

A subset C of the vertex set of a graph Γ is called a perfect code of Γ if every
vertex of Γ is at distance no more than one to exactly one vertex in C. Let A be a
finite abelian group and T a square-free subset of A. The Cayley sum graph of A
with respect to the connection set T is a simple graph with A as its vertex set, and
two vertices x and y are adjacent whenever x + y ∈ T . A subgroup of A is said to
be a subgroup perfect code of A if the subgroup is a perfect code of some Cayley
sum graph of A. In this paper, we give some necessary and sufficient conditions
for a subset of A to be a perfect code of a given Cayley sum graph of A. We also
characterize all subgroup perfect codes of A.
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1 Introduction

In this paper, every group considered is finite, and every graph considered is finite and
simple. For a graph Γ with vertex set V , a subset C of V is called a perfect code [16]
of Γ if every vertex of Γ is at distance no more than one to exactly one vertex in C. In
other words, C is a perfect code in Γ provided that C is independent in Γ and every vertex
of V \ C is adjacent to precisely one vertex of C. In some references, a perfect code is
also called an efficient dominating set [9, 8] or independent perfect dominating set [17].
Since the beginning of coding theory in the late 1940s, perfect codes have been one of the
most important objects of study in information theory. See, for example, the two surveys
[13, 23] on perfect codes and related definitions in the classical setting. Since the seminal
paper of Biggs [2] and the fundamental work of Delsarte [7], perfect codes in distance-
transitive graphs and, in general, in distance-regular graphs and association schemes have
received considerable attention in the literature. Beginning with [16], a great amount of
work on perfect codes in general graphs has been produced. See, for example, [6, 22, 27].

In the past a few years, perfect codes in Cayley graphs have attracted considerable
attention, see, for example, [11, 28, 29]. In [14], Huang, Xia and Zhou first introduced
the concept of a perfect code of a group G. A subset C of G is said to be a perfect code of
G if C is a perfect code of some Cayley graph of G. In particular, a subgroup is said to
be a subgroup perfect code of G if the subgroup is also a perfect code of G. Also in [14],
they gave a necessary and sufficient condition for a normal subgroup of a group G to be
a subgroup perfect code of G, and determined all the subgroup perfect codes of dihedral
groups and some abelian groups. For more results on subgroup perfect codes of Cayley
graphs, see [3, 20, 25, 26].

In 1989, Chung [5] first introduced the concept of a Cayley sum graph of an abelian
group. Let A be an abelian group. Given a subset T of A, the Cayley sum graph (also
called addition Cayley graph) of A with respect to the connection set T , denoted by
CayS(A, T ), is a graph with A as its vertex set, and two elements x and y are adjacent
whenever x + y ∈ T . An element x of A is said to be a square if x = 2y for some
y ∈ A. A subset of A without squares is called a square-free subset of A. Since every
graph considered in this paper is simple, we always consider a simple Cayley sum graph
CayS(A, T ) of an abelian group A, that is, the connection set T should be square-free.
More explicitly, for a square-free subset T of A, the Cayley sum graph CayS(A, T ) of A
with respect to the connection set T is a simple graph with A as its vertex set, and two
elements x and y are adjacent whenever x+y ∈ T . One can easily verify that CayS(A, T )
is |T |-regular. In [12], Grynkiewicz, Levb and Serra pointed out that, as the twins of the
usual Cayley graphs, Cayley sum graphs are rather difficult to study, so they received
much less attention in the literature. For most results about Cayley sum graphs, see
[1, 4, 18, 15, 10, 21].

Huang, Xia and Zhou [14] first introduced the definition of a subgroup perfect code of
a group G, that is a subgroup of G and a perfect code of a Cayley graph of G. In [19],
the first author, Feng and the second author studied the perfect codes of CayS(A, T ), and
defined a subgroup perfect code of an abelian group by using Cayley sum graphs instead
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of Cayley graphs. More precisely, a subgroup of A is said to be a subgroup perfect code
of A if the subgroup is a perfect code of some Cayley sum graph of A. Also, in [19], the
authors reduced the problem of determining when a given subgroup of an abelian group
is a perfect code to the case of abelian 2-groups, and classified the abelian groups whose
all non-trivial subgroups are perfect codes.

In this paper, we study perfect codes of a simple Cayley sum graph of an abelian
group. For any abelian group D of odd order, since {2g : g ∈ D} = D, it follows that
every element of D is a square. Therefore, the only simple Cayley sum graph of an abelian
group D of odd order is the empty Cayley sum graph CayS(D,∅). To avoid this kind of
triviality, we only consider abelian groups of even order. In other words, throughout this
paper, A denotes a finite abelian group of even order, and the identity element of A is
denoted by 0.

The remainder of this paper is organized as follows. In Section 2, we give some
necessary and sufficient conditions for a subset of A to be a perfect code of a given Cayley
sum graph of A (see Theorem 4 and Corollary 6). In Section 3, we determine the structure
of a subgroup perfect code of A (see Theorem 10), which improves [19, Theorem 3.1], and
we also give some applications of Theorem 10 (see Propositions 18, 19 and 20).

2 Perfect codes

In this section, we study perfect codes of a Cayley sum graph of A and give some necessary
and sufficient conditions for a subset of A to be a perfect code of a given Cayley sum graph
of A (see Theorem 4 and Corollary 6).

For two subsets B and C of A, we write

B ± C = {b± c : b ∈ B, c ∈ C},

which is abbreviated by b± C in the case where B = {b}.

Lemma 1. Take a subset X of vertices in a Cayley sum graph CayS(A, T ). Then every
element of A \X is adjacent to at least one vertex of X in CayS(A, T ) if and only if

A \X ⊆
⋃
t∈T

(t−X).

Proof. Observe that
⋃

t∈T (t−X) consists of all vertices that are adjacent to some vertices
of X. Hence, the desired result follows.

Lemma 2. Take a subset X of vertices in a Cayley sum graph CayS(A, T ). Then the
following are equivalent:

(i) Every element of A is adjacent to at most one element of X in CayS(A, T );

(ii) For each two distinct elements t1 and t2 in T , we have (t1 −X) ∩ (t2 −X) = ∅;

(iii) (X −X) ∩ (T − T ) = {0}.
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Proof. Suppose that (i) holds. Assume that (t1 −X) ∩ (t2 −X) 6= ∅ for some elements
t1 and t2 in T . Then t1 − x1 = t2 − x2 for some elements x1 and x2 in X. The fact that
T is square-free indicates that t1 − x1 6= x1 and t1 − x1 = t2 − x2 6= x2. It follows that
t1 − x1 is adjacent to both x1 and x2, which implies that x1 = x2, and so t1 = t2. Thus,
(ii) is valid.

It is clear that (ii) implies (iii). Now suppose that (iii) holds. We only need to prove
(i). Assume for a contrary that there exists an element y in A which is adjacent to distinct
elements y1 and y2 of X. Then y+y1 ∈ T and y+y2 ∈ T , and so y1−y2 ∈ (X−X)∩(T−T ),
a contradiction. This completes the proof.

Lemma 3. Take a subset X of vertices in a Cayley sum graph CayS(A, T ). Then the
following are equivalent:

(i) X is an independent set of CayS(A, T );

(ii) For each t ∈ T , we have X ∩ (t−X) = ∅;

(iii) (X +X) ∩ T = ∅.

Proof. Now assume that (i) holds. Suppose to the contrary that there exists t ∈ T such
that X ∩ (t−X) 6= ∅. Then there exist x1, x2 ∈ X such that x1 = t− x2. Since t is not
a square, we have x1 6= x2. It follows that x1 is adjacent to x2, this contradicts the fact
that X is an independent set. Thus, (ii) is valid.

Also, it is easy to see that (ii) implies (iii), and (iii) implies (i). Thus, the proof is
complete.

Theorem 4. For a Cayley sum graph CayS(A, T ), write T = {t1, . . . , ts} and take a
subset X of A. The following are equivalent:

(i) X is a perfect code of CayS(A, T );

(ii) {X, t1 −X, . . . , ts −X} is a partition of A;

(iii) |A| = |X|(s+ 1), (X +X) ∩ T = ∅ and (X −X) ∩ (T − T ) = {0}.

Proof. We first prove (i) implies (iii). Suppose that (i) holds. By the definition of a
perfect code, we have |A| = |X|(s + 1). Also, in view of Lemmas 2 and 3, we conclude
that (iii) holds. Now by Lemmas 2 and 3 again, it follows that (iii) implies (ii).

Now suppose that (ii) holds. It suffices to prove (i). Note that

A = X∪̇(t1 −X)∪̇ · · · ∪̇(ts −X). (1)

Then A\X =
⋃

t∈T (t−X). By Lemma 1, we have that every element of A\X is adjacent to
at least one vertex of X in CayS(A, T ). Moreover, (1) implies that (t1−X)∩(t2−X) = ∅
for each two distinct elements t1 and t2 in T . It follows from Lemma 2 that every vertex
in A\X is adjacent to exactly one vertex in X in CayS(A, T ). Notice that (1) also implies
that X ∩ (t−X) = ∅ for each t ∈ T . According to Lemma 3, X is an independent set of
CayS(A, T ), and so X is a perfect code of CayS(A, T ), as desired.
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Two subsets M and N of A are supplementary, denoted by A = M⊕N , if each element
a of A can be written in a unique way as m+ n, where m ∈M and n ∈ N .

Lemma 5. ([24, Proposition 2.1]) Let M and N be two subsets of A. Then A = M ⊕N
is equivalent to the conjunction of any two of the following conditions:

(a) A = M +N ;

(b) (M −M) ∩ (N −N) = {0};

(c) |A| = |M ||N |.

Corollary 6. For a Cayley sum graph CayS(A, T ), take an inverse-closed subset X in A.
Then X is a perfect code of CayS(A, T ) if and only if A = X ⊕ T 0, where T 0 = T ∪ {0}.

Proof. Since T is square-free, one obtains 0 /∈ T , which implies that |T 0| = |T |+ 1.
We first prove the sufficiency. Suppose that A = X ⊕ T 0. Then by Lemma 5, we

have |A| = |X|(|T | + 1) and (X − X) ∩ (T 0 − T 0) = {0}. Since T − T ⊆ T 0 − T 0 and
T ⊆ T 0 − T 0, one gets (X −X) ∩ (T − T ) = {0} and (X −X) ∩ T = ∅. The fact that
X is inverse-closed implies that (X + X) ∩ T = ∅. It follows from Theorem 4 that X is
a perfect code of CayS(A, T ), as desired.

We next prove the necessity. Suppose that X is a perfect code of CayS(A, T ). By
Theorem 4, we have |A| = |X|(|T |+ 1), (X +X)∩ T = ∅ and (X −X)∩ (T − T ) = {0}.
Since X is inverse-closed, one gets (X−X)∩T = ∅, which implies (−(X−X))∩(−T ) = ∅.
It follows that (X −X)∩ (−T ) = ∅. Since T 0 − T 0 = T ∪ (T − T )∪ (−T ), we have that
(X −X) ∩ (T 0 − T 0) = {0}. Now Lemma 5 implies A = X ⊕ T 0, as desired.

The cyclic group of order n or the additive cyclic group of integers modulo n is denoted
by Zn = {0, 1, . . . , n− 1}. We use the following example to illustrate Corollary 6.

Example 7. In Z12, let X = {0, 3, 6, 9} and T = {1, 11}. Then (X −X) ∩ (T 0 − T 0) =
{0}, and so Z12 = X ⊕ T 0. Therefore, Corollary 6 implies that the Cayley sum graph
CayS(Z12, T ) admits the perfect code X.

If CayS(A, T ) admits a perfect code, by Theorem 4 we have that |T | + 1 divides |A|.
Observe that 2, |A|/2 and |A| are divisors of |A| as |A| is even. If |T |+ 1 = 2, since every
1-regular graph has a perfect code, CayS(A, T ) admits a perfect code. If |T | + 1 = |A|,
then CayS(A, T ) is a complete graph, which admits a perfect code of size 1 (in fact, in
this case, A is an elementary abelian 2-group, see Corollary 16). Now we consider the
case |T |+ 1 = |A|/2.

Corollary 8. A Cayley sum graph CayS(A, T ) of valency |A|/2− 1 admits a perfect code
if |T − T 0| < |A|.

Proof. The condition |T−T 0| < |A| indicates that there exists an element a ∈ A such that
a 6∈ T ∪ (T − T ). Let X = {0, a}. Then X +X = {0, a, 2a}, X −X = {0, a,−a}. Since T
is square-free, we have (X+X)∩T = ∅. Since a 6∈ T −T , one gets −a 6∈ T −T . It follows
that (X −X) ∩ (T − T ) = {0}, and so the desired result follows from Theorem 4.
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We conclude the section by the following example to illustrate Corollary 8.

Example 9. Let n be a positive even integer and let T be a square-free subset of Zn. Then
T ⊆ {1, 3, . . . , n− 1}. Suppose that |T | = n/2− 1. Let {a} = {1, 3, . . . , n− 1} \ T . Then
a 6∈ T ∪ (T − T ). Thus, by Corollary 8, it follows that a Cayley sum graph CayS(Zn, T )
of valency n/2 − 1 has a perfect code. As a concrete example, the Cayley sum graph
CayS(Z12, {1, 3, 5, 7, 9}) admits the perfect code {0, 11}.

3 Subgroup perfect codes

In this section, we study subgroup perfect codes of an abelian group of even order. In [19],
the authors reduced the problem of determining when a given subgroup of an abelian group
is a perfect code to the case of abelian 2-groups, and classified the abelian groups whose
all non-trivial subgroups are perfect codes. Our main result of this section is Theorem 10,
which characterizes the structure of a subgroup perfect code of A and improves [19,
Theorem 3.1]. To state our main theorem, we prepare some basic notations.

Let H be a subgroup of A. The index of H in A, denoted by [A : H], is the number of
right (or left) cosets of H in A. H is said to be a Hall 2′-subgroup of A if [A : H] is equal
to the cardinality of a Sylow 2-subgroup of A. We use A2 and A2′ to denote the Sylow
2-subgroup and Hall 2′-subgroup of A, respectively. Note that A2 consists of the elements
of A each of whose order is a power of 2, and A2′ consists of the elements of A with odd
order. Particularly, if A is a 2-group, then A = A2. As usual, we use B×C to denote the
direct product (or direct sum) of two groups B and C. So, we have A = A2 × A2′ . By
the fundamental theorem of finitely generated abelian groups, every finite abelian group
is a direct product of some cyclic groups. Since A = A2 × A2′ , we may assume that

A = Z2m1 × Z2m2 × · · · × Z2mk × A2′ , (2)

where mi > 1 for each 1 6 i 6 k. Observe that an element (a1, . . . , ak, a) in A is not a
square if and only if there exists an odd integer in {a1, . . . , ak}. In other words, an element
(a1, . . . , ak, a) in A is a square if and only if every element of {a1, . . . , ak} is even. Note
that the whole group A is a perfect code in the empty Cayley sum graph CayS(A,∅).

Theorem 10. Let A be an abelian group as presented in (2), and let H be a subgroup of A.
Then H is a subgroup perfect code of A if and only if either H is a subgroup isomorphic
to

Z2m1−1 × Z2m2−1 × · · · × Z2mk−1 × A2′ (3)

or H has a non-square element.

We use the following example to illustrate Theorem 10.

Example 11. Let A = Z2 × Z4 × Z3. Then

H = {(0, 0, 0), (0, 2, 0), (0, 2, 1), (0, 2, 2), (0, 0, 1), (0, 0, 2)}
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is the subgroup of A which is isomorphic to Z1 × Z2 × Z3, and the set of all non-square
elements of A is

A \H = {(1, x, y), (0, z, y) : x ∈ {0, 1, 2, 3}, y ∈ {0, 1, 2}, z ∈ {1, 3}}.

Therefore, Theorem 10 implies that any subgroup perfect code of A is either H or a
subgroup K satisfying K ∩ (A \H) 6= ∅. For example, the cyclic subgroup generated by
any element belonging to A \H is a subgroup perfect code of A.

A right transversal (resp. left transversal) of a subgroup H in A is defined as a subset
of A which contains exactly one element in each right coset (resp. left coset) of H in A.
In an abelian group, every right coset of any subgroup is also a left coset of the subgroup,
for the sake of simplicity, we then use the term “transversal” to substitute for “right
transversal” or “left transversal”.

In order to prove Theorem 10, we need some auxiliary results. Our first result is the
following proposition which gives some necessary and sufficient conditions for a subgroup
of an abelian group to be a subgroup perfect code of the abelian group. Remark that
the following result has its own interest and we only use one equivalent condition in the
sequel.

Proposition 12. Let H be a subgroup of A. The following are equivalent:

(i) H is a subgroup perfect code of A;

(ii) There exists a square-free subset T ⊆ A such that T 0 is a transversal of H in A;

(iii) There exists a square-free subset T ⊆ A such that

[A : H] = |T |+ 1, H ∩ (T ∪ (T − T )) = {0};

(iv) There exists a square-free subset T ⊆ A such that A = H ⊕ T 0;

(v) H is a subgroup perfect code of any subgroup of A which contains H.

Proof. Combining Theorem 4 and Corollary 6, one can verify that any two of (i), (ii),
(iii) and (iv) are equivalent. We next prove that (i) and (v) are equivalent. It is clear
that (v) implies (i). Now suppose that H is a subgroup perfect code of A. Let K be an
arbitrary subgroup of A with H ⊆ K. It suffices to prove that H is a subgroup perfect
code of K. Since (i) and (ii) are equivalent, there exists a square-free subset T ⊆ A such
that T ∪ {0} is a transversal of H in A. Let T ′ = T 0 ∩ K where T 0 = T ∪ {0}. Then
0 ∈ T ′ and T ′ \ {0} is square-free. Moreover, by the definition of a perfect code, one has

K = A ∩K = (H + T 0) ∩K = H + (T 0 ∩K) = H + T ′.

It follows that T ′ is a transversal of H in K. Since (i) and (ii) are equivalent again, H is
a subgroup perfect code of K.
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Lemma 13. Let H be a subgroup of A. If H has a non-square element, then H is a
subgroup perfect code of A.

Proof. Let A have the form as presented in (2). Suppose that (a1, . . . , ak, a) ∈ H is
a non-square element in A. Then there exists an odd integer in {a1, . . . , ak}. In fact,
without loss of generality, it follows from (2) that we may assume that a1 is odd. Now
let {α0, α1, . . . , αs} be a transversal of H in A, where α0 is the identity element of A and
αi = (xi1, . . . , xik, xi) for each 1 6 i 6 s.

For each i ∈ {1, . . . , s}, if αi is not a square, then let βi = αi; if αi is a square, then
every element of {xj1, . . . , xjk} is even, and let

βi = (a1, . . . , ak, a) + αi = (a1 + xi1, . . . , ak + xik, a+ xi),

which imply that a1 +xi1 is odd in Z2m1 since a1 is odd. It follows that βi is a non-square
element. Also, note that βi ∈ H + αi. We conclude that {α0, β1, . . . , βs} is a transversal
of H in A, and {β1, . . . , βs} is square-free in A. It follows from Proposition 12 (ii) that
H is a subgroup perfect code of A.

Denote AII = {2a : a ∈ A}. Then AII is the set of all squares of A.

Lemma 14. Let H be a subgroup of A. Suppose that every element of H is a square.
Then H is a subgroup perfect code of A if and only if H = AII.

Proof. Let A have the form as presented in (2). We first prove the necessity. Suppose that
H is a subgroup perfect code of A. Note that H ⊆ AII. Assume the contrary, namely,
there exists an element (a1, . . . , ak, a) ∈ AII \ H. Then every element of {a1, . . . , ak} is
even. Also, by Proposition 12 (ii), we have that H + (a1, . . . , ak, a) contains at least one
non-square element of A, a contradiction since the sum of two squares is a square.

We now prove the sufficiency. Suppose that H = AII. Let {α0, α1, . . . , αs} be a
transversal of H in A, where α0 is the identity element of A. It follows that {α1, . . . , αs}
is square-free. Now Proposition 12 (ii) implies that H is a subgroup perfect code of A.

We are now ready to prove Theorem 10.

Proof of Theorem 10. We first claim that H = AII if and only if H is a subgroup isomor-
phic to (3). In fact,

AII = {2(a1, . . . , ak, a) : (a1, . . . , ak, a) ∈ A}
= {(2a1, . . . , 2ak, 2a) : (a1, . . . , ak, a) ∈ A}
= {(b1, . . . , bk, b) : bi is even and belongs to Z2mi for all 1 6 i 6 k, b ∈ A2′}
∼= Z2m1−1 × Z2m2−1 × · · · × Z2mk−1 × A2′ .

Thus, the claim is valid. Now combining Lemmas 13 and 14, we complete the proof.
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We next give a proof of [19, Corollary 3.2] using Theorem 10.

Corollary 15. ([19, Corollary 3.2]) An abelian group has a subgroup perfect code of odd
order if and only if the Sylow 2-subgroup of the group is an elementary abelian 2-group
and the subgroup perfect code is the Hall 2′-subgroup of the group.

Proof. Let A be an abelian group as presented in (2). The proof of the sufficiency is
straightforward by Theorem 10. We now prove the necessity. Suppose that H is a
subgroup perfect code of A and has odd order. Then H has no non-square elements.
Theorem 10 implies that H is a subgroup isomorphic to (3). It follows that mi = 1 for
all 1 6 i 6 k, and so the Sylow 2-subgroup of A is elementary abelian and H is the Hall
2′-subgroup of A, as desired.

The next corollary follows immediately from Corollary 15.

Corollary 16. The subgroup consisting of the identity element of an abelian group is a
subgroup perfect code if and only if the abelian group is an elementary abelian 2-group.

We next give a necessary condition for a subgroup of an abelian group to be a subgroup
perfect code of the abelian group.

Proposition 17. Let H = H2 ×H2′ be a subgroup of A = A2 × A2′. If H is a subgroup
perfect code of A, then H2 is a subgroup perfect code of A2.

Proof. If H = A, then H2 = A2, and so H2 is a subgroup perfect code of A2 from Theorem
10, as desired. Thus, in the following, we may assume that H 6= A. In view of Proposition
12 (ii), the group A2 × A2′ has a square-free subset T := {(x1, y1), (x2, y2), . . . , (xs, ys)}
such that T ∪ {(0, 0)} is a transversal of H2 × H2′ in A2 × A2′ . Note that H2 ⊆ A2

and H2′ ⊆ A2′ . It follows that {x1, x2, . . . , xs} is a square-free subset of A2. Notice that⋃s
i=0(H2 + xi) = A2, where x0 = 0. So, we may assume that T ′ := {x′1, x′2, . . . , x′s′} is a

subset of {x1, x2, . . . , xs} such that T ′ is square-free and T ′ ∪ {0} is a transversal of H2

in A2. Note that (i) and (ii) in Proposition 12 are equivalent. It follows that H2 is a
subgroup perfect code of A2, as desired.

By Corollary 15, it is easy to see that the converse of Proposition 17 is not true.
Finally, as applications of Theorem 10, we determine the subgroup perfect codes of

three families of abelian groups. The first result is obtained by applying Theorem 10 to a
cyclic group, which determines all subgroup perfect codes of a cyclic group of even order.

Proposition 18. ([19, Theorem 3.7]) Let A = Z2n × Zm be a cyclic group of even order,
where n > 1 and m is an odd integer. Then a subgroup of A is a subgroup perfect code if
and only if the subgroup is isomorphic to either Z2n−1 × Zm or Z2n × Zm′, where m′ | m.

Proposition 19. Let A = Zn
2 × A2′, where n > 1. Then a subgroup of A is a subgroup

perfect code if and only if either the subgroup has even order or the subgroup is A2′.
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Proof. The necessity follows trivially from Corollary 15. We now prove the sufficiency.
By Corollary 15, we only need to prove that if a subgroup of A has even order, then the
subgroup is a subgroup perfect code. Now suppose that H is a subgroup of A and has even
order. Taking a ∈ H with order 2, we have a ∈ A2. Since A2 is an elementary abelian
2-group, A has no elements of order 4, which implies that a is a non-square element.
Lemma 13 implies that H is a subgroup perfect code, as desired.

Proposition 20. Let A = Zn
2 × Z4 × A2′, where n > 1. Then a subgroup of A is a

subgroup perfect code if and only if it is not isomorphic to one of En
1 × Z2 ×A′

2′ and A′′
2′,

where E1 is the group consisting of the identity element of Z2, A
′
2′ is a proper subgroup of

A2′, and A′′
2′ is a subgroup of A2′.

Proof. We first prove the necessity. Let H be a subgroup perfect code of A. Clearly, by
Corollary 15, H is not isomorphic to a subgroup of A2′ . Suppose to the contrary that
H ∼= En

1 × Z2 × A′
2′ , where E1 is the group consisting of the identity element of Z2 and

A′
2′ is a proper subgroup of A2′ . Then any element of H has the form

(0, . . . , 0︸ ︷︷ ︸
n

, 0, a) or (0, . . . , 0︸ ︷︷ ︸
n

, 2, a),

where a ∈ A′
2′ . It follows that every element of H is a square. By Theorem 10, it follows

that A′
2′ = A2′ , which contradicts that A′

2′ is a proper subgroup of A2′ .
We next prove the sufficiency. Suppose that a subgroup H of A is not isomorphic to

one of En
1 × Z2 ×A′

2′ and A′′
2′ . If H ∼= En

1 × Z2 ×A2′ , then Theorem 10 implies that H is
a subgroup perfect code, as desired. Now suppose that H � En

1 × Z2 ×A2′ . Then by the
structure of A, we conclude that H has a non-square element, and so H is a subgroup
perfect code by Lemma 13, as required.
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