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Abstract

In this paper, we prove a sparse random analogue of the Van der Waerden

Theorem. We show that, for all r > 2 and all q1 > q2 > · · · > qr > 3 ∈ N, n
− q2
q1(q2−1)

is a threshold for the following property: For every r-coloring of the p-random subset
of {1, . . . , n}, there exists a monochromatic qi-term arithmetic progression colored
i, for some i. This extends the results of Rödl and Ruciński for the symmetric case
q1 = q2 = · · · = qr. The proof of the 1-statement is based on the Hypergraph
Container Method by Balogh, Morris and Samotij and Saxton and Thomason. The
proof of the 0-statement is an extension of Rödl and Ruciński’s argument for the
symmetric case.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

For n, q ∈ N and r > 2 let [n] → (q)r denote the property that, for every r-coloring
of [n] = {1, . . . , n}, there exists a monochromatic arithmetic progression of length q.
More generally, we denote by [n]→ (q1, . . . , qr) the property that, for every r-coloring of
[n], there exists i such that there is some arithmetic progression of length qi colored i. A
classical result in Ramsey theory due to Van der Waerden [22], states that, for every choice
of q1, . . . , qr ∈ N, there exists n0 such that for every n > n0 we have [n] → (q1, . . . qr).
One might think of Van der Waerden’s theorem as the arithmetic analogue to the graph-
theoretic Ramsey Theorem.

This work aims to determine necessary and sufficient conditions for the property [n]→
(q1, . . . , qr) to hold when we replace [n] with a typical set of a given density. We define Ap
as the random subset of a set A, where every element a ∈ A belongs to Ap with probability
p, independently of all other elements of A. Many interesting questions in Ramsey theory
deal with determining the thresholds for values of p for which it is no longer possible to
color Ap without introducing specific monochromatic substructures.
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Even though the use of probabilistic methods in Ramsey theory has a long history, the
study of Ramsey properties of random structures was initiated more recently by Frankl
and Rödl [5], who applied probabilistic methods to prove the existence of a graph G with
no K4 for which every 2-coloring must contain a monochromatic triangle.

In a series of papers, Rödl and Ruciński [17, 18, 19], determined the thresholds for
the symmetric Van der Waerden property. Let [n]p → (q)r denote the event that, for
every r-coloring of [n]p, there exists a monochromatic arithmetic progression of length q.
Similarly, let [n]p → (q1, . . . , qr) denote the event that, for every r-coloring of [n]p, there
exists a color i such that there exists an arithmetic progression of length qi colored i.

Theorem 1 (Rödl and Ruciński). For 3 6 q ∈ N and every r > 2, there exist c, C > 0
such that

lim
n→∞

P([n]p → (q)r) =

{
1 if p > C · n−

1
q−1 ,

0 if p 6 c · n−
1
q−1 .

Similarly to the notation for the Van der Waerden property, one lets G→ (F1, . . . , Fr)
denote the property that, for every r-coloring of E(G), there exists i such that there is
a copy of Fi colored i. As well as Theorem 1, Rödl and Ruciński have also determined
the threshold for the event G(n, p)→ (F, . . . , F ). In 1997, Kohayakawa and Kreuter [11]
initiated the study of the asymmetric case for graphs; they determined the threshold
for the event G(n, p) → (C1, . . . , Cr) where C1, . . . , Cr are all cycles, and conjectured
the location of the threshold for general subgraphs (F1, . . . , Fr). Several papers have
since extended Kohayakawa and Kreuter’s result to other families of subgraphs. For
instance, Marciniszyn, Skokan, Spöhel and Steger [13], showed that the conjecture holds
when F1, . . . , Fr are all cliques. More recently Mousset, Nenadov and Samotij [14] proved
an upper bound for the threshold function in the Kohayakawa–Kreuter conjecture for
general subgraphs, extending a result of Gugelmann, Nenadov, Person, Škorić, Steger and
Thomas [7], and settling the 1-statement. Very recently, Liebenau, Mattos, Mendonça
and Skokan [12], have shown that the 0-statement holds for r = 2 for any pair of cycles
and cliques. However, the 0-statement for general subgraphs remains open.

In this paper we prove the following natural analogue of the Kohayakawa–Kreuter
conjecture for the Van der Waerden theorem:

Theorem 2. For every r > 2 and q1 > q2 > · · · > qr ∈ N, there exist c, C > 0 such that

lim
n→∞

P([n]p → (q1, . . . , qr)) =

{
1 if p > C · n−

q2
q1(q2−1) ,

0 if p 6 c · n−
q2

q1(q2−1) .

Whether the threshold in Theorem 2 is sharp remains an interesting open question; so
far it has only been shown that this is the case in Zn when r = 2 and q1 = q2 by Friedgut,
Hàn, Person and Schacht [6].

It is important to note that only the two largest lengths determine the threshold.
Therefore, in the proof of the 1-statement, it suffices to assume q2 = · · · = qr. For the
0-statement, we will show that a proper coloring exists using only the first two colors, as
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is necessary for the case r = 2, since that is also sufficient for all values of r. By that
reasoning, it is natural to divide the proof into the symmetric (q1 = q2) and asymmetric
(q1 > q2) cases.

A generalization of Van der Waerden’s theorem is the classical Rado theorem [16],
which characterizes the so-called partition-regular matrices. A matrix A is partition-
regular if every finite coloring of the positive integers admits a monochromatic solution to
the equation Ax = 0. Independently to this work, some progress has been made towards
an asymmetric version of the random Rado theorem: given a sequence of partition-regular
matrices A1, . . . , Ar, for which values of p does every r-coloring of [n]p admit a solution
to Aix = 0 colored i? Aigner-Horev and Person [1] obtained an upper bound for the
threshold value, which implies the 1-statement in Theorem 2. Soon after, Hancock and
Treglown [8] obtained a matching lower bound for the case where every Ai has rank one;
this result implies the 0-statement in a special case of theorems 1 and 2, where qi = 3 for
all i.

The structure of this paper is as follows. In Section 2, we present several known results
that are used in our proofs. In Sections 3 and 4, we present short proofs for the symmetric
case, already proved by Rödl and Ruciński [18]. We also correct an error in their proof for
the 0-statement, which was independently discovered by Hancock and Treglown. These
sections are included here strictly for completeness; readers familiar with these results are
encouraged to continue reading from Section 5 in which we prove the 1-statement for the
asymmetric case. Finally, in Section 6, we complete the proof of Theorem 2 by proving
the 0-statement for the asymmetric case.

2 Preliminary results

In this section, we state several known results that are used throughout this paper. The
first result is the Hypergraph Container Lemma proved by Balogh, Morris and Samotij
[3], and independently by Saxton and Thomason [21]. For an introduction to the various
applications of this lemma, as well as the formulation used in this paper, we refer the
reader to [4].

Definition 3. For a k-uniform hypergraph H and a set A ⊂ V (H) we define

d(A) = |{e ∈ E(H) : A ⊂ e}|,

and for ` ∈ {1, . . . , k} we define

∆`(H) = max{d(A) : A ⊂ V (H) and |A| = `}.

Definition 4. Let H be a hypergraph, we denote the set of independent subsets of V (H)
by

I(H) = {I ⊂ V (H) : ∀E ∈ E(H), E 6⊂ I}.

Theorem 5 (The Hypergraph Container Lemma). Let k ∈ N and ε > 0. Let H be a
nonempty k-uniform hypergraph, and suppose that:
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∆`(H) 6 K ·
(

b
v(H)

)`−1
· e(H)
v(H)

for some b,K ∈ N and every ` ∈ {1, . . . , k}. Then, there exists a constant D = D(ε, k,K),
a collection C ⊂ P (V (H)) and a function f : P (V (H))→ C such that:

1. for every I ∈ I(H), there exists S ⊂ I with |S| 6 Db and I ⊂ f(S),

2. each C ∈ C contains fewer than ε · e(H) edges.

Claim 6. Let H be the hypergraph encoding q-APs in [n], where V (H) = [n] and E(H)
is the set of arithmetic progressions of length q. Then,

∆(H) = ∆1(H) 6 n

.

Proof. We denote the number of arithmetic progressions of length q in [n] such that k is
the ith element by d(k, i). One easily checks that d(k, i) satisfies:

d(k, i) =


⌊
n−k
q−1

⌋
if i = 1,⌊

k−1
q−1

⌋
if i = q,

min{
⌊
k−1
i−1

⌋
,
⌊
n−k
q−i

⌋
} otherwise.

We obtain that that the degree of k in H satisfies

d(k) =

q∑
i=1

d(k, i) 6
n

q − 1
+

q−1∑
i=2

d(k, i).

Applying the bound min{
⌊
k−1
i−1

⌋
,
⌊
n−k
q−i

⌋
} 6 k−1+n−k

i−1+q−i <
n
q−1 we conclude that

d(k) =

q∑
i=1

d(k, i) 6
n

q − 1
+

q−1∑
i=2

d(k, i) 6
n

q − 1
+ (q − 2) · n

q − 1
6 n.

Remark 7. Let H be the hypergraph encoding q-APs in [n], where V (H) = [n] and E(H)
is the set of arithmetic progressions of length q. Then:

1. The number of edges of H satisfies

e(H) =

n−q+1∑
i=1

⌊
n− i
q − 1

⌋
= Θ(n2)

since there are bn−a
q−1 c arithmetic progressions of length q in [n] with smallest element

a.
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2. For ` = 1, we have ∆1(H) 6 n, by the previous claim.

3. For every ` > 2, we have ∆`(H) 6 q2 since choosing the indices of two elements
determines the arithmetic progression.

Therefore we may apply the Hypergraph Container Lemma with b = qn
q−2
q−1 , since for

` = 1

∆1(H) 6 n 6 K · e(H)

v(H)

and for 2 6 ` 6 q

∆`(H) 6 q2 6 qq−1 6 K · q
q−1nq−2

nq−1
· e(H)

n
6 K ·

(
qn

q−2
q−1

v(H)

)`−1

· e(H)

v(H)
,

provided that K and n are sufficiently large.

Definition 8. For brevity, we say a set of integers is q-AP-free if it contains no arithmetic
progression of length q.

We obtain the following container lemma for arithmetic progressions.

Theorem 9. For every integer q > 3 and ε > 0, there exists a constant D = D(ε, q) such
that for each n ∈ N, there exists a collection G ⊂ P ([n]) and a function f : P ([n]) → G
such that:

1. each G ∈ G contains fewer then εn2 many q-APs,

2. for every q-AP-free subset I ⊂ [n], there exists S ⊂ I with |S| 6 D · n
q−2
q−1 and

I ⊂ f(S).

We also require two classical results in probabilistic combinatorics, the first of which
is Janson’s inequality [10].

Theorem 10 (Janson’s inequality). Let Γ be a finite set and let S ⊂ P (Γ). For every
A ∈ S, let IA = 1 if A ⊂ Γp and IA = 0 otherwise.
Let X =

∑
A∈S IA be the random variable counting the sets of S which are entirely con-

tained in Γp. Set

µ = EX and ∆ =
∑

(A,B)∈S2

A 6=B,A∩B 6=∅

E[IA · IB].

Then,

P(X = 0) 6 e−µ+
∆
2 .

Moreover, if ∆ > µ, then

P(X = 0) 6 e−
µ2

2∆
.
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The second inequality is also known as The Extended Janson Inequality. For an
introduction, as well as proofs for both inequalities, we refer the reader to [2].

We will also require a special case of Harris’s inequality [9].

Theorem 11 (Harris’s inequality). Let Γ be a finite set and let f : P (Γ) → {0, 1} be
an indicator function for some family of sets A. We say A is increasing (equivalently
decreasing), if S1 ⊂ S2 =⇒ f(S1) 6 f(S2) (equivalently f(S1) > f(S2) ). If A is
increasing and B is decreasing, then

P(Γp ∈ A ∩ B) 6 P(Γp ∈ A) · P(Γp ∈ B).

Again, for a more detailed discussion, we refer the reader to [2].
The final result in this section is a well-known quantitative version of Van der Waer-

den’s Theorem due to Varnavides [23].

Lemma 12. For every r ∈ N and every q > 2, there exist n0 ∈ N and ε > 0 such that
for all n > n0, every (r+ 1)-coloring of [n] contains at least (r+ 1) · ε ·n2 monochromatic
arithmetic progressions of length q.

Proof. From Van der Waerden’s theorem we have W = W (r+1, q) such that every (r+1)-
coloring of [W ] yields a monochromatic q-AP. Thus, in every coloring of [n] every W -AP
contains at least one monochromatic q-AP. We observe:

(a) #W -APs in [n] = Θ
(
n(n−W )
W−1

)
.

(b) Every q-AP is contained in at most W 2 many W -APs (fixing the indices of two
terms in an arithmetic progression determines the progression).

We obtain from (a) Θ
(

1
W
· n2
)

many q-APs, however they may be contained in multiple
W -APs. Since by (b) every q-AP is counted at most W 2 times, the lemma follows with

ε = Θ
(

W−3

2(r+1)

)
.

3 The symmetric case 1-statement

In this section, we present a short proof to the following theorem (originally proved by
Rödl and Ruciński [19]):

Theorem 13. For every r ∈ N and q > 3, there exists C > 0 such that the following

holds: If p > Cn−
1
q−1 then a.a.s. every r-coloring of [n]p contains a monochromatic q-AP.

The general framework of the proof we present here is due to Nenadov and Steger [15]
who applied a similar argument in the setting of graphs. We begin by describing a general
outline of the proof.

From The Hypergraph Container Lemma, we obtain a set of containers G for q-AP-free
subsets of [n]. Assume for contradiction that [n]p has a coloring with no monochromatic
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arithmetic progression of length q, and fix an arbitrary such coloring. Let Gi ∈ G be the
container for the i-th color class. Each container contains strictly fewer than εn2 many
q-term arithmetic progressions. However, by Lemma 12 every coloring in r + 1 colors
must contain some color class with at least εn2 arithmetic progressions. In our case, we
treat the remainder set [n] \

⋃
iGi as the final color class. Hence, it must have at least

εn2 arithmetic progressions and therefore has at least εn many elements. However, by
definition, the remainder set (which depends only on G1, . . . , Gr) and [n]p are disjoint.
Thus, the probability that [n]p has a coloring with no monochromatic q-term arithmetic
progression that obeys the coloring constraints set by (G1, . . . , Gr) is at most (1 − p)εn.
Finally, we apply a union bound over all possible choices for the r-tuple of containers,
obtaining that the probability that such [n]p has a proper r-coloring tends to zero.

Proof of Theorem 13. We say that a coloring is “proper” if it contains no monochromatic
q-AP. We wish to prove that a.a.s. [n]p admits no such coloring. Applying Theorem 9
with ε = ε(r) obtained from Lemma 12, we obtain a family of containers G such that each
G ∈ G contains fewer than εn2 many q-APs. If we suppose that there exists a proper

coloring for [n]p, then there are q-AP-free subsets H1, . . . , Hr, such that
r⋃
i=1

Hi = [n]p.

By Theorem 9, there exist a constant D and a function f : P ([n]) → G such that for

every i there exists a set Si ⊂ Hi, with |Si| 6 D · n
q−2
q−1 and Hi ⊂ f(Si) = Gi. By Lemma

12, we obtain that for any coloring of [n] with r + 1 colors there must be a color class
with at least εn2 arithmetic progressions.

Suppose we color the elements of
⋃
Gi such that only elements of Gi are colored i

and the elements of [n] \
r⋃
i=1

Gi are colored r + 1. Since every Gi contains fewer than εn2

arithemetic progressions, the set of elements colored r + 1 must contain εn2 arithmetic
progressions. Since, by Claim 6, each k ∈ [n] belongs to at most n many q-APs we have

|[n] \
r⋃
i=1

Gi| >
εn2

n
= εn.

In summary, the event “There exists a proper coloring of [n]p” implies the following

two events, for some S1, . . . , Sr ⊂ [n] with |Si| 6 Dn
q−2
q−1 for every i ∈ {1, . . . , r}:

1.
⋃r
i=1 Si ⊂ [n]p,

2. [n]p ⊂
⋃r
i=1 f(Si).

Note that (b) is equivalent to

[n]p ∩

(
[n] \

r⋃
i=1

f(Si)

)
= ∅.

Since Si ⊂ f(Si) for every i, (a) and (b) depend on disjoint subsets of [n] and are inde-
pendent events. Hence, the probability of both (a) and (b) occurring is:
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P
(
S1, . . . , Sr ⊂ [n]p ∧ [n]p ⊂

r⋃
i=1

f(Si)

)
6 p

|
r⋃
i=1

Si|
· (1− p)εn.

Givan a set S with |S| = s, there are at most 2rs sequences (S1, . . . , Sr) such that S =
⋃
Si.

Taking the union bound over all choices of S1, . . . , Sr (grouping by s = |
r⋃
i=1

Si|) we obtain

P([n]p admits a proper coloring) 6
∑

(S1,...,Sr)

p
|
r⋃
i=1

Si|
· (1− p)εn

6 (1− p)εn
Drn

q−2
q−1∑

s=1

(
n

s

)
2rsps 6 e−εpn

Drn
q−2
q−1∑

s=1

(
en2rp

s

)s
.

Recall that p = Cn−
1
q−1 . Since x 7→

(
ea
x

)x
is increasing for x 6 a, by choosing C

sufficiently large we obtain that Drn
q−2
q−1 6 δpn for some δ = δ(C,D, r) > 0 which can be

made arbitrarily small by choosing C sufficiently large. Hence,

Drn
q−2
q−1∑

s=1

(
en2rp

s

)s
6 Drn

q−2
q−1 ·

(
en2rp

Drn
q−2
q−1

)Drn q−2
q−1

6 δpn ·
(
e2r

δ

)δpn
6 e

εpn
2

for sufficiently large C, since (1
δ
)δ → 1 as δ → 0. Hence:

P([n]p admits a proper coloring) 6 e
−εpn

2 → 0.

4 The symmetric case 0-statement

In this section, we prove the following theorem (originally proved by Rödl and Ruciński
[19]):

Theorem 14. For any integer q > 3, there exists c > 0 such that for p = c · n−
1
q−1 , [n]p

can a.a.s. be colored by two colors with no monochromatic q-term arithmetic progression.

Note that this implies the 0-statement in Theorem 1 for any r > 2. The proof here is
a specialization of the proof by Rödl and Ruciński [20] to the random Rado partition
theorem, and is included here both for the sake of completeness and as an introduction
to the techniques used for the asymmetric case in Section 6. The proof consists of two
main lemmas. The deterministic lemma states that every non-2-colorable uniform hyper-
graph must contain one of a small family of hypergraphs which we refer to as 2-blocking
hypergraphs (which will be defined next). Then, the probabilistic lemma states that in
the random hypergraph of arithmetic progressions in [n]p, the subhypergraphs mentioned
in the deterministic lemma almost surely do not appear. We begin by defining several
families of hypergraphs.
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Definition 15. A simple path is a hypergraph consisting of edges E1, . . . , E`, for ` > 1,
such that

|Ei ∩ Ej| =

{
1 if |i− j| = 1,

0 if otherwise.

A fairly simple cycle is a hypergraph that consists of a simple path (E1, . . . , E`), with
` > 2, and an edge E0 such that

|E0 ∩ Ei| =


1 if i = 1,

0 if i = 2, . . . , `− 1,

s if i = `,

for some s > 1, and such that E0 ∩E1 ∩E` = ∅. A fairly simple cycle is said to be simple
if s = 1; otherwise, we say it is special. A path P in a hypergraph H is said to be spoiled if
it is not an induced subhypergraph of H. We call an edge E ⊂ V (P ) such that E /∈ E(P )
a spoiling edge for P .

The length of a path or a fairly simple cycle is the number of edges in it. A sub-
hypergraph H0 of H is said to have a handle if there is an edge E in H such that
|E| > |E ∩ V (H0)| > 2.

Definition 16. We call a q-uniform hypergraph 2-blocking if it is one of the following:

1. A special cycle.

2. A simple cycle with a handle.

3. A spoiled path.

4. For q = 3, the 3-uniform, 2-regular, 6-vertex, simple hypergraph, which we call “the
reduced Fano plane” (See Figure 1a) 1.

Lemma 17 (The determinisic lemma). Let q > 3 be some integer, and let H be a q-
uniform hypergraph which is not 2-colorable. Then H contains a 2-blocking hypergraph.

Proof. Recall that we say a hypergraph is 3-edge-critical if it cannot be properly colored
with two colors, but any proper subhypergraph of it is 2-colorable. We may assume
that H is 3-edge-critical; otherwise, we may replace it with one of its 3-edge-critical
subhypergraphs.

Claim 18. If H is a 3-edge-critical hypergraph, then for every edge E ∈ H and for every
vertex v ∈ E there is an edge E ′ ∈ H such that E ∩ E ′ = {v}.

1The name stems from the fact that this hypergraph is exactly the Fano plane with one vertex removed.
It is also sometimes refered to as a Pasch configuration.
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Proof. Let H be 3-edge-critical, and suppose that there are an edge E ∈ H and a vertex
v ∈ E such that no other edge intersects E in exactly {v}; thus, every edge E ′ that
contains v also contains another vertex of E. By the 3-edge-criticality, H can be colored
red-blue in a way such that only E is monochoromatic, say it is blue. Now, by changing
the color of v to red, E is no longer monochromatic, and neither is any other edge that
contains v, contradicting the fact that H is not 2-colorable.

Let P = (E1, . . . , E`) be a longest simple path in H. By the claim, ` > 2. Let x, y be
two of the vertices that belong only to E1, and let Ex, Ey be two edges of H that intersect
E1 only in x and y respectively. Since P is maximal, hz = |Ez ∩ V (P )| > 2, for z = x, y.

We may also assume that Ex, Ey only intersect one another and each edge of P in
at most a single vertex (otherwise we obtain a special cycle). Let iz = min{i > 2 :
Ez ∩ Ei 6= ∅}, and without loss of generality assume iy 6 ix. If hz = q for some z then P
is a spoiled simple path. Otherwise, either the edges E1, . . . , Eiy , . . . , Eix , Ex form a fairly
simple cycle, to which Ey is a handle (see Figure 1b) or Ey ⊂ (E1 ∪ · · · ∪ Eix ∪ Ex).

Assuming the latter case, since hy < q and we assumed that |Ex ∩ Ey| 6 1, we must
have Ex ∩ Ey = {u} for some vertex u /∈ V (P ). We now split into several cases. First, if
iy < ix then the edges E1, . . . , Eiy , Ey form a fairly simple cycle to which Ex is a handle
(since it only intersects the cycle at x and u). Finally, if iy = ix = i then either Ex, Ey, Ei
form a fairly simple cycle to which E1 is a handle, or i = 2, q = 3 and E1, E2, Ex, Ey form
the reduced Fano plane.

(a) The reduced Fano plane
(b) Ex (dashed) forms a cycle with P to
which Ey (dotted) is a handle.

Lemma 19 (The probabilistic lemma). Let H be the hypergraph with vertex set V (H) =
[n], whose edge set is the set of q-APs, and let Hp be its random subhypergraph induced

by [n]p. If p = c · n−
1
q−1 , then a.a.s. Hp contains no 2-blocking hypergraph, provided that

c is sufficiently small.
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Proof. We apply a first-moment argument to several random variables. Let B be a large
enough constant, we will show that a.a.s. no path of length B log n exists in Hp. We will
then show that a.a.s. no 2-blocking graph with fewer than B log n edges exist.

The following calculations are used several times throughout the arguments. First, the
number of choices for a q-term arithmetic progression in [n] is O(n2), and the probability

that all of its q elements belong to [n]p is (cn−
1
q−1 )q = O(n−1p), so the expected number

of q-term arithmetic progressions in [n]p is O(np).
We say that an edge A extends a simple path P = (E1, . . . , E`) in H, if A∩V (P ) = {v}

and {i : v ∈ Ei} is exactly {1} or {`}. Observe that the number of choices for an arithmetic
progression A that extends a simple path P is bounded by 2 · (q − 1) · q · n, and that the

probability that A \ V (P ) ⊂ [n]p is (cn−
1
q−1 )q−1. Therefore, we may bound the expected

number of possible edge choices for extending a simple path in Hp by some constant cr,
which may depend on q but not on n, and may be made arbitrarily small by changing c.

The number of arithmetic progressions containing a fixed set {v1, . . . , vs} with s >
2, is bounded by a constant (for instance

(
q
s

)
is a trivial bound). Hence the expected

number of arithmetic progressions in Hp that contain {v1, . . . , vs} is O(pq−s), assuming
{v1, . . . , vs} ⊂ [n]p.

Since the number of simple paths of length t in H is at most O(n1+t), and a simple
path of length t must contain q vertices for the first edge and q − 1 vertices for every
subsequent edge, the expected number of simple paths of length t in Hp is

O(n1+t · pq+(t−1)(q−1)) = O(np · ctr).

We are now ready to proceed with the argument.
Let U be the random variable counting the number of simple paths in Hp of length at

least B · log n. We bound the expected value of U by summing over different lengths of
paths. By the above computations,

EU 6 O(
∑

t>B logn

np · ctr) = o(1),

provided that cr is sufficiently small and B is sufficiently large.
Let W be the random variable counting the number of special cycles in Hp. For a

given edge there are only a constant number of edges that interesect it in more than one
vertex, therefore the number of such edge pairs in H is O(n2). We may bound the number
of special cycles of length t in H by first fixing E0 and Et−1, then fixing a simple path
of length t − 3 starting from some vertex of E0 and finally choosing Et−2. Note that we
have O(1) many choices for Et−2 since it must include exactly one vertex from Et−3 and
one vertex from Et−1. Moreover, these vertices cannot coincide as E0 ∩ E1 ∩ Et−1 = ∅.
In total we obtain that there are O(n2 · nt−3) = O(nt−1) such cycles in H. Since we
must have at least q + 1 vertices for E0 and Et−1, an additional (t − 3) · (q − 1) vertices
for E1, · · · , Et−3, and exactly q − 2 additional vertices for Et−2 we require a total of
2q − 1 + (t− 3) · (q − 1) = 1 + (t− 1) · (q − 1) vertices in Hp. Hence,

EW = O(
∑
t>2

nt−1p1+(t−1)·(q−1)) = O(p
∑
t>2

ct−1r ) = O(p) = o(1),
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provided that cr is sufficiently small.
Let X be the random variable counting the number of simple cycles with handles of

length at most B log n in Hp. We denote the length of the cycle by t, and the size of the
intersection between the handle and the cycle by k. Similarly to the previous argument,
there are O(nt) many cycles of length t in H. Since the handle must attach in at least
two vertices of the cycle we may bound the number of handles in H by O(log2 n). For
fixed values of t and k, such a configuration requires t · (q − 1) vertices for the cycle and
an additional q − k vertices for the handle. Summing over t and k,

EX = O(

B logn∑
t=3

∑
26k6q−1

nt · pt·(q−1)+q−k · log2 n) = O(p log3 n) = o(1).

Let Y be the random variable counting the number of spoiled simple paths of length
less than B log n in Hp. Let E be an induced edge that is not one of the edges of a
spoiled path. We now split into two cases. First, suppose that E intersects some edge
in at least two vertices, we obtain a path (E1, . . . , E`) and an edge E0 = E, such that
|E0 ∩ E1| = s > 2, |E0 ∩ (E` \ E1)| = t > 1. If t = 1 and E0 ∩ E1 ∩ E` = ∅ this yields a
special cycle, and thus the expected number of such hypergraphs in Hp is o(1). Otherwise,
t′ = |E` ∩ (E0 ∪ E1)| > 2. As |E1 ∩ E`| 6 1 we have s + t′ 6 q + 1. Hence, the expected
number of choices for E0, E1, E` is

O(
∑
s,t′

np · pq−s · pq−t′) = O(
∑
s,t′

np2q−(s+t
′)+1) = O(npq) = o(1).

Assuming that E intersects every edge of a path (E1, . . . , E`) in at most one vertex,
we may define an ordering function f : E → [`] by f(v) = min{i : v ∈ Ei} and order
the vertices of E by the values of f . Observe the shortest sub-path containing the first
three vertices {v1, v2, v3} ⊂ E, and denote t1 = f(v2)− f(v1) and t2 = f(v3)− f(v2). Let
Y ′ count such configurations in H. We have an expected O(np) many choices for E, and
O(ct−1r pq−2) many choices for a path of length t between two fixed vertices. Summing over
t1 and t2 we obtain

EY ′ = O(
∑
t1>1

∑
t2>1

np · ct1−1r pq−2 · ct2−1r pq−2) = O(np2q−3) = O(pq−2) = o(1).

Thus,
EY = o(1).

Finally, let Z be the random variable counting the number of copies of the reduced Fano
plane in Hp. First, we show that there are O(n2) copies of the reduced Fano plane in H.
Suppose that {x1, x2, x3} is an edge in H, since there are O(n2) choices for an arithmetic
progression of length three it suffices to show that there are at most O(1) many choices
for x4, x5, x6 such that {x1, . . . , x6} induce a copy of the reduced Fano plane. Denote
~v = (x1, x2, x3) and ~x = (x4, x5, x6). Since every pair of vertices in {x4, x5, x6} form a
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3-AP with one vertex in {x1, x2, x3}, we obtain the following family of equations:

A · ~x = ~v for A =

a b 0
0 c d
e 0 f

 with a, b, c, d, e, f ∈ {−1,
1

2
, 2}.

Since det(A) = acf + bde 6= 0 for all choices of A we obtain that A is invertible, and
therefore fixing ~v determines ~x. Since the reduced Fano plane contains six vetices we
obtain that the expected number of such configurations is O(n2p6) = O(n2− 6

2 ) = O( 1
n
) =

o(1).
Thus, by Markov’s inequality P(U = W = X = Y = Z = 0) → 1 as n → ∞

completing the proof.

With the two lemmas in hand, the proof of Theorem 14 is immediate.

Proof of Theorem 14. Let H be the hypergraph with vertex set V (H) = [n]p, whose edge
set is the set of q-term arithmetic progressions. By Lemma 19, H a.a.s. contains no
2-blocking hypergraph. Therefore, by Lemma 17, H is 2-colorable.

5 The asymmetric case 1-statement

In this section, we prove the following result:

Theorem 20. For every r > 2 and q1 > q2 > · · · > qr ∈ N, qr > 3, there exists C > 0
such that the following holds:

If p > Cn
− q2
q1(q2−1) then a.a.s. for every r-coloring of [n]p there is some i such that there

exists a monochromatic qi-AP colored i.

We begin by describing a rough outline of the proof, which follows similar ideas to
[7]. We say that a coloring is proper if it contains no monochromatic qi-AP colored i; we
wish to prove that a.a.s. [n]p admits no such coloring. First, we reduce the problem by
showing that every proper coloring may be modified to yield a “good” coloring where,
additionally, every element not in a q1-AP is colored 1. Thus, it would suffice to show
that no such good coloring exists.

Using The Hypergraph Container Lemma we obtain a set of containers G for the q2-
AP-free subsets of [n]. Supposing for contradiction that a good coloring exists, we fix one
arbitrary such coloring along with containers G2, . . . , Gr ∈ G for all the color classes but
the first.

For i > 2, we denote the set of elements colored i by Ii. We denote the remainder set
I1 = [n]p \ (I2 ∪ · · · ∪ Ir). Since, by Lemma 12, [n] \ (G2 ∪ · · · ∪Gr) contains at least εn2

many arithmetic progressions of length q1, the set of elements colored 1 is unlikely to be
q1-AP-free. Indeed, in Lemma 21, we show that the probability that the set of elements
colored 1 contains no q1-AP is exponentially small in n2pq1 .

Note, that the existence of a good coloring implies two events: First, the signature
sets for the containers G2, . . . , Gr must all be covered by q1-APs in [n]p, and second, the
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remainder set I1 must not contain a single q1-AP. Using Harris’s inequality, we show that
these two events are negatively correlated.

Finally, we apply a union bound over all possible choices for the tuple of containers
(G2, . . . , Gr), by iterating over their signature sets S2, . . . , Sr. A critical part of the union

bound argument is Lemma 23, which roughly states that if p = Θ(n
− q2
q1(q2−1) ) then typically

q1-APs rarely intersect, and therefore most of S =
⋃
Si is covered by isolated q1-APs in

[n]p.
We begin by proving the following lemmas:

Lemma 21. Suppose A is a collection of Ω(n2) q-APs in [n], and npq−1 � 1. Then,

P([n]p does not contain any member of A) 6 exp(−Ω(n2pq)).

Proof. Enumerate the elements of A = {Ei : i ∈ I}. For each i ∈ I, let Xi be the
indicator random variable for the event Ei ⊂ [n]p and let X =

∑
Xi. Observe that

µ = EX = Ω(n2pq),

∆ =
∑
i 6=j

Ei∩Ej 6=∅

P(Ei ∪ Ej ⊂ [n]p) =
∑
i∈I

∑
16k6q−1

∑
j∈I

|Ei∩Ej |=k

p2q−k.

Note that for a fixed i and k > 1 there are only at most q2 = O(1) many js such that
|Ei ∩ Ej| = k, and for k = 1 there at most O(n) such js. For a fixed i this implies,∑

16k6q−1

∑
j∈I

|Ei∩Ej |=k

p2q−k = O(np2q−1 +
∑

26k6q−1

p2q−k) = O(np2q−1 + pq+1),

and thus, as |A| = O(n2),
∆ = O(n3p2q−1 + n2pq+1).

Moreover, by our assumption that npq−1 � 1 we have

n3p2q−1 + n2pq+1 � n2pq.

Hence, by Janson’s inequality,

P(X = 0) 6 exp(−µ+
∆

2
) = exp(−Ω(µ)) = exp(−Ω(n2pq))

concluding the proof.

Definition 22. We say that a q1-AP in [n]p is isolated, if it does not intersect any other
q1-AP in [n]p. We define the following random variables:

Q =
⋃
{A ⊂ [n]p : A is a q1-AP},

QI =
⋃
{A ⊂ [n]p : A is an isolated q1-AP}.

Let δ = min{q2,q1−q2}
2q1(q2−1) . If |Q \QI | < n

1− 1
q2−1

−δ
we say that Q is mostly independent.
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Lemma 23. If p = O(n
− q2
q1(q2−1) ) then Q is mostly independent a.a.s.

Proof. First we compute the expected number of sets that are a union of two intersecting
q1-APs. First, since 1

q2−1 −
q2

q1(q2−1) = q1−q2
q1(q2−1) > 2δ,

E(#pairs of q1-APs sharing exactly one element) = O(n2 · n · p2q1−1)

= O(n
1− 2

q2−1
+

q2
q1(q2−1) ) = O(n

1− 1
q2−1

−2δ
).

Second, for every 1 < m < q1

E(#pairs of q1-APs sharing exactly m elements) = O(n2 · p2q1−m)

= O(n
− 2
q2−1

+
mq2

q1(q2−1) ).

Since mq2
q1(q2−1) 6

(q1−1)q2
q1(q2−1) = 1 + 1

q2−1 −
q2

q1(q2−1) 6 1 + 1
q2−1 − 2δ,

E(#pairs of q1-APs sharing m elements) = O(n
1− 1

q2−1
−2δ

).

In particular, since |Q \QI | 6 |{(A,B) : A ∩B 6= ∅, A,B ∈ Q}|,

E|Q \QI | 6 O(n
1− 1

q2−1
−2δ

).

Finally, we obtain from Markov’s inequality,

P(|Q \QI | > n
1− 1

q2−1
−δ

) 6 O

(
n
1− 1

q2−1
−2δ

n
1− 1

q2−1
−δ

)
= O(n−δ) = o(1).

Hence, a.a.s.

|Q \QI | < n
1− 1

q2−1
−δ
.

We are now ready to prove Theorem 20.

Proof of Theorem 20. First, since p depends only on q1 and q2, we may assume that
q2 = q3 = · · · = qr. We say that a coloring is proper if it contains no monochromatic
qi-AP colored i; we wish to prove that a.a.s. [n]p admits no such coloring.

By our assumption, p > Cn
− q2
q1(q2−1) for some sufficiently large C > 0. Since not

admitting a proper coloring is an increasing event, without loss of generality we may

assume that p = Cn
− q2
q1(q2−1) .

Note that the elements of the set {a ∈ [n]p : a does not belong to a q1-AP} may all be
recolored 1 for any proper coloring of [n]p, without creating a monochromatic q1-AP. We
say that such a proper coloring is a “good” coloring. Since, by recoloring, the existence
of a proper coloring implies the existence of a good coloring it suffices to show that no
good coloring exists.

Suppose that there is such a coloring; then for each i ∈ [r], the set Ii of elements
colored i contains no qi-APs. By The Hypergraph Container Lemma for every ε > 0 and
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every i > 2 there exist Si ⊂ Ii ⊂ Gi with |Si| 6 smax = O(n
1− 1

q2−1 ) and such that Gi,
which depends only on Si, contains at most εn2 many q2-APs (the implicit constant in
the definition of smax may depend on ε and q2). By our assumption,

I1 = [n]p \ (I2 ∪ · · · ∪ Ir) ⊃ [n]p \ (G2 ∪ · · · ∪Gr) = [n]p ∩ ([n] \ (G2 ∪ · · · ∪Gr)).

In particular,

I1 contains no q1-APs =⇒ [n]p ∩ ([n] \ (G2 ∪ · · · ∪Gr)) contains no q1-APs.

For brevity, we write A(S2,...,Sr) = [n]p ∩ ([n] \ (G2 ∪ · · · ∪Gr)), as Gi depends only on
Si. Since q1 > q2, the number of q1-APs in any set of integers is at most as large as the
number of q2-APs. Therefore, for every choice of (S2, . . . , Sr), Lemma 12 implies that
[n] \ (G2 ∪ · · · ∪Gr) contains at least εn2 many q1-APs. Hence, by Lemma 21

P(A(S2,...,Sr) contains no q1-AP) 6 e−D1n2pq1

for some constant D1 > 0 which depends only on ε and q1.
Let Q and QI be the variables defined in Definition 22. Suppose S = ∪ri=2Si is covered

by elements of Q; we fix a largest subset of S that is covered by pairwise-disjoint arithmetic
progressions of length q1 in [n]p and denote it S ′. Since S \ S ′ ⊂ S ∩ (Q \ QI), if Q is

mostly independent then |S \ S ′| < n
1− 1

q2−1
−δ

. Thus, if a good coloring exists and Q is
mostly independent then there exists some choice of (S2, . . . , Sr) such that

1. S is covered by q1-APs in [n]p.

2. |S \ S ′| < n
1− 1

q2−1
−δ

.

3. A(S2,...,Sr) contains no q1-AP.

For shorthand, we say that S is “well-covered” if it satisfies conditions 1 and 2.
Let P = P([n]p admits a “good” coloring). We wish to show that P = o(1). We first

note P may be bounded by the sum of probabilities of two other events: either Q is not
mostly independent or there exists a tuple (S2, . . . , Sr) such that the above three events
hold. Since by Lemma 23 the probability that Q is not mostly independent is o(1) we
obtain

P 6 o(1) +
∑

(S2,...,Sr)

P(S is well-covered ∧ A(S2,...,Sr) contains no q1-AP).

Note, that the event “S is well-covered” is increasing, while the event “A(S2,...,Sr) contains
no q1-AP” is decreasing. Therefore by Harris’s inequality we obtain

P 6 o(1) +
∑

(S2,...,Sr)

P(S is well-covered) · P(A(S2,...,Sr) contains no q1-AP)

6 o(1) +
∑

(S2,...,Sr)

P(S is well-covered) · e−D1n2pq1 .
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Our goal is now to obtain a bound on∑
(S2,...,Sr)

P(S is well-covered).

Let C(A) denote the event “A is covered by pairwise-disjoint q1-APs”. Since there are at
most r|S\S

′| many ways to distribute the elements of S \ S ′ to S2, . . . , Sr, we obtain

∑
(S2,...,Sr)

P(S is well-covered) 6
n

1− 1
q2−1−δ∑
t=0

(
n

t

)
rt ·

∑
(S′2,...,S

′
r)

P(C(S ′)),

where the second sum ranges over all (r−1)-tuples of sets (S ′2, . . . , S
′
r) satisfying |S ′i| 6 smax

for each i and S ′ = ∪ri=2S
′
i; which we may bound from above by

O(e3 logn·n
1− 1

q2−1−δ

) ·
∑

(S′2,...,S
′
r)

P(C(S ′)).

We now move on to bound ∑
(S′2,...,S

′
r)

P(C(S ′)).

Suppose S ′ = ∪ri=2S
′
i is fixed, then there are (r−1)|S

′| many ways to distribute its elements
into r − 1 different subsets; hence,∑

(S′2,...,S
′
r)

P(C(S ′)) 6 O(2rsmax)
∑

|S′|<rsmax

P(C(S ′)).

We note that
∑
|S′|<rsmax

P(C(S ′)) is simply the expected number of sets of size at most
rsmax that are covered by pairwise-disjoint q1-APs. This, in turn, may be bounded from
above by∑

N6rsmax

∑
s<rsmax

(
q1N

s

)
E(#collections of N pairwise-disjoint q1-APs in [n]p).

Since the expected number of choices for collections of N pairwise-disjoint q1-APs in [n]p

is at most (n2pq1 )N

N !
, we conclude∑
|S′|<rsmax

P(C(S ′)) 6
∑

N6rsmax

∑
s<rsmax

(n2pq1)N

N !

(
q1N

s

)

6
∑

N6rsmax

(n2pq1)N

N !
2q1N

6
∑

N6rsmax

(
e2q1n2pq1

N

)N
.
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Note, that N 6 rsmax 6 D′2n
1− 1

q2−1 for some D′2 > 0 which does not depend on C. Since

x→
(
ea
x

)x
grows for x 6 a and n2pq1 = Cq1n

1− 1
q2−1 , for C large enough we have

(
e2q1n2pq1

N

)N
6

(
(e2C)q1

D′2

)D′2n1− 1
q2−1

6 eD
′
2q1 log(2eC)n

1− 1
q2−1

.

Hence,

∑
N<rsmax

(
e2q1n2pq1

N

)N
6

∑
N<rsmax

eD
′
2q1 log(2eC)n

1− 1
q2−1

6 eO(logCn
1− 1

q2−1 ).

Finally we obtain,∑
(S2,...,Sr)

P(S is well-covered) 6 O(eO(n
1− 1

q2−1 logC+logn·n
1− 1

q2−1−δ))

6 eD2 logCn
1− 1

q2−1

for some constant D2 > 0 which does not depend on C.
Therefore, for C large enough,

P 6 o(1) + P(S is well-covered) · e−D1n2pq1

= o(1) +O(eD2 logCn
1− 1

q2−1 )) ·O(e−D1Cq1n
1− 1

q2−1

)→ 0

6 The asymmetric case 0-statement

In this section, we show that for any integers q1 > q2 there exists a sufficiently small

positive c > 0 such that if p = c · n−
q2

q1(q2−1) the elements of [n]p can a.a.s. be colored
red/blue without a monochromatic q1-AP colored red or a monochromatic q2-AP colored
blue. We note that this is sufficient for the 0-statement for any other number of colors.
We begin by making several definitions that will assist us in stating the results of this
section in the language of hypergraphs.

Definition 24. Throughout this section we will deal with hypergraphs with edges of two
possible cardinalities q1 and q2, we call such hypergraphs (q1, q2)-uniform. We will refer
to edges as long or short edges, depending on their cardinalities. We say that a (q1, q2)-
uniform hypergraph is asymmetrically-2-colorable if its vertices can be colored red/blue
with no long edge colored red, and no short edge colored blue.

Definition 25. LetH(n, q1, q2) be the hypergraph with vertex set V (H) = [n], whose edge
set is the set of arithmetic progressions of lengths q1 and q2. We denote by H(n, q1, q2, p)
the random subhypergraph of H(n, q1, q2) induced by [n]p.

With these definitions in hand, we are ready to state this section’s main result:
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Theorem 26 (Asymmetric 0-statement). For any integers q1 > q2 > 3, there exists c > 0

such that for p 6 c · n−
q2

q1(q2−1) , H(n, q1, q2, p) is asymmetrically-2-colorable a.a.s.

The proof we present here is similar in nature to the proof by Rödl and Ruciński [20] of
the (symmetric) random Rado partition theorem and consists of two main lemmas. First,
in Lemma 33, we show that a (q1, q2)-uniform hypergraph is asymmetrically-2-colorable
unless it contains a member of a small family of hypergraphs which we call 2-blocking.
Then, Lemma 34 states that those hypergraphs a.a.s. do not appear in H(n, q1, q2, p). We
begin by making several definitions.

Definition 27. We say that an edge E = {a1, . . . , aq} has a cover if there are edges
E1, . . . , Eq such that E ∩Ei = {ai} and |Ei| 6= |E| for all i ∈ [q]. We say that a cover for
an edge is simple if Ei ∩ (

⋃
j 6=iEj) = ∅ for all i ∈ [q]. If every edge in a hypergraph H

has a cover, we say H is covered.

Definition 28. A simple path of length ` is a hypergraph consisting of short edges
E1, . . . , E`, and covering long edges E1,1, . . . , E1,q2 , E2,1, . . . , E`,q2 such that Ei,1, . . . , Ei,q2
cover Ei and such that:

1. Ei+1,1 = Ei,q2 for every i < `,

2. no two edges of the same cardinality intersect.

A simple path of length one is called a block ; thus, a simple path consists of blocks, such
that every pair of consecutive blocks share a long edge. For convenience, we refer to a
single long edge as a simple path of length zero.

Definition 29. We say that a simple path P of length ` has a saw if for every vi ∈ E1,1\E1

there exists a short edge Si such that Si ∩ E1,1 = {vi} and |Si ∩ V (P )| = 2. We call the
edges Si the saw edges for P .

Definition 30. We say that a simple path P of length ` is spoiled if there exists an edge
E /∈ E(P ) such that |E ∩ V (P )| > 3 and E ∩ E`,q2 = {v} for some v /∈ E`.

Definition 31. We say that a simple path P of length ` has a spoiled extension, if
there exists a short edge E`+1 along with a simple cover E`+1,1, . . . , E`+1,q2 , such that
E`+1 ∩ V (P ) = {v} for some v ∈ E`,q2 \E`, E`+1,1 = E`,q2 and there exists i ∈ {2, . . . , q2}
such that E`+1,i ∩ V (P ) 6= ∅.

Definition 32. We say that a (q1, q2)-uniform hypergraph is 2-blocking if it is one of the
following:

1. A short edge with a non-simple cover.

2. A spoiled simple path.

3. A simple path with a saw.
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(a) A spoiled simple path of
length 2, with the spoiling
edge dotted.

(b) A block with a spoiled
extension, with the spoiling
long edge dotted.

(c) A path of length one with
a saw.

Figure 2: Examples of 2-blocking hypergraphs for q1 = 4, q2 = 3.

4. A simple path with a spoiled extension.

Lemma 33 (The deterministic lemma). Let q1 > q2 > 3 be some integers, and let H be
a (q1, q2)-uniform hypergraph which is not asymmetrically-2-colorable. Then H contains
a 2-blocking hypergraph.

Lemma 34 (The probabilistic lemma). Let H = H(n, q1, q2, p), let c be a sufficiently

small positive constant, and let p = c · n−
q2

q1(q2−1) . Then a.a.s. H contains no 2-blocking
hypergraph.

Theorem 26 follows immediately from these two lemmas. Most of this section deals
with proving the probabilistic lemma, using a first-moment argument over several random
variables. But first, we begin by proving the deterministic part of the theorem.

Proof of The deterministic lemma. We say that a hypergraph is edge-critical if it is not
asymmetrically-2-colorable, but any proper subhypergraph is. We may assume that H is
edge-critical; otherwise, we replace it with an edge-critical subhypergraph. We begin by
showing that every edge critical hypergraph is covered.

Claim 35. If H is an edge-critical hypergraph, then for every edge E ∈ H and for every
vertex v ∈ E there is an edge E ′ ∈ H such that E ∩ E ′ = {v} and |E| 6= |E ′|; in other
words, H is covered.

Proof. Let H be edge-critical, and suppose that there are an edge E ∈ H and a vertex
v ∈ E, such that every edge E ′ of the other cardinality that contains v also contains
another vertex of E. By the edge-criticality, H can be colored red/blue in such a way
that only E violates the coloring condition. Without loss of generality, assume E is long
(and colored red). Now, by changing the color of v to blue, E no longer violates the
coloring condition, and neither does any short edge that contains v, contradicting the fact
that H is not asymmetrically-2-colorable.

If there exists a short edge with a non-simple cover, then we are done, so we may
assume all short edges have simple covers. Let P be a longest simple path, and let ` > 1
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be its length. We observe E = E`,q2 ; since E is covered by short edges, we have short
edges Si such that Si ∩ E = {vi} for every vi ∈ {v2, . . . , vq1} = E \ E`.

Suppose first that there exists Si such that Si∩V (P ) = {vi} and observe {s2, . . . , sq2} =
Si \ E. By the previous claim, we have a long covering edge for every si, and by the
maximality of P we obtain that for every simple cover for Si there exists a covering edge
L that intersects P . Thus, we obtain that Si forms a spoiled extension to P .

If, on the other hand, no Si intersects P in exactly a single vertex, we obtain one of
two cases: If there exists some i such that |Si ∩ V (P )| > 3, then since |Si ∩ E| = 1 we
obtain that Si is a spoiling edge for P . Otherwise, we have |Si ∩ V (P )| = 2 for all i and
thus obtain a path with a saw, completing the proof.

The rest of this section deals with proving the probabilistic portion of Theorem 26.
We will begin by proving upper bounds on the number of copies of several hypergraphs
in H(n, q1, q2) and showing that a.a.s. all short edges have simple covers. We will then
prove an upper bound on the number of simple paths of arbitrary lengths. Finally, with
the above results in hand, we will turn to prove Lemma 34.

Lemma 36. Let x, y ∈ [n] be distinct integers. Then, the number of choices for a, b ∈ [n]
such that there are q-APs that contain {x, a, b} and {y, a, b} is O(1).

Proof. Suppose that a, b are contained in a q-AP along with x, then there exists t1 ∈ Q
such that x − a = t1(b − a), thus, x = (1 − t1)a + t1b. Moreover, t1 = r1

r2
for r1, r2 ∈

{−q,−q + 1, . . . , q}. The same also holds for y with another constant t2. We obtain the
following system of linear equations:(

1− t1 t1
1− t2 t2

)(
a
b

)
=

(
x
y

)
. (?)

Since the determinant of the above matrix is t2 − t1, we obtain that as long as t1 6= t2
there is only a single solution to (?). Since x 6= y implies t1 6= t2 and there are at most
O(q2) = O(1) choices for t1 and t2, there are only O(1) many choices for a, b.

In Lemma 39 we show that a short edge with its q2 covering long edges must contain
almost 2q1 vertices. We will then use this lemma to show that non-simple covers are
unlikely. We will require the following two elementary lemmas.

Lemma 37. Let E1, E2 be two arithmetic progressions of length q1, with common differ-
ences d1 and d2. If d1 < d2, then |E1 ∩ E2| 6 dq1 · gcd(d1,d2)

d2
e.

Proof. Let A1 and A2 be the infinite arithmetic progressions containing E1 and E2 respec-
tively. We obtain that A = A1 ∩ A2 is either empty or an infinite arithmetic progression
with common difference lcm(d1, d2), thus A∩A1 contains every lcm(d1,d2)

d1
-th element of A1.

Therefore, a subsequence of length q1 in A1 contains at most dq1 · d1

lcm(d1,d2)
e elements of

A, and the result follows immediately.

the electronic journal of combinatorics 29(1) (2022), #P1.22 21



Lemma 38. Let n > m > 0 be integers, and A = (a1, a2, . . . , aq) be an arithmetic
progression of length q > 3 with common difference m. If we denote t = n

gcd(n,m)
, then

|{a ∈ [n] : ∃i ∈ [q] such that a ≡ ai mod n}| = min{t, q}. Moreover, ai ≡ ai+kt mod n
for all integers i and k such that i, i+ kt ∈ [q].

Proof. Let G = Z/nZ be the additive cyclic group of order n. From elementary group
theory we know that the order of m in G is t = n

gcd(n,m)
. Let G′ be the cyclic subgroup

generated by m. Then, the residues of A modulo n are contained in the coset a1 + G′,
which has |a1 +G′| = |G′| = t, completing the proof.

Lemma 39. If E is a short edge and E1, . . . , Er are a subset of its covering edges, then

|E1 ∪ · · · ∪ Er| > 2q1

(
1− 1

r

)
.

Proof. Denote M = |E1 ∪ · · · ∪ Er| and assume for contradiction that M 6 2q1(1 − 1
r
).

The case r ∈ {1, 2} is trivial, therefore we may assume r > 3. We first show that no three
covering edges share the same common difference.

Claim 40. Let E1, E2, E3 be covering edges, and assume that all three q1-APs have the
same common difference, i.e. Ez = {az + i · d : i ∈ [q1]}. Then,

|E1 ∪ E2 ∪ E3| > 2q1.

Proof. Suppose {vz} = Ez ∩ E for z ∈ {1, 2, 3}. Without loss of generality assume that
v1 < v2 < v3, and that Ez ∩ E2 6= ∅ for z = 1, 3, as otherwise |Ez ∪ E2| = 2q1. Since
each covering edge may only contain one vertex of E, and E1 lies on the same infinite
arithmetic progression of difference d as E2, we deduce that all the elements of E1 must
be strictly smaller than v2. Similarly, all elements of E3 must be strictly larger than v2.
Hence, E1 ∩ E3 = ∅; and thus, |E1 ∪ E3| = 2q1.

We will now show that r > 5. Since r > 3, the previous claim implies that there exists
a pair of edges with different common differences; without loss of generality we denote
them E1, E2. We note that |E1 ∩E2| 6 d q12 e, by Lemma 37. Let E ′ = E ∩ (E1 ∪ · · · ∪Er).
Since E1, E2 are covering edges of E, we have

|E ′ ∪ E1 ∪ E2| = |E1 ∪ E2|+ |E ′| − 2 = |E1|+ |E2| − |E1 ∩ E2|+ |E ′| − 2

> q1 +
⌊q1

2

⌋
+ r − 2.

Thus, if r ∈ {3, 4} we observe that (since b q1
2
c > q1

2
− 1

2
)

q1 +
⌊q1

2

⌋
+ r − 2 >

3

2
q1 + r − 5

2
>

(
1− 1

r

)
2q1 + r − 5

2
> 2q1

(
1− 1

r

)
for all q1 > r. Finally, we will show that no three arithmetic progressions may have
pairwise different common differences.
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Claim 41. Let E1, E2, E3 be covering edges, with distinct common differences d1, d2, d3
respectively. Then

|E1 ∪ E2 ∪ E3| > 2q1 − 4,

and thus M > |E1 ∪ E2 ∪ E3|+ (r − 3) > 2q1 − 2 > 2q1(1− 1
r
).

Proof. Assume for contradiction that |E1 ∪ E2 ∪ E3| < 2q1 − 4. Since

|E1 ∪ E2 ∪ E3| > 3q1 − |E1 ∩ E2| − |E1 ∩ E3| − |E2 ∩ E3|,

at least one pair of edges intersects in more than q1
3

+ 1 elements.
Recall that q1 > q2 > r > 5. Note that q1

3
+1 > d q1

3
e > d q1

d
e for all d > 3 and q1 > 6. Thus,

by Lemma 37, we have that for some i, j ∈ [3] such that di > dj we have gcd(di, dj) = di
2

which can only occur if di = 2dj. Let k /∈ {i, j}. Since

|Ei ∪Ej ∪Ek| > 3q1−
⌈q1

2

⌉
− |Ei ∩Ek| − |Ej ∩Ek| > 3q1−

q1
2
− 1− |Ei ∩Ek| − |Ej ∩Ek|

we obtain that Ek must intersect one of the other edges in more than q1
4

+ 1 elements.
Note that q1

4
+ 1 > d q1

4
e > d q1

d
e for all d > 4 and q1 > 6. Again, by Lemma 37, we have

that t · gcd(dk, dz) = max(dk, dz) for some z ∈ {i, j} and t ∈ {2, 3}.
If we set dj = d, we get that dk

d
may obtain one of six values: either 1

2
or 4 for t = 2 or

one of 1
3
, 2
3
, 3, 6 for t = 3. We note that by Lemma 38, if we observe the residues modulo

d′ of an arithmetic progression of length q1 with common difference d < d′, we obtain that

the progression cycles through d′

gcd(d,d′)
residues; and thus, it contains at least

⌊
q1·gcd(d,d′)

d′

⌋
elements of every residue class it encounters. By adjusting the constant d and permuting
the indices we obtain that the triplet (d1, d2, d3) must fall into one of five categories:

1. Assuming (d1, d2, d3) = (d, 2d, 4d), without loss of generality we assume 0 ∈ E3 and
d = 1. Then, E3 consists of q1 elements which satisfy a ≡ 0 mod 4. If E2 contains
elements which satisfy a ≡ 1, 3 mod 4, we obtain that |E3 ∪ E2| = 2q1.
Otherwise, we obtain that at least b q1

2
c of the elements in E2 satisify a ≡ 2 mod 4,

and at least 2 · b q1
4
c of the elements in E1 satisfy a ≡ 1, 3 mod 4. Thus,

|E1 ∪ E2 ∪ E3| > q1 + bq1
2
c+ 2 · bq1

4
c > 2q1 − 2.

2. Assuming (d1, d2, d3) = (d, 2d, 3d), without loss of generality we assume 0 ∈ E3 and
d = 1. Then, E3 consists of q1 elements which satisfy a ≡ 0, 3 mod 6. Since at least
2b q1

3
c of the elements in E2 satisify a ≡ 2, 4 mod 6 (or equivalently 1, 5 mod 6),

and at least 2b q1
6
c of the elements in E1 satisfy a ≡ 1, 5 mod 6 (equivalently 2, 4

mod 6), we obtain

|E1 ∪ E2 ∪ E3| > q1 + 2bq1
3
c+ 2bq1

6
c > 2q1 − 3.
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3. Assuming (d1, d2, d3) = (d, 2d, 6d), without loss of generality we assume 0 ∈ E3 and
d = 1. Then, E3 consists of q1 elements which satisfy a ≡ 0 mod 6. If E2 contains
elements which satisfy a ≡ 1, 3, 5 mod 6 we obtain that |E3 ∪ E2| = 2q1.
Otherwise, at least 2b q1

3
c of the elements in E2 satisify a ≡ 2, 4 mod 6, and at least

3b q1
6
c of the elements in E1 satisfy a ≡ 1, 3, 5 mod 6. Hence,

|E1 ∪ E2 ∪ E3| > q1 + 2bq1
3
c+ 3bq1

6
c > 2q1 − 4.

4. Assuming (d1, d2, d3) = (d, 3d, 6d), without loss of generality we assume 0 ∈ E3

and d = 1. Then, E3 consists of q1 elements which satisfy a ≡ 0 mod 6. If E2

contains elements which satisfy a ≡ 1, 4 mod 6 or a ≡ 2, 5 mod 6 we obtain that
|E3 ∪ E2| = 2q1.
Otherwise, at least b q1

2
c of the elements in E2 satisify a ≡ 3 mod 6, and at least

4b q1
6
c of the elements in E1 satisfy a ≡ 1, 2, 4, 5 mod 6. Therefore,

|E1 ∪ E2 ∪ E3| > q1 + 4bq1
6
c+ bq1

2
c > 2q1 − 4.

5. Assuming (d1, d2, d3) = (2d, 3d, 6d), without loss of generality we assume 0 ∈ E3

and d = 1. Then, E3 consists of q1 elements which satisfy a ≡ 0 mod 6. If E2

contains elements which satisfy a ≡ 1, 4 mod 6 or a ≡ 2, 5 mod 6 we obtain that
|E3 ∪ E2| = 2q1.
If E1 contains elements which satisfy a ≡ 1, 3, 5 mod 6 we obtain that |E3 ∪E1| =
2q1.
Otherwise, at least b q1

2
c of the elements in E2 satisify a ≡ 3 mod 6, and at least

2b q1
3
c of the elements in E1 satisfy a ≡ 2, 4 mod 6. Thus,

|E1 ∪ E2 ∪ E3| > q1 + 2bq1
3
c+ bq1

2
c > 2q1 − 2.

Finally we obtain that r > 5, no three edges may share a common difference, and there
can be no more than two possible common differences which yields a contradiction.

Lemma 42. Let H ′ be a hypergraph consisting of a short edge and its non-simple cover.

If p = O(n
− q2
q1(q2−1) ), then P(H ′ ⊂ H(n, q1, q2, p)) = o(1).

Proof. The following computations are used several times throughout the proof:

pq1−1 = O(n
− q2
q2−1

+
q2

q1(q2−1) ) = O(n
−1− 1

q2−1
+

q2
q1(q2−1) ) = O(n

−1− q1−q2
q1(q2−1) ),

and
pq1 = O(n

−1− 1
q2−1 ).

Let E be a short edge and let E1, . . . , Eq2 be its covering edges. We divide the covering
edges into three categories: we say that a covering edge Ei is simple if |Ei ∩ (

⋃
j 6=iEj)| =

0, we say a covering edge Ei is generic if |Ei ∩ (
⋃
j 6=iEj)| = 1, otherwise we say this
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edge is degenerate. Let k1 = |{i : Ei is simple}|, let k2 = |{i : Ei is generic}| and let
k3 = q2 − k1 − k2 be the number of degenerate edges. We are interested in counting
configurations where k1 < q2. We will first show that non-simple covers with k3 = 0 are
unlikely to occur in H(n, q1, q2, p).

We say that a vertex is generic if it belongs to more than one generic edge and denote
m = |{v ∈ V (H ′) : v is generic}|. Since every generic vertex belongs to at least two generic
edges and every generic edge contains at most one generic vertex we obtain 1 6 m 6 k2

2
.

There are O(n2) many possible choices for the short edge and O(nk1) many choices for the
simple edges. Since k3 = 0 every generic edge must contain a generic vertex, and thus,
fixing all generic vertices determines the generic edges up to O(1) many choices; thus, we
have O(nm) many choices for the generic edges.

We require q2 vertices for the short edge, q1 − 1 vertices for every simple edge and
k2(q1 − 1)− (k2 −m) vertices for the generic edges. Hence, the expected number of such
configurations is

O(n2+k1+mpq2+(k1+k2)(q1−1)−(k2−m)) = O(n2+k1+mpq2q1−(k2−m))

= O(n
2+k1+m−(1+ 1

q2−1
)q2+

(k2−m)q2
q1(q2−1) ) = O(n

2−(k2−m)− q1q2−(k2−m)q2
q1(q2−1) ).

If k2 −m > 2, as k2 −m < q1 this is clearly o(1). If k2 −m 6 1 then since k2 > 2 we
must have k2 = 2 and m = 1 and therefore

O(n
2−(k2−m)− q1q2−(k2−m)q2

q1(q2−1) ) = O(n
1− q2(q1−1)

q1(q2−1) ) = O(n
1−1− q1−q2

q1(q2−1) ) = o(1).

Therefore, we may assume that k3 > 0. Assume first that there exists a degenerate edge
E1 along with two other covering edges E2, E3 such that |E1 ∩ Ei| = 1 for i ∈ {2, 3} and
|E2 ∩E3| < 2. Then fixing E1 determines all three edges up to O(1) many choices. Thus,
we have at most O(n) many choices for those three edges. Since we require q2 vertices for
the short edge and |E1 ∪E2 ∪E3| > 3q1− |E1 ∩E2| − |E1 ∩E3| − |E2 ∩E3| > 3q1− 3, the
expected number of such configurations is

O(n3p3q1−6+q2) = O(n3p3(q1−1)+q2−3) = O(n
−3· q1−q2

q1(q2−1)pq2−3) = o(1).

We thus deduce that every degenerate edge must either intersect some other covering
edge in at least two vertices or intersect two other degenerate edges that intersect each
other in at least two vertices. Therefore, k3 > 2, and by Lemma 36 we have at most O(1)
many choices for the degenerate edges.

We now divide the generic edges into two categories: We say a generic edge is weakly-
generic if it is a generic edge that lies in the same connected component of H ′ \ {E}
as a degenerate edge; otherwise, we say it is strongly-generic. We denote k′2 = |{i :
Ei is strongly-generic}|. We say that a vertex is strongly-generic if it belongs to more
than one strongly-generic edge, and denote m′ = |{v ∈ V (H ′) : v is strongly-generic}|.
Since every strongly-generic vertex belongs to at least two strongly-generic edges and
every strongly-generic edge contains at most one strongly-generic vertex we obtain 0 6
m′ 6 k′2

2
6 k2

2
. Again, we note that fixing the strongly-generic vertices determines the
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strongly-generic edges up to O(1) many choices. We also note that fixing E determines
the degenerate and weakly-generic edges up to O(1) many choices. Since, by Lemma
39, we require at least 2q1(1 − 1

k3
) vertices for the degenerate edges, at least k2(q1 − 1)

additional vertices for the generic edges and k1q1 vertices for the simple edges, we get
that the expected number of such configurations is (since k1 + k2 + k3 = q2, k3 > 2 and
m′ 6 k2

2
)

O(n2+k1+m′p
k1q1+k2(q1−1)+2q1(1− 1

k3
)
)

= O(n
2+k1+m′−k1(1+

1
q2−1

)−k2(1+
q1−q2
q1(q2−1)

)
p
2q1(1− 1

k3
)
)

= O(n
2−k1

1
q2−1

+m′−k2−k2
q1−q2
q1(q2−1)p

2q1(1− 1
k3

)
),

since m′ − k2 6 −k2

2
and p

2q1(1− 1
k3

)
= O(n

−2− 2
q2−1

+
2q2

k3(q2−1) ),

= O(n
2− k1

q2−1
− k2

2
−k2

q1−q2
q1(q2−1)

−2− 2
q2−1

+
2q2

k3(q2−1) )

= O(n
−k2

q1−q2
q1(q2−1)

− (2+k1+
k2
2 (q2−1))k3−2q2
k3(q2−1) )

= O(n
−k2

q1−q2
q1(q2−1)

− 2k3+k1k3+k2k3−2q2
k3(q2−1) ) = o(1).

Finally, we conclude by Markov’s inequality,

P[#short edges with non-simple covers > 0] =
∑
k1<q2

∑
k2<q2−k1

o(1) = o(1).

Lemma 43. Let H ⊂ H(n, q1, q2) be a simple path of length ` = O(log n). Define Y =
|{T ⊂ H(n, q1, q2) : H ∪T is a simple path of length `+ 1}|. Then for every cr > 0, there

exists c > 0 such that for p 6 c · n−
q2

q1(q2−1) we have

E[Y | V (H) ⊂ [n]p] < cr.

Proof. Without loss of generality we may assume that the short edge in T interesects H
only at E`,q2 . We denote T = {E = E`+1, E`+1,2, . . . , E`+1,q2}. Since E intersects H in
a single vertex we have O(n) many choices for it. By fixing E we limit the number of
choices for each covering edge to O(n), giving us a total of O(nq2) many choices for T in
H(n, q1, q2).
Since T requires q2 − 1 + (q2 − 1)(q1 − 1) = (q2 − 1)q1 new vertices, we obtain

E[Y | V (H) ⊂ [n]p] = O(nq2p(q2−1)q1) = O(nq2−q2c(q2−1)q1) = O(c(q2−1)q1).

Corollary 44. Let ` = O(log n), and let Y be the random variable counting simple paths
of length ` in H(n, q1, q2, p). Then,

EY = O(c`rn
1− 1

q2−1 ).
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Proof. We may construct a simple path of length ` by first choosing a single long edge,
and then choosing ` extensions.

Since two integers belong to only a constant number of q1-term arithmetic progressions,
we obtain that the number of choices for the initial long edge is O(n2). Since we require q1
vertices for the long edge, we obtain that the expected number of long edges is O(n2pq1) =

O(n
1− 1

q2−1 ).
By the previous lemma, we may extend the path step by step, each time adding a

factor of cr to the expectation, and the corollary immediately follows.

We are now ready to prove the probabilistic lemma, thus completing the proof of
Theorem 26.

Proof of The probabilistic lemma. Let H = H(n, q1, q2, p), let B be a sufficiently large
constant and set `′ = B log n. The proof of this lemma can be summarized as follows:

First, we recall that, by Lemma 42, a.a.s no non-simply covered short edges exist,
and show that all simple paths terminate at lengths smaller than `′, using Corollary 44.
We then apply a first-moment argument to several random variables, showing that ev-
ery small 2-blocking hypergraph contains some sub-hypergraph with o(1) many expected
copies in H; thus, the probability that the 2-blocking hypergraph appears in our random
hypergraph is o(1).

Specifically, we will show that the existence of a 2-blocking hypergraph implies either
the existence of additional vertices such that the expected number of choices for them is

o(n
−1+ 1

q2−1 ), or the existence of a simple path that obeys an additional constraint that
causes us to lose a degree of freedom in the path construction. Since, by Corollary 44,

we have only an expected O(n
1− 1

q2−1 ) many choices for a simple path, we obtain that
replacing a factor of n with a factor of O(logk n) causes the expectation to tend to zero
as n grows.

As seen in the proof for Corollary 44, we may construct a path by selecting a long edge
and then iteratively extending the path; therefore, in some cases, we refer to a single long
edge as a simple path of length zero, allowing us to treat a single block as an extension
to an existing path.

We will also sometimes assume that the edges of a simple path are ordered E1,1, E1,
E1,2, . . . , E1,q2 , E2, . . . , E`,q2 . In such an ordering, if there are no other constraints on the
path, we have O(n2) many choices for the first edge and O(n) many choices for every
other edge. For convenience, we say a vertex v ∈ V (P ) precedes another vertex u ∈ V (P )
if v belongs to an edge that precedes all edges that contain u.

Let U be the random variable counting short edges with non-simple covers. By
Lemma 42 we have

P(U > 0) = o(1).

Let W be the random variable counting simple paths of length `′. By Corollary 44
and Markov’s inequality we obtain

P(W > 0) 6 EW = O(n
1− 1

q2−1 cB logn
r ) = o(1).
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Let X be the random variable counting spoiled simple paths of length ` < `′. Let
P be a simple path and let E be a spoiling edge for it. By Corollary 44, there are at

most O(n
1− 1

q2−1 ) many choices for the path up to the final block. For the final block we
have O(n) many choices for the short edge, and for all the long edges except E`,q2 . Since
|E ∩ (V (P ) \ E`,q2)| > 2 we have at most O(log2 n) many choices for E, and therefore
O(log2 n) many choices for E`,q2 . Since we require q2− 1 vertices for the short edge, along
with (q2 − 1)(q1 − 1) vertices for the long edges we conclude that

EX =
∑
`<`′

O(n
1− 1

q2−1nq2−1pq1(q2−1) log2 n) = O(n
q2−q2− 1

q2−1 log2 n) = o(1),

and therefore by Markov’s inequality,

P(X > 0) = o(1).

Let Y be the random variable counting simple paths of length ` < `′ with a saw. We
denote the path by P . Since the saw edges are not entirely contained in P , each one must
contain a vertex v /∈ V (P ). Let S2, . . . , Sq1 be the saw edges. For each k ∈ {2, . . . , q1},
let {sk} = (V (P ) ∩ Sk) \ E1,1 (there is only one such vertex, since |Sk ∩ V (P )| = 2), and
let S ′k be the first edge in P that contains sk. We split into several cases:

Case 1. There exist two edges Si, Sj such that |Si ∩ Sj| > 2.

By Lemma 36, we obtain that fixing E1,1 determines Si and Sj up to O(1) many choices.
Thus, if we iteratively extend a path from E1,1 we obtain that when we select S ′i it must
intersect one (or both) of Si, Sj, giving us only O(1) many choices for it, and thus the

expected number of such paths with Si and Sj in H is O(n
− 1
q2−1 log n) = o(1). Therefore,

the probability that such saw edges exist is o(1) and we may assume all saw edges Si and
Sj intersect each other in at most one vertex.

Case 2a. There exist i, j such that (Si ∩ Sj) \ V (P ) 6= ∅ and S ′i 6= S ′j.

Without loss of generality we assume S ′i follows S ′j in the edge ordering of P . If we fix
the subpath up to (but not including) S ′i, then we have at most O(log n) many choices
for Sj since it intersects both E1,1 and S ′j which have already been chosen; this implies
that there are further O(1) many choices for Si, as it must intersect both Sj and E1,1.
Therefore, there are further O(1) many choices for S ′i as it must intersect both Si and
either a short edge or the final long edge of the previous block. We now have O(n) many
choices for each remaining edge in the block that contains S ′i.

We obtain that for the final block, we have O(n) many choices for each edge except
for S ′i for which we have only O(log n) many choices. Hence the expected number of such
configurations is∑

`<`′

O(n
1− 1

q2−1nq2−1pq1(q2−1) log n) = O(n
q2−q2− 1

q2−1 log2 n) = o(1).

Case 2b. There exist i, j such that (Si ∩ Sj) \ V (P ) 6= ∅ and S ′i = S ′j = S ′ 6= E1.
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By fixing E1,1 and {v} = Si ∩ Sj we determine Si and Sj up to O(1) many choices. Since
v /∈ V (P ), we also determine S ′ up to O(1) many choices as it must intersect Si ∪ Sj in
two vertices other than v. If we now extend a path from E1,1 towards S ′, we obtain that
we have only O(1) many choices for the edge connecting the path to S ′ (whether it is a
short edge, or the final long edge in a block). Note that this connecting edge cannot be
E1,1 by our assumption that S ′ 6= E1. Thus, the number of choices for both S ′ and the
previous edge is O(n) - the number of choices for v.

If we now add the remaining edges in the final block, we obtain that the expected
number of such paths is

O(n
− 1
q2−1 log n) = o(1).

Case 2c. There exist i, j such that (Si ∩ Sj) \ V (P ) 6= ∅ and S ′i = S ′j = S ′ = E1.

From the previous cases we may assume that all saw edges intersect each other in at
most one vertex, and any saw edge that intersects another saw edge outside of V (P ) must
intersect V (P ) \ E1,1 in one vertex that lies on E1.

Let A =
⋃q1
i=2(Si \ V (P )) and for each v ∈ A define S(v) = {i : v ∈ Si}. Suppose that

|S(v)| > 2 for some v ∈ A. Then,

|
⋃

i∈S(v)

(Si ∩ (E1 \ E1,1))| = |S(v)|,

since no two saw edges share more than one vertex and any saw edge that intersects
another has a vertex in E1 \ E1,1. Therefore, |S(v)| 6 |E1 \ E1,1| = q2 − 1 for all v ∈ A.
Since,

(q2 − 2)(q1 − 1) =

q1∑
i=2

|Si \ V (P )| =
∑
v∈A

|S(v)| 6 |A|(q2 − 1),

we deduce that we require |A| > (q2−2)(q1−1)
q2−1 = q1 − 1 − q1−1

q2−1 additional vertices for the
saw edges.

If we assume P is fixed, we have at most O(log n) many choices for each saw edge.
Thus, the expected number of choices for the additional vertices is

O(logq1−1 n · pq1−1−
q1−1
q2−1 ) = O(logq1−1 n · n−1−

1
q2−1

+
q2

q1(q2−1)
+

q1q2
q1(q2−1)2

− q2
q1(q2−1)2 )

= O(logq1−1 n · n−1−
q1−q2
q1(q2−1)

+ 1
q2−1

+
q1−q2

q1(q2−1)2 )

= O(logq1−1 n · n−1+
1

q2−1
− (q1−q2)(q2−2)

q1(q2−1)2 ).

Thus by Corollary 44, the expected number of choices for the path and the saw edges
is

O(logq1 n · n−
(q1−q2)(q2−2)

q2(q2−1)2 ) = o(1).

Case 3. (Si ∩ Sj) \ V (P ) = ∅ for all i 6= j ∈ {2, . . . , q1}.
Since each saw edge contains at least one vertex not in V (P ), there are at least q1 − 1
additional vertices introduced by the saw edges. We have O(log n) many choices for each
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saw edge as they must intersect V (P ) in two vertices each, one of which lies on E1,1.
Thus, the expected number of paths with saws such as above is∑

`<`′

O(n
1− 1

q2−1 (log n · p)q1−1) = O(logq1 n · n1− 1
q2−1

− q2
q2−1

+
q2

q1(q2−1) )

= O(logq1 n · n−
2q1−q2
q1(q2−1) ) = o(1).

Thus, by Markov’s inequality,
P(Y > 0) = o(1).

Finally, let Z be the random variable counting simple paths of length ` < `′ with a
spoiled extension. Once more, we divide the argument into several cases. First, let Z1

be the random variable counting simple paths with spoiled extensions such that no long
edge in the extension intersects the path P in more than one vertex.

We denote the number of long edges in the extension that intersect V (P ) by k. We

have an expected O(n
1− 1

q2−1 ) many choices for P , O(n) many choices for the short edge
and each of the q2−1−k long edges that are disjoint from V (P ), and O(log n) many choices
for each of the k long edges that intersect P . We also require k(q1 − 1) + (q2 − 1 − k)q1
new vertices. Thus, the expected number of such configurations is

EZ1 =
∑
`<`′

q2∑
k=1

O(n
1− 1

q2−1
+q2−kp(q2−1−k)q1+k(q1−1) logk n)

=

q2∑
k=1

O(n
1− 1

q2−1
+q2−kp(q2−1)q1−k logq2+1 n)

=

q2∑
k=1

O(n
1− 1

q2−1
−k(1− q2

q1(q2−1)
)
logq2+1 n)

= O(n
− q1−q2
q1(q2−1) logq2+1 n) = o(1).

Next, let Z2 be the random variable counting paths with spoiled extensions that con-
tain exactly one long edge L that intersects the path P in at least two vertices. Fixing P ,
we have only O(log2 n) many choices for L and O(1) further choices for E`+1, as it must
intersect both L and E`,q2 . Once again, we sum over k, the number of long edges in the
extension that intersect V (P ) in exactly one vertex. We have O(nq2−2−k) choices for all
edges of the extension, and we require at least (q2− 2)q1−k+ 1 new vertices. Thus, since
k 6 q2 − 2 and

pq1(q2−2) = O(n
− q2(q2−2)

q2−1 ) = O(n
−q2+1+ 1

q2−1 ),

the expected number of such configurations is

EZ2 =
∑
`<`′

q2−2∑
k=0

O(n
q2−k−1− 1

q2−1p(q2−2)q1−k+1 log2 n)

=

q2−2∑
k=0

O(n−kp1−k log3 n) = O(log3 n · p) = o(1).
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Finally, let Z3 be the random variable counting paths with spoiled extensions such
that there exist distinct i, j ∈ [q2] such that |V (P )∩E`+1,z| > 2 for z ∈ {i, j}. We denote
Lz = E`+1,z.

Since E`+1 must have a simple cover we obtain that Lz ∩ E`,q2 = ∅ for z ∈ {i, j}.
Therefore, if we fix the path P up to (but not including) E`,q2 , we have at most O(log2 n)
many choices for each of Li and Lj, since both edges intersect V (P ) in at least two vertices.
Therefore, we have at most O(log4 n) many choices for E`+1 as it must intersect both Li
and Lj.

Finally, we obtain that we have O(log4 n) many choices for E`,q2 as it must intersect

both E`+1 and E`. Since we have an expected O(n
1− 1

q2−2 ) many choices for the path up
to the final block, and we have O(nq2−1 log4 n) many choices for the final block (but still
require q1(q2 − 1) vertices), the expected number of choices for P is∑

`<`′

O(n
− 1
q2−1 log4 n) = o(1),

hence
P(Z3 > 0) = o(1),

and therefore
P(Z > 0) 6 P(Z1 + Z2 + Z3 > 0) = o(1).

Finally,
P(U = W = X = Y = Z = 0)→ 1 as n→∞

completing the proof.
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