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Abstract

Let k > 1, and let F be a family of 2n + k − 3 non-empty sets of edges in a
bipartite graph. If the union of every k members of F contains a matching of size
n, then there exists an F-rainbow matching of size n. Replacing 2n + k − 3 by
2n + k − 2, the result is true also for k = 1, and it can be proved (for all k) both
topologically and by a relatively simple combinatorial argument. The main effort is
in gaining the last 1, which makes the result sharp.
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1 Introduction

Throughout the paper, “family” means “multiset”, meaning that elements may repeat.
To differentiate the notation, we use round brackets for families, and (as usual) curly
brackets for sets. For a family F , we write F \ {F} and F ∪ {F} in the family sense.
That is, F \ {F} contains one less copy of F than F if F ∈ F , and F ∪{F} contains one
more copy of F than F .

Given a family S = (S1, . . . , Sm) of sets, an S-rainbow set is the image of a partial
choice function of S. So, it is a set {xij | j 6 k}, where 1 6 i1 < · · · < ik 6 m and
xij ∈ Sij .

A complex is a closed down hypergraph, meaning that any subset of any edge is an
edge. The injectivity - at most one element from every set Si - is a “smallness” condition,
in the sense that the set of injective choices is a complex. Hence statements of interest
are of the form “there exists a large rainbow set satisfying certain conditions (like being
a matching)”. The classical theorem of this type is Hall’s marriage theorem.

Below, again, S = (S1, . . . , Sm) is a family of sets. For a set I ⊆ [m], let SI =
⋃

i∈I Si.

Theorem 1. If |SJ | > |J | for every J ⊆ [m] then there is a full rainbow set, that is, a
rainbow set of size m.

Another well-known rainbow result is Drisko’s theorem, on rainbow matchings. The
following slightly more general version of the original theorem was proved in [1]:

Theorem 2. [7] 2n − 1 matchings in a bipartite graph, of size n each, have a rainbow
matching of size n.

There is a conspicuous difference between the two theorems: in the first the condition
is “cooperative”, namely it is on subfamilies of S, whereas in the second it is on singletons
- each Si is assumed to be large by itself. On the other hand, there is a condition on the
number of the sets Si.

1.1 A cooperative version of the Kalai-Meshulam theorem

A complex C is said to be d-Leray if H̃k(C[S]) = 0 for all S ⊆ V and all k > d (H̃k is the
reduced k-th homology group). Let λ(C) be the smallest number d such that C is d-Leray.

A basic result in this direction is a theorem of Kalai and Meshulam [11]:

Theorem 3. Let M and C be a matroid and a complex, respectively, on the same ground
set. If λ(lkC(S)) < rankM(V \ S) for every S ∈ C then M\ C 6= ∅.

Here lkC(S) = {T ⊆ V \ S | S ∪ T ∈ C}. The theorem above is a re-formulation of
Theorem 1.6 in [11].

The following was proved in [12]:

Theorem 4. For any complex C and set S ∈ C, λ(lkC(S)) 6 λ(C).

Theorems 3 and 4, combined, yield the following:
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Theorem 5. If λ(C) 6 d and S = (S1, . . . , Sd+k) is a family of subsets of V (C) satisfying
SI 6∈ C whenever I ⊆ [d+ k] is of size k, then there exists an S-rainbow non-C set.

Proof. By duplicating vertices, if necessary (a vertex having a distinct copy for every set
Si it belongs to), we may assume that the sets Si are disjoint. Let M be the partition
matroid defined by the sets Si. By Theorems 4 and 3 it suffices to show that if S ∈ C
then rankM(V \ S) > d. This follows from the condition SI 6∈ C (|I| > k) and the fact
that rankM(A) = |{i : A ∩ Si 6= ∅}|.

This is a “cooperative” version of the Kalai-Meshulam theorem, namely many sets
join forces to contain a set not belonging to C.

1.2 A cooperative version of Theorem 2

For a set F of edges we denote by ν(F ) the maximal size of a matching in F . For a family
F = (F1, . . . , Fm) of sets of edges, we denote by νR(F) the maximal size of an F -rainbow
matching.

Let t be an integer, and let n 6 t. Let C be the complex consisting of all F ⊆ E(Kt,t),
satisfying ν(F ) < n. In [3] it was shown that λ(C) 6 2n − 2. Together with Theorem 5
this yields:

Theorem 6. 2n + k − 2 sets of edges in a bipartite graph, the union of any k of which
contains a matching of size n, have a rainbow matching of size n.

Notation 7. We write (m, k, n)→B q for the statement “every m nonempty sets of edges
in a bipartite graph, the union of every k of which contains a matching of size n, have a
rainbow matching of size q”.

In this notation, the theorem says that (2n + k − 2, k, n) →B n. The case k = 1 is
Theorem 2. The main result of this paper is that for k > 1 this can be improved by 1,
thereby obtaining a sharp bound.

Theorem 8. (2n+ k − 3, k, n)→B n whenever 1 < k 6 n.

The sharpness of this result, namely the fact that (2n + k − 4, k, n) 6→B n for any k,
is given by the following example. In C2n, take the odd edges matching repeated n − 1
times, the even edges matching repeated n− 2 times, and a singleton set, consisting of an
even edge, repeated k − 1 times. Explicitly:

Example 9. Consider a complete bipartite graph Kn,n with sides {a1, a2, . . . , an} and
{b1, b2, . . . , bn}. Let

Si =


{a1b1, a2b2, . . . , anbn} if i ∈ [n− 1],

{a1b2, a2b3, . . . , an−1bn, anb1} if i ∈ [2n− 3] \ [n− 1],

{a1b2} if i ∈ [2n+ k − 4] \ [2n− 3].

Let S = (Si | i = 1, . . . , 2n + k − 4). Then for any I ⊆ [2n + k − 4] with |I| > k,
ν(SI) > n, and νR(S) < n.
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Remark 10. After our result was obtained, Holmsen and Lee [10] gave a topological proof
of Theorem 8, using a strong version of Theorem 3. Their result is a somewhat stronger
version of Theorem 8.

1.3 Cooperative versions of Colorful Caratheodory

Part of the motivation for Theorem 8 comes from the existence of cooperative versions
of a famous rainbow result - Bárány’s Colorful Caratheodory theorem [6]. In fact, as we
shall see below (first proof of Theorem 25), the affinity is not merely formal. Theorem 6
follows from a cooperative version of Colorful Caratheodory.

Wegner [13] noted that the complex C of sets of vectors in Rd not containing a given
vector v in their convex hull satisfies λ(C) = d. Similarly, the complex D of sets not
containing v in their cone (set of non-negative combinations) satisfies λ(D) = d−1. This,
together with Theorem 5, yields:

Theorem 11. Let v ∈ Rd.

1. If S = (S1, . . . , Sd+k) is a family of subsets of Rd such that v ∈ conv(SK) for every
K ⊆ [d+ k] of size k, then there exists an S-rainbow set S such that v ∈ conv(S).

2. If S = (S1, . . . , Sd+k−1) is a family of subsets of Rd such that v ∈ cone(SK) for every
K ⊆ [d+k−1] of size k, then there exists an S-rainbow set S such that v ∈ cone(S).

The case k = 2 of part (1) of the theorem was strengthened by Holmsen-Pach-Tverberg
[9] and Arocha et.al. [5]:

Theorem 12. If S1, . . . , Sd+1 are non-empty sets in Rd, and v ∈ conv(Si ∪ Sj) whenever
1 6 i < j 6 d+ 1, then there is a rainbow set S with v ∈ conv(S).

Holmsen [8] gave a topological proof of this result, using a notion he called “near
d-Lerayness”, which means that lkC(S) is d-Leray for every non-empty S ∈ C. The same
argument can be used to prove the analogous strengthening for all k > 1:

Theorem 13. Let k > 1, and let S = (S1, . . . , Sd+k−1) be a family of non-empty sets in
Rd, such that every k of them contain v in the convex hull of their union. Then there is
an S-rainbow set containing v in its convex hull.

The analogous strengthening of part (2) of Theorem 11 is false, as witnessed by simple
counterexamples.

Example 14. Let v1, . . . , vd+1 be the vertices of a d-dimensional simplex σ ⊆ Rd whose
barycenter is the origin. Let v be the barycenter of face {v1, . . . , vd} of σ. Consider
the family S = (S1, . . . , Sd+k−2) of non-empty sets in Rd, where Si = {v1, . . . , vd} for
1 6 i 6 d − 1 and Sj = {vd+1} for d 6 j 6 d + k − 2. Among any k sets in S, at least
one is Si for some 1 6 i 6 d− 1, hence the convex cone spanned by their union contains
v. However, there is no S-rainbow set S such that v ∈ cone(S).
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2 Rainbow paths

The proof of Theorem 8 is based on a combinatorial proof of the result (2n+k−2, k, n)→B
n, and analysis of the extreme case. This proof, in turn, uses a lemma on rainbow paths
in networks. To get the extra 1 we analyze the extreme cases of that lemma. The analysis
uses ideas from an analogous lemma in [4], which is the case k = 1. But apart from a
higher level of complexity, there is the difference that for k > 1 the analysis leads to an
improvement of 1 in the theorem - which was not the case for k = 1.

A network is a triple N = (D, s, t), where D is a digraph, and s, t are two special
vertices in it, called source and target. We assume that there are no edges going out of
t or into s. We write V (N ) for V (D). The set V (N ) \ {s, t} is denoted by V ◦(N ), and
its elements are called “inner vertices”. For an s− t path P let V ◦(P ) = V ◦(N ) ∩ V (P ).
Two s− t paths P,Q are said to be internally disjoint if V ◦(P ) ∩ V ◦(Q) = ∅.

For an s−t path Q let B(Q) be the set of backward edges on Q, namely those directed
edges pq where p, q ∈ V (Q) and q precedes p on Q. Let sQ be the vertex following s in Q,
and tQ the vertex preceding t in Q. Define U(Q) = {vsQ | v ∈ V ◦(N )\V (Q)}∪{tQu | u ∈
V ◦(N ) \ V (Q)}. (“U” stands for “useless”, since such edges cannot be used as shortcuts
- this will be clarified below).

We shall borrow a term - “regimented” - from [4], but its use is a bit different here.

Definition 15. Let F be a family of sets of edges in N . A regimentation of F is a pair
R = (Q = Q(R), I = I(R)), where Q is a set of internally disjoint s − t paths, and I
is a function from a subset E = E(R) of F (the “essential” sets) onto Q, satisfying the
following conditions:

1.
⋃

Q∈Q V (Q) = V (N ),

2. E(I(F )) ⊆ F for every F ∈ E , and

3. |I−1(Q)| = |E(Q)| − 1 for every Q ∈ Q.

Let IE(R) = F \ E(R) (the “inessential” sets) and B(R) =
⋃

Q∈QB(Q).
If such a regimentation R exists, we say then that F is regimented by R.
Conditions (1) and (3) imply:

Lemma 16. |E(R)| = |V ◦(N )|.

Proof. Since E(R) =
⋃

Q∈Q I
−1(Q), we have |E(R)| =

∑
Q∈Q |I−1(Q)|. Then by the

condition (3) of a regimentation, we have

|E(R)| =
∑
Q∈Q

|I−1(Q)| =
∑
Q∈Q

(|E(Q)| − 1) =
∑
Q∈Q

|V ◦(Q)|.

Since Q is a set of internally disjoint s − t paths, the condition (1) of a regimentation
implies

∑
Q∈Q |V ◦(Q)| = |V ◦(N )|, and hence we obtain |E(R)| = |V ◦(N )|.
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Notation 17 (Pruning and concatenation of paths). If P is a directed path and x ∈ V (P )
then Px is the part of P up to and including x, and xP is the part of P starting at
x. If two paths P and Q meet at a vertex x, then PxQ denotes the walk obtained by
concatenating Px and xQ. If the endpoint of a path P coincides with the initial point in
a path Q, we write PQ for the walk that is the concatenation of P and Q.

Lemma 18. Suppose F is regimented by R = (Q, I), and let B = B(R), IE = IE(R).
If there is no F-rainbow s − t path, then

⋃
IE ⊆ B and

⋃
I−1(Q) ⊆ E(Q) ∪ B ∪ U(Q)

for every Q ∈ Q.

(For a set K of sets
⋃
K is the union of all sets in K.)

Proof. Let vu be an edge belonging to F for some F ∈ F . Assume that v ∈ V (Q1), u ∈
V (Q2). Let P = Q1vuQ2 (see Notation 17).

To obtain the conclusion of the lemma, we will show the following.

1. When Q1 = Q2, P is an F -rainbow s − t path unless vu ∈ B(Q1) or vu ∈ E(Q1)
and F ∈ I−1(Q1).

2. When Q1 6= Q2, P is an F -rainbow s− t path unless v = tQ1 and F ∈ I−1(Q1), or
u = sQ2 and F ∈ I−1(Q2).

First suppose that Q1 = Q2. If v precedes u on Q1 and vu /∈ E(Q1), then P is an
F -rainbow s− t path, since by part (3) of Definition 15 it has enough represented sets for
its length. If vu ∈ E(Q1), then P is an F -rainbow s − t path unless F ∈ I−1(Q1). This
proves (1).

Now assume Q1 6= Q2. We may assume that v ∈ V ◦(Q1) and u ∈ V ◦(Q2) since if
not the claim is a special case of (1). Then Q1v and uQ2 are rainbow, and they have
enough represented sets in I−1(Q1) and I−1(Q2), respectively. If F /∈ I−1(Q1) ∪ I−1(Q2),
then P is rainbow. If F ∈ I−1(Q1) and v 6= tQ1 , then Q1vu is rainbow since it has
enough represented sets in I−1(Q1), since it has length at most |E(Q1)| − 1. Similarly if
F ∈ I−1(Q2) and u 6= sQ2 , then vuQ2 is rainbow since it has enough represented sets in
I−1(Q2). In both cases P is rainbow, which proves (2).

Since we assume there is no F -rainbow s− t path, if F ∈ IE , then vu ∈ B by (1) and
(2). Thus

⋃
IE ⊆ B. If F ∈ I−1(Q) for some Q ∈ Q, then vu ∈ E(Q)∪B ∪U(Q) by (1)

and (2). Thus
⋃
I−1(Q) ⊆ E(Q) ∪B ∪ U(Q).

Corollary 19. Let F be regimented by R, and assume that there is no F-rainbow s − t
path. If F ∈ IE(R) then F does not contain an s− t path.

In fact, F does not even contain an edge sy.

Lemma 20. Let P,Q be s − t paths in a network (D, s, t). If E(P ) ⊆ E(Q) ∪ B(Q) ∪
B̃ ∪ U(Q) for some collection B̃ of edges that are vertex-disjoint from Q, then P = Q.
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Proof. The only edge leaving s in E(Q) ∪B(Q) ∪ B̃ ∪ U(Q) is ssQ ∈ E(Q), and the only
edge to t is tQt ∈ E(Q). So these are necessarily the first and last edges of P . Therefore
P has no edges from U(Q), since the in-degree of sQ and the out-degree of tQ in P are 1.

As E(Q) ∪ B(Q) and B̃ are disconnected, E(P ) ∩ B̃ = ∅. It remains to show that
E(P ) ∩B(Q) = ∅, which follows from the fact that P does not repeat vertices.

Combining Lemmas 18 and 20 yields:

Corollary 21. Let F be regimented by R, and having no rainbow s− t path. If F ∈ E(R)
then I(F ) is the only s− t path contained in F .

By Corollaries 19 and 21, we can obtain the following corollary.

Corollary 22. Let F be regimented by R, and having no rainbow s − t path. Then
F ∈ E(R) if and only if F contains an s − t path, and equivalently, F ∈ IE(R) if and
only if F does not contain an s− t path.

The following argument will be used twice, and hence it receives separate mention:

Lemma 23. Let G,H be two families of sets of edges, none of which possesses a rainbow
s−t path. Suppose that G is regimented by R = (Q, I) and H is regimented by S = (P , J).
Suppose that G \ H consists of a single set of edges G, and H \ G consists of single set of
edges H. Then either G ∈ IE(R) and H ∈ IE(S), or I(G) = J(H).

Proof. Let K = G ∩ H. So G = K ∪ {G}, H = K ∪ {H}.
By Corollary 22, it is obvious that

K ∩ E(R) = K ∩ E(S). (1)

By Corollary 21, I(K) = J(K) for every K ∈ K ∩ E(R). Hence⋃
K∈E(R)\{G}

V (I(K)) =
⋃

K∈E(S)\{H}

V (J(K)) (2)

Let us first show that G ∈ IE(R) if and only if H ∈ IE(S). Suppose that G ∈ IE(R).
Then E(R) ⊆ K. By (1) and Lemma 16, it follows that E(S) = E(R), so H ∈ IE(S).
The converse implication is the same.

Assume next that G ∈ E(R) and H ∈ E(S). Let Q0 = I(G). Consider first the case
that V ◦(Q0) consists of a single vertex v. We have

⋃
K∈E(R)\{G} V (I(K)) = V ◦ \ {v}, and

hence by (2) we have also
⋃

K∈E(S)\{H} V (J(K)) = V ◦ \ {v}. Since the interiors of paths

in P partition V ◦, it follows that J(H) is the path svt, namely Q0.
It remains to consider the case |V ◦(Q0)| > 1. Then, not counting multiplicities,

P = Q, because every path of Q appears as J(K) for some K ∈ K. The only path in
P not covered enough times by paths J(K), K ∈ E(S) \ {H}, is Q0. So, necessarily
J(H) = Q0.

The next theorem is the main step towards the proof of Theorem 8.
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Theorem 24. Let N = (D, s, t) be a network with n inner vertices. Let F be a family
of n+ k − 1 sets of edges in N , satisfying the condition that

⋃
K contains an s− t path,

for every K ⊆ F of size k. Then either there exists an F-rainbow s − t path, or F is
regimented.

The case k = 1 of the theorem is Theorem 3.3 in [4].
It is worth noting that the weaker result, with F being of size n+k, is not hard. First,

the statement:

Theorem 25. Let N = (D, s, t) be a network with n inner vertices. Let F be a family
of n + k sets of edges in N , satisfying the condition that

⋃
K contains an s − t path for

every K ⊆ F of size k. Then there exists an F-rainbow s− t path.

Here are two proofs:
Proof 1. Observe that a set H of edges in N contains an s − t path if and only

if the cone of {χb − χa | ab ∈ H} contains the vector χt − χs (here χv is the function
that is 1 on v and 0 on all other vertices). Also note that all these vectors reside in an
n + 1-dimensional space (they are of length n + 2, but all are perpendicular to the all-1
vector). Apply now Theorem 11, part (2).

Proof 2. Take a maximal F -rainbow tree T rooted at s. Assume, for contradiction,
that it does not reach t. Then it represents at most n members of F . Hence there are
k sets F ∈ F not represented in T . By assumption, their union contains an s − t path.
The first edge leaving T can then be added to T to yield a larger rainbow tree, which
contradicts the maximality of T .

Definition 26 (contracting an edge sx). Let sx be an edge of N . We can contract sx
to a newly defined vertex s′, that will serve as the source of a new network N ′. Here is
what this does to sets of edges, and to paths.

1. Let F be a set of edges in a network N = (D, s, t), and let sx be an edge, where x is
an inner vertex. The contracted set of edges F |sx→s′ is obtained from F by replacing
every edge sy or xy belonging to F by the edge s′y, and removing all edges yx.

2. An s− t path P is transformed by the contraction of sx to an s′− t path P ′, defined
as follows. If x 6∈ V (P ) then P ′ = P with s′ replacing s. If x ∈ V (P ) then P ′ = s′yP
where y is the vertex following x in P (so, the vertices in Px disappear.) We also
write P ′ = P |sx→s′ . Note that in this definition E(P ′) is not necessarily equal to
E(P )|sx→s′ .

Proof of Theorem 24. By induction on n. The case n = 0 is easy. So let n > 1 and
assume that the theorem is valid when n− 1 replaces n.

Since n+k−1 > k,
⋃
F contains an s− t path. So there exists at least one set G ∈ F

containing an edge sx. If x = t then the path st is rainbow, so we may assume that x 6= t.
Now contract sx: for each F ∈ F let F ′ = F |sx→s′ . Let K′ = (F ′ | F ∈ F) for K ⊆ F .
Let N ′ be the network with vertex set V (N ) \ {s, x} ∪ {s′}, source s′, target t, and edge
set

⋃
(F ′ \ {G′}).
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Every K ⊆ F of size k contains in its union the edge set of an s − t path in N ,
which is easily seen to imply the same, with s′ replacing s, for K′ in N ′. By the induction
hypothesis, either there exists an F ′\{G′}-rainbow s′−t path P ′, or F ′\{G′} is regimented.
In the first case, let y be the vertex following s′ in P ′. Then either syP ′ or sxyP ′ is a
rainbow s− t path in N , and we are done. So, we may assume the second possibility. Let
R′ = (Q′, I ′) be a regimentation of F ′ \ {G′}, and let E ′ = E(R′), IE ′ = IE(R′).

Let ĨE = (F ∈ F \ {G} | F ′ ∈ IE ′) and Ẽ = (F ∈ F \ {G} | F ′ ∈ E ′).
By Lemma 16 |E ′| = n− 1, so

|ĨE| = |IE ′| = k − 1. (3)

In all claims below we assume that there is no F -rainbow s− t path.

Let B′ =
⋃

Q′∈Q′ B(Q′). By Lemma 18,
⋃
IE ′ ⊆ B′ and

⋃
I ′−1(Q′) ⊆ E(Q′) ∪ B′ ∪

U(Q′) for every Q′ ∈ Q′.
Notation 27 (two ways of un-contracting sx). Given an s′ − t path Q′ in N ′, let Q′(1) be
the path obtained from Q′ by replacing s′ with s and Q′(2) the path obtained from Q′ by
expanding its first edge s′y to the path sxy.

Our aim is to glean from R′ a regimentation R = (Q, I) of F . The set E(R) will
contain G and Q will contain s− t paths f(Q′), Q′ ∈ Q′, where f is an injective function
defined as follows. Let Q′ ∈ Q′ and let F ∈ F \{G} be such that I ′(F ′) = Q′. By (3) and
the condition of the theorem, the set F ∪

⋃
ĨE contains an s− t path Q. Let f(Q′) = Q.

Claim 28. Q′ = Q|sx→s′.

Proof. By the choice of Q, we have E(Q|sx→s′) ⊆ F ′ ∪
⋃
IE ′. By Lemma 18, we have

F ′∪
⋃
IE ′ ⊆ E(Q′)∪B′∪U(Q′) = E(Q′)∪B(Q′)∪

⋃
T ′∈Q′\{Q′}B(T ′)∪U(Q′). The claim

now follows by Lemma 20.

There are two possibilities:

(a) x 6∈ V (Q). In this case Q = Q′(1).

(b) x ∈ V (Q). Suppose, in this case, that Qx contains inner vertices. Let y be the first
inner vertex of Qx. Then y ∈ V ◦(T ′) for some T ′ ∈ Q′ \ {Q′}, and then syT ′ is a
rainbow s − t path in N since it has enough represented sets in I ′−1(T ′) ∪ {G}. So,
we may assume that V ◦(Qx) = ∅, meaning that the first edge on Q is sx, meaning in
turn that Q = Q′(2).

Claim 29. sx 6∈
⋃
ĨE.

Proof. Let F0 ∈ ĨE and suppose that sx ∈ F0. Recall that F ′ is the family of sets of
edges obtained, where, for every F ∈ F , F ′ is the image of F under the contraction of
sx. By the same argument as above, F ′ \ {F ′0} is regimented in N ′, by a regimentation
T = (Q(T ), J). Then G′ ∈ IE(T ) by Lemma 23, and hence G do not contain an edge
yt. But this would imply that G

⋃
ĨE(R) does not contain such an edge, and hence that

it does not contain an s− t path, contrary to the assumption of the theorem.
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Since E(Q) ⊆ F ∪
⋃
ĨE and

⋃
IE ′ ⊆ B′ by Lemma 18, a corollary of Claim 29 is:

E(Q) ⊆ F. (4)

Claim 30. The choice of f(Q′) is independent of the choice of F .

Proof. We have to show that if F1, F2 ∈ F \ {G} satisfy I ′(F ′i ) = Q′, i = 1, 2 and Qi are
s − t paths whose edge sets are contained in Fi ∪ ĨE (i = 1, 2) then Q1 = Q2. We know
that Qi are either Q′(1) or Q′(2). Assume, for contradiction, that Q1 6= Q2, say Q1 = Q′(1)

and Q2 = Q′(2). Then sx ∈ E(Q2) and hence sx ∈ F2. The set F ′ \ {F ′2} lives in N ′, and
repeating the previous argument we deduce that it has a regimentation S = (Q(S), J).
By Lemma 23 J(G′) = I ′(F ′2) = Q′. In particular G′ ⊇ E(Q′). Since Q1 = Q′(1), the edge
ssQ′ belongs to E(Q1) ⊆ F1. Then, using an edge from G and edges from the sets F ∈ F
such that F ′ ∈ I ′−1(Q′) shows that ssQ′Q′ = Q′(1) is an F -rainbow s− t path (note that
edges in E(sQ′Q′) are also edges of F ). This is the desired contradiction.

Claim 31.

1. If f(Q′) = Q′(2) then G ⊇ E(f(Q′)).

2. At most one Q′ ∈ Q′ satisfies f(Q′) = Q′(2).

3. If f(Q′) = Q′(1) for all Q′ ∈ Q′ then G contains the edges of the s− t path sxt.

Proof. To prove (1), let f(Q′) = Q′(2) for some Q′ ∈ Q′.
Then, by Claim 30, sx ∈ F for every F ′ ∈ I ′−1(Q′). We use the same trick as in the

proof of Claim 30, interchanging the roles of F and G. Consider F ′ \ {F ′}. As above,
we may assume that F ′ \ {F ′} is regimented, by a regimentation (P ′, J ′). By Lemma
23, J ′(G′) = I ′(F ′) = Q′, implying that G′ ⊇ E(Q′). Then G contains either E(Q′(1)) or
E(Q′(2)). If G contains E(Q′(1)), then ssQ′Q′ (which is just Q′(1)) is an F -rainbow s − t
path: the edge ssQ′ represents G; since |I ′−1(Q′)| = |E(Q′)| − 1, the other edges have
enough represented sets F ∈ F such that F ′ ∈ I ′−1(Q′) (remember that G 6∈ I ′−1(Q′)).
We have thus shown that G does not contain E(Q′(1)), so it contains E(Q′(2)), namely
G ⊇ E(f(Q′)).

Next we prove (2). Let f(Q′) = Q′(2) for some Q′ ∈ Q′. By the above argument and
Corollary 21, J ′(G′) = Q′ is the only path contained in G′. This directly implies (2).

Finally, we prove (3). Assume that f(Q′) = Q′(1) for all Q′ ∈ Q′. Let Ñ be the
network obtained from N by deleting the vertex x, and let F̃ be the set of edges of Ñ ,
obtained from F by deleting all edges incident with x. Let Q̃ = {Q′(1) | Q′ ∈ Q′}, and
Ĩ(F̃ ) = f(I ′(F ′)). By (4) and the assumption that f(Q′) = Q′(1) for all Q′ ∈ Q′ the set
F̃ = (F̃ | F ∈ F) is regimented by (Q̃, Ĩ). The fact that there is no F -rainbow s− t path
implies that there is also no F̃ -rainbow s − t path. Therefore, by Lemma 18, we have
G̃ ∪

⋃
F∈ĨE F̃ ⊆

⋃
Q∈Q̃B(Q). Thus

G ∪
⋃
ĨE ⊆ {sx, xt} ∪

⋃
Q′∈Q′

B(Q′(1)) ∪ U(sxt).
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By the assumption of the theorem, G∪
⋃
ĨE contains an s− t path, say QG. By Lemma

20 we have QG = sxt, and by Claim 29 we obtain G ⊇ E(QG). This concludes the proof
of the claim.

Remark 32. By the claim the paths f(Q′), Q′ ∈ Q′ are internally disjoint. In particular,
there is at most one path f(Q′) containing x.

We can now complete the induction step in the proof of Theorem 24, by showing that
F is regimented.

Case I: f(Q′) = Q′(1) for all Q′ ∈ Q′.
Let Q = {f(Q′) | Q′ ∈ Q′} ∪ {Q0} where Q0 = sxt. Let E = (F | F ′ ∈ E(R′)) ∪ {G}.

Define I : E → Q by I(F ) = f(I ′(F ′)) for F 6= G, and I(G) = Q0.

Claim 33. (Q, I) is a regimentation of F .

By Remark 32 and the fact that x /∈
⋃

Q′∈Q′ V (f(Q′)), Q is a set of internally disjoint
s− t paths.

By (4) E(I(F )) ⊆ F for all F ∈ E \ {G}, and by part (3) of Claim 31 E(I(G)) =
E(Q0) ⊆ G. This implies condition (2) in Definition 15.

In addition,

|I−1(Q)| = |I ′−1(f−1(Q))| = |E(f−1(Q))| − 1 = |E(f−1(Q)(1))| − 1 = |E(Q)| − 1

for all Q ∈ Q \ {Q0}, and

|I−1(Q0)| = 1 = |E(Q0)| − 1.

This yields condition (3) of Definition 15.
Furthermore, since

⋃
Q′∈Q′ V ◦(Q′) = V ◦(N ) \ {x} and V ◦(Q′(1)) = V ◦(Q′), we have⋃

Q∈Q

V ◦(Q) =
⋃

Q′∈Q′

V ◦(Q′(1)) ∪ {x} = V ◦(N ).

This implies condition (1) of Definition 15, thus completing the proof of the claim.

Case II: f(Q′0) = Q
′(2)
0 for some Q′0 ∈ Q.

Let Q = {f(Q′) | Q′ ∈ Q′} and E = (F | F ′ ∈ E(R′)) ∪ {G}. Define I : E → Q by
I(F ) = f(I ′(F ′)) for all F ∈ F \ {G} and I(G) = f(Q′0).

Claim 34. (Q, I) is (here, too) a regimentation of F .

By Remark 32, Q is a set of internally disjoint s− t paths.
By (4) E(I(F )) ⊆ F for F ∈ E\{G}, and by (1) of Claim 31 E(I(G)) = E(f(Q′0)) ⊆ G,

so condition (2) of Definition 15 is fulfilled.
In addition,

|I−1(Q)| = |I ′−1(f−1(Q))| = |E(f−1(Q))| − 1 = |E(f−1(Q)(1))| − 1 = |E(Q)| − 1
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for all Q 6= f(Q′0). On the other hand, for Q = f(Q′0),

|I−1(Q)| = |I ′−1(f−1(Q))|+ 1 = |E(f−1(Q))| = |E(f−1(Q)(2))| − 1 = |E(Q)| − 1.

This proves condition (3) in Definition 15.
Furthermore, since

⋃
Q′∈Q′ V ◦(Q′) = V ◦(N )\{x}, V ◦(Q′(1)) = V ◦(Q′) and V ◦(Q′(2)) =

V ◦(Q′) ∪ {x}, we have⋃
Q∈Q

V ◦(Q) =
⋃

Q′∈Q′\{Q′
0}

V ◦(Q′(1)) ∪ V ◦(Q′(2)0 ) = V ◦(N ).

So, condition (1) of Definition 15 is also valid, completing the proof of the theorem.

3 Proof of Theorem 8

Let us first state the theorem in a slightly stronger form, that allows some of the edge
sets to be empty.

Theorem 35. Let S be a family of 2n+k−3 sets of edges in a bipartite graph G, at most
k − 2 of them being empty. If ν(

⋃
K) > n for every K ⊆ S of size k then νR(S) > n.

Before proving the theorem, we need the following definition.

Definition 36. For a matching N in a graph, a path is called N-alternating if every other
edge in it belongs to N and it is called augmenting if its starting edge and ending edge
are not in N .

Proof. Suppose, for contradiction, that νR(S) =: m < n. Let M = {fS | S ∈ S0} be a
maximal size S-rainbow matching, where fS ∈ S. Let Sc

0 = S \ S0.
Let A,B be the two sides of G. For every h ∈ E(G) let hA be the A-vertex of h, and

hB the B vertex.
We construct a network N , having the property that its paths correspond to M -

alternating paths, and its source-target paths correspond to augmenting M -alternating
paths. Let V (N ) = M ∪ {s, t}, where s represents UA := A \

⋃
M , and t represents

UB := B \
⋃
M .

To every edge h = ab ∈ E(G) \M (a ∈ A, b ∈ B) we assign an edge F (h) of N , as
follows.

1. If a ∈ f ∈M, b ∈ g ∈M then F (h) = fg.

2. If a ∈ UA and b ∈ g ∈M then F (h) = sg.

3. If b ∈ UB and a ∈ f ∈M then F (h) = ft.

4. If a ∈ UA and b ∈ UB then F (h) = st.
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For a set S of edges in G, let F (S) be the set of edges in N , defined by F (S) = {F (h) |
h ∈ S \M}. The function F is not one-to-one, because the inverse image of an edge sh
(h ∈M) can be any edge ahB, a ∈ UA.

Clearly, if M ∪ S contains an augmenting M -alternating path, then F (S) contains an
s− t path in N , and vice versa. Let F = {F (S) | S ∈ Sc

0}.
Since, by assumption, m < n, |Sc

0| = 2n−m+k−3 > m+k−1. If N is a matching of
size n, then M∪N contains an augmenting M -alternating path, and hence F (N) contains
an s− t path. Hence, by Theorem 24 and Theorem 25, either

(i) there exists an F -rainbow s− t path P , or
(ii) |Sc

0| = m+ k − 1 and F is regimented.
In case (i), as mentioned above, P yields an augmenting M -alternating path, whose

application yields a larger rainbow matching. So we may assume (ii). Let R = (Q, I) be
the regimentation of F . Let F−1(IE(R)) = (S ∈ Sc

0 | F (S) ∈ IE(R)). Since at most k−2
sets S ∈ S are empty and |IE(R)| = |Sc

0| − |E(R)| = k− 1 by Lemma 16,
⋃
F−1(IE(R))

is non-empty.

Claim 37. It is possible to choose M so that
⋃
IE(R) 6= ∅.

This means that
⋃
F−1(IE(R)) \M 6= ∅.

Proof. Assume, for contradiction, that
⋃
F−1(IE(R)) ⊆M . Since

⋃
F−1(IE(R)) is non-

empty, there is an element S0 ∈ S0 such that fS0 ∈M ∩
⋃
F−1(IE(R)). Let S1 be a set in

F−1(IE(R)) containing fS0 . By the condition of the theorem,
⋃
F−1(IE(R))∪S0 contains

a matching of size n. This, in turn, means that there exists an edge f ∈
⋃
F−1(IE(R))∪

S0 \M . Since by assumption
⋃
F−1(IE(R)) ⊆M , we have f ∈ S0. Now we can consider

S1 = (S0 \ {S0}) ∪ {S1} as a represented set of M by changing the roles of S0 and S1.
Let F̃ = (F (S) | S ∈ Sc

1). Then by the same reasoning as above, we may assume that F̃
is regimented by R̃ = (Q̃, Ĩ). By Lemma 23, we have F (S0) ∈ IE(R̃) and f ∈ S0 \M ,
which implies

⋃
IE(R̃) 6= ∅.

So, we assume
⋃
IE(R) 6= ∅. Let pq be an edge in F (S) for some F (S) ∈ IE(R). By

Lemma 18, pq is a backward edge on some path Q ∈ Q. Let Q = sy1y2 . . . yct. For each
1 6 i < c let ei be the edge connecting the (yi)A with (yi+1)B, in G (these are the F−1

images of the edges of Q).
Let ` be such that p = y`. As p is an edge in M , p is contained in a set Sp ∈ S0. By

the condition of the theorem, the set Sp∪
⋃
F−1(IE(R)) contains a matching N of size n.

Since |M | < n, N contains an edge ax, where a ∈ UA (recall that UA = A\
⋃
M). Suppose

x ∈ UB. If ax ∈
⋃
F−1(IE(R)), then M ∪ {ax} is a rainbow matching, contradicting the

maximality of M . Thus we have ax ∈ Sp. Let q = y`′ for some `′ < `. Now consider

N = (M ∪ {ax, pAqB} ∪ {(yi)A(yi+1)B | `′ 6 i 6 `− 1}) \ {y`′ , y`′+1, . . . , y`}.

Since pAqB ∈ S and {(yi)A(yi+1)B | `′ 6 i 6 `−1} has enough represented sets in I−1(Q),
then N is a rainbow matching. However, it is a contradiction to the maximality of M
since N has size |M |+ 1.
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Hence, we may assume that x lies on an edge h of M , meaning that sh is an edge in
F (Sp) ∪

⋃
IE(R). Since all edges in

⋃
IE(R) are backwards, and sh is not a backward

edge on any path, sh belongs to F (Sp).
Let h ∈ V (Qh) for Qh ∈ Q, and let P be the s − t path shQh. Let P̃ be a path in

F−1(P ), whose first vertex is a, meaning that its first edge belongs to Sp. Let X4Y be the
symmetric difference of X and Y , that is, X4Y = (X \Y )∪(Y \X). Let N = M4E(P̃ ).

Consider two possibilities:
Possibility I: h = yd for d 6 `.
In this case N is an S-rainbow matching of size m + 1: we let the first edge, ahB,

represents Sp, and the other edges in E(P̃ )\M has a represented sets in I−1(Q) and keep
all other representations as they are. Since the edge in M representing Sp is removed by
the symmetric difference, this assignment of representation yields an S-rainbow matching.

Possibility II: Either h /∈ V (Q) or h = yd for d > `.
In this case, N is not S-rainbow, since there are two edges representing Sp, namely p

and ahB. But this is rectifiable, using the edge pq. Suppose that q = yb, where b < `. Let
C be the cycle whose edges are pAqB, q, eb, yb+1, eb+1, . . . , e`−1, p = y`. Let N ′ = N4E(C).
Then N ′ is a matching of size m+ 1, and it is S-rainbow, since Sp is represented in it just
once - by the edge ahB.

4 Somewhere over the rainbow - two possible strengthenings

It is possible that Theorem 8 can be given a strong cooperation generalisation.

Conjecture 38. Let F be a family of 2k − 1 sets of edges in a bipartite graph. If
ν(
⋃
K) > min(|K|, k) for every K ⊆ F then νR(F) > k.

This generalises the following theorem from [2]:

Theorem 39. If F = (F1, . . . , F2k−1) is a family of matchings in a bipartite graph, and
|Fi| = min(i, k) for all i, then there exists an F-rainbow matching of size k.

Here is another possible strong version of Theorem 8.

Conjecture 40. Let F = (F1, . . . , F2k−1) be a system of bipartite sets of edges, sharing
the same bipartition, and suppose that ν(Fi) > k for all i 6 2k − 1. Let V ′ be a copy
of V disjoint from V , let F ′i be a copy of Fi on V ′ (i 6 2k − 1) and let F̃i = Fi ∪ F ′i for
i 6 2k − 1. Then the system (F̃i | i 6 2k − 1) has a full rainbow matching.

This implies Theorem 2, since by the pigeonhole principle either V or V ′ contains a
rainbow matching of size k. Conjecture 40 would follow from the following conjecture of
the first author and Eli Berger [1].

Conjecture 41. n matchings of size n in any graph have a rainbow matching of size
n− 1.
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