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Abstract

Erdős, Hajnal and Szemerédi proved that any subset G of vertices of a shift graph
Shkn has the property that the independence number of the subgraph induced by G
satisfies α(Shkn[G]) >

(
1
2 − ε

)
|G|, where ε→ 0 as k →∞. In this note we prove that

for k = 2 and n → ∞ there are graphs G ⊆
(

[n]
2

)
with α(Sh2

n[G]) 6
(

1
4 + o(1)

)
|G|,

and 1
4 is best possible. We also consider a related problem for infinite shift graphs.

Mathematics Subject Classifications: 05C69, 05C63

1 Introduction

For n > k ∈ N the shift graph Shkn with

V (Shkn) = {(x1, . . . , xk) : 1 6 x1 < · · · < xk 6 n}

is a graph in which two vertices x = (x1, . . . , xk) and y = (y1, . . . , yk) are adjacent if
xi = yi+1 for all i ∈ {1, . . . , k − 1} (or yi = xi+1 for all i ∈ {1, . . . , k − 1}). Shift graphs
were introduced by Erdős and Hajnal [3],[4] and are standard examples of graphs with
large chromatic number and large odd girth. More precisely, while the odd girth of Shkn is
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2k + 1, they proved∗ that Shkn has chromatic number (1 + o(1)) log(k−1) n, where log(k−1)

stands for k − 1 times iterated log2.
Shift graphs have another interesting property: For each finite set G ⊆ V (Shkn) the

induced subgraph Shkn[G] has a relatively large independent set with respect to |G|. In
other words, the property “having a large independent subset” is hereditary for Shkn.
Namely, for

αkn = min

{
α(Shkn[G])

|G|
: ∅ 6= G ⊆ V (Shkn)

}
, (1)

Erdős, Hajnal and Szemerédi [5, Theorem 1] proved the following.

Theorem 1 (Erdős, Hajnal, Szemerédi). For positive integers k < n

αkn >
1

2
− 1

k
.

As for the upper bound, for n > 2k+ 1 the shift graph Shkn contains an odd cycle and
so αkn < 1/2. Therefore, Theorem 1 yields a lower bound which for large values of k is
essentially optimal.

Nevertheless, determining the values of αkn for fixed k and large n seems to represent an
interesting and non-trivial problem. We will concentrate our attention on the case k = 2.
In this case the bound from Theorem 1 is not optimal, as we observe that α2

n > 1/4 for
all n, and prove a matching upper bound.

Theorem 2. lim
n→∞

α2
n =

1

4
.

In [2], Czipszer, Erdős and Hajnal proved that the densest independent set of the
infinite graph Sh2

N has density 1/4 (see Section 3 for precise formulation). We complement
their result by showing that the infinite shift graph Sh2

N does not have a similar hereditary
property, i.e., there existsG ⊆ V (Sh2

N) such that any independent set in Sh2
N[G] has density

zero in G (see Theorem 7).

2 Proof of Theorem 2

Note that α2
n = min

{
α(Sh2

n[G])
|G| : ∅ 6= G ⊆ V (Sh2

n)
}

is a nonincreasing positive sequence,

so the sequence {α2
n} has a limit. Additionally, we will often view G ⊆ V (Sh2

n) as a graph
with V (G) = [n] and set of edges equal to G. Subsequently |G| will denote both a size of
G as a subset of V (Sh2

n), and the number of edges in G when it is viewed as a graph.

∗In [4] authors considered infinite graphs, however their proof can be adapted for finite case (see [1]
and [6] for more detailed description).
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2.1 Lower bound

We first show that the value of the limit in Theorem 2 is at least 1/4.

Claim 3. For every set G ⊆ V (Sh2
n) we have α(Sh2

n[G]) > 1
4
|G|.

Proof. Let G ⊆ V (Sh2
n) be given. Consider a random colouring c : [n]→ {r, b} such that

every i ∈ [n] is coloured red/blue with probability 1/2 independently of other elements of
[n].

Let Gc be a random subset of G defined by

Gc = {(i, j) ∈ G : i < j, c(i) = b, c(j) = r}.

Then such Gc is always an independent set in Sh2
n. Moreover, P(e ∈ Gc) = 1

4
for every

e ∈ G, and so E(|Gc|) = 1
4
|G|. Therefore α(Sh2

n[G]) > 1
4
|G|.

2.2 Upper bound

We now proceed and prove the upper bound

lim
n→∞

α2
n 6

1

4
. (2)

In what follows for every ε > 0, integer d satisfying 3+ln d
4d

6 ε
2
, and for every integer

n > n0(ε, d) that is a multiple of 2d, we will construct a graph Gε(n, d) ⊆ V (Sh2
n) with

α(Sh2
n[Gε(n, d)]) 6

(
1

4
+ ε

)
|Gε(n, d)|.

To be more precise, for such ε and d we inductively build Gε(n, d) satisfying

α(Sh2
n[Gε(n, d)])

|Gε(n, d)|
6

(
1

4
+

3 + ln d

4d
+
ε

2

)
. (3)

Since {α2
n} is nonincreasing, (3) implies that limn→∞ α

2
n 6 1/4 + ε, which subsequently

implies (2) by letting ε→ 0.
While constructing Gε(n, d) we will use random bipartite graphs. Recall that if G is

a graph and X, Y ⊆ V (G) then G[X, Y ] is a graph consisting of edges of G with one
vertex in X and another in Y . Finally let eG(X, Y ) = |E(G[X, Y ])| and we will omit
subscript when G is obvious from the context. The following claim can be easily verified
by considering a random graph and so the proof of Claim 4 is postponed to Appendix.

Claim 4. For ε > 0 and d ∈ N there is n0 = n0(ε, d) such that for all n > n0 that are
divisible by 2d the following holds. Let [n] = S ∪L, where S = {1, . . . , n

2
} and L = [n] \S.

There exists a bipartite graph Bε(n, d) with bipartition V (Bε(n, d)) = S t L such that

(i) |Bε(n, d)| = n2

2d+1 .
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(ii) for all X ⊆ S and Y ⊆ L

e(X, Y ) =
1

2d−1
|X||Y | ± εn2

2d+2
.

Construction of Gε(n, d).

Definition 5. For every even n let Gε(n, 1) be such that

Gε(n, 1) = {(i, j) : 1 6 i 6
n

2
< j 6 n},

i.e., Gε(n, 1) is a complete balanced bipartite graph.
For d ∈ N define graph Gε(n, d) recursively for all sufficiently large† n such that 2d|n.

Let [n] = S ∪ L, where S = {1, . . . , n
2
} and L = [n] \ S. Then define

Gε(n, d) = Gε(S, d− 1) ∪Gε(L, d− 1) ∪Bε(n, d),

where Gε(S, d− 1) = Gε(
n
2
, d− 1), V (Gε(L, d− 1)) = L and Gε(L, d− 1) ∼= Gε(

n
2
, d− 1),

and Bε(n, d) is a graph guaranteed by Claim 4.

To summarize, every Gε(n, d) = G satisfies the following properties (with Sn =
{1, . . . , n

2
} and Ln = [n] \ Sn):

(i) eG(Sn, Ln) =
n2

2d+1
.

(ii) for all X ⊆ Sn and Y ⊆ Ln

e(X, Y ) =
1

2d−1
|X||Y | ± εn2

2d+2
.

(iii) G[Sn] ∼= G[Ln] = Gε(
n
2
, d− 1)

Using properties (i) and (iii) and induction on d it is easy to verify that for all d ∈ N
and n divisible by 2d

|Gε(n, d)| = d
n2

2d+1
. (4)

We will now proceed with proving (3). First let G ⊆ V (Sh2
n) and let I ⊆ G be an

independent set in Sh2
n. In other words there is no 1 6 i < j < k 6 n with both (i, j)

and (j, k) in I. One can observe that for each such I ⊆ G there exists a 2-colouring
c : [n]→ {r, b} with c(i) = r and c(j) = b whenever (i, j) ∈ I, and then

I ⊆ Gc = {(x, y) ∈ G : x < y, c(x) = b, c(y) = r}. (5)

†n > 2in0(ε, d− i) for all i ∈ {0, 1, . . . , d− 2}, where n0(ε, d− i) is the number provided by Claim 4.
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Therefore, in order to prove (3) we will show that for G = Gε(n, d) and any c : [n]→ {r, b}

|Gc|
|G|

6
1

4
+

3 + ln d

4d
+
ε

2
. (6)

For the rest of our calculation let ε be fixed. We will now prove (6) by induction on d.
In order to make use of recursive structure of Gε(n, d) we will prove a version of (6) with
an additional assumption that |{i : c(i) = b}| = αn.

To that end for d ∈ N, α ∈ [0, 1] and n > n0(ε, d) let

fαd (n) = d ·max
c

{
|Gc|
|G|

: G = Gε(n, d), |{i : c(i) = b}| = αn

}
. (7)

We will prove the following estimate on fαd (n).

Claim 6. For every d ∈ N, α ∈ [0, 1] and n > n0(ε, d)

fαd (n) 6 (d+ 3)(α− α2) +
1

4
ln d+

dε

2
.

From (7) it follows that for G = Gε(n, d) and any colouring c we have

|Gc|
|G|

6 max
α∈[0,1]

fαd (n)

d
.

Then by Claim 6 we get
|Gc|
|G|

6
1

4

d+ 3

d
+

ln d

4d
+
ε

2
,

establishing (6) and (3). Hence it remains to prove Claim 6 in order to finish the proof
of the upper bound.

Proof of Claim 6. We prove a slightly stronger inequality for all n > n0(ε, d)

fαd (n) 6 (d+ 3)(α− α2) +
1

4

d+1∑
i=3

1

i
+
dε

2
. (8)

The proof is by induction on d. For d = 1 recall that G = Gε(n, 1) is a complete bipartite
graph between Sn and Ln. Let c : [n] → {r, b} be such that for B = {i : c(i) = b} we
have |B| = αn. Then in view of (5) the maximum value of |Gc| is achieved when B = [αn]
and so

fα1 (n) =

{
2α, α ∈ [0, 1

2
]

2− 2α, α ∈ [1
2
, 1].

Now it is easy to verify that fα1 6 4(α− α2) for all α ∈ [0, 1], establishing (8) in the case
d = 1.

To prove inductive step let G = Gε(n, d) and let c : [n] → {r, b} be such that for
B = {i : c(i) = b} we have |B| = αn. As before, let S = {1, . . . , n

2
} and L = [n] \ S. Let
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BS, BL, RS and RL denote the set of blue and red vertices in S and L respectively. We
will further refine our analysis by assuming that |BS| = xn

2
with some x ∈ [0, 2α]. Since

|BS|+ |RS| = n
2
, |BS|+ |BL| = |B| = αn, and |BL|+ |RL| = n

2
, we have |RS| = (1− x)n

2
,

|BL| = (2α− x)n
2
, and consequently |RL| = (1− 2α + x)n

2
(see Figure 1). Then

|Gc| = |Gc[S]|+ |Gc[L]|+ eG(BS, RL). (9)

x

1− x

Gc[S]

G = Gε(n, d) :

2α− x

1− 2α + x

Gc[L]

Figure 1: Proportions of red and blue vertices in Gc[S] and Gc[L].

Now, by (iii) G[S] = Gε(
n
2
, d− 1) and we assumed |BS| = xn

2
, so

|Gc[S]|
(7)

6
fxd−1(n

2
)

d− 1
|G[S]| (4)

=
n2

2d+2
fxd−1

(n
2

)
. (10)

Similarly, since |BL| = (2α− x)n
2

we have

|Gc[L]| 6 n2

2d+2
f 2α−x
d−1

(n
2

)
. (11)

And finally, since G = Gε(n, d),

eG(BS, RL)
(ii)

6
1

2d−1
|BS||RL|+

εn2

2d+2
=

n2

2d+1

(
x(1− 2α + x) +

ε

2

)
. (12)

Combining (9) with (10), (11), and (12) we obtain

|Gc| 6
n2

2d+1

(
1

2

(
fxd−1

(n
2

)
+ f 2α−x

d−1

(n
2

))
+ x(1− 2α + x) +

ε

2

)
.

Finally, |G| = |Gε(n, d)| (4)
= d n2

2d+1 and so by (7) we deduce that

fαd (n) 6 max
x∈R

{
1

2

(
fxd−1

(n
2

)
+ f 2α−x

d−1

(n
2

))
+ x(1− 2α + x) +

ε

2

}
. (13)
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The last inequality allows us to incorporate induction hypothesis. In particular, by
induction hypothesis we have

fxd−1(
n

2
) 6 (d+ 2)(x− x2) +

1

4

d∑
i=3

1

i
+

(d− 1)ε

2
,

f 2α−x
d−1 (

n

2
) 6 (d+ 2)(2α− x)(1− 2α + x) +

1

4

d∑
i=3

1

i
+

(d− 1)ε

2
,

and these two inequalities together with (13), after some simple but tedious algebraic
manipulations yield

fαd (n) 6 max
x∈R

{
−(d+ 1)x2 + (1 + 2α(d+ 1))x+ (d+ 2)(α− 2α2) +

1

4

d∑
i=3

1

i
+
dε

2

}
.

In other words fαd (n) 6 maxx∈R{g(x)}, where g(x) = ax2 +bx+c with a = −(d+1). Since

a < 0 we have maxx∈R g(x) = g(−b
2a

) = c − b2

4a
. Therefore after another set of algebraic

manipulations we obtain

fαd (n) 6 max
x∈R
{g(x)} 6 (d+ 3)(α− α2) +

1

4

d+1∑
i=3

1

i
+
dε

2
,

finishing the proof of the inductive step and Claim 6.

3 Infinite graphs

Recall that Theorem 2 states

lim
n→∞

min

{
α(Sh2

n[G])

|G|
: ∅ 6= G ⊆ V (Sh2

n)

}
=

1

4
. (14)

On the other hand, considering I = {(i, j) : 1 6 i 6 n
2
< j 6 n} we clearly have

α(Sh2
n) > bn2

4
c. Moreover bn2

4
c is optimal, since any graph G ⊆ V (Sh2

n) with |G| > bn2

4
c+1

contains a triangle and hence such G is not an independent set in Sh2
n. Therefore,

lim
n→∞

α(Sh2
n)

|Sh2
n|

=
1

2
. (15)

It may be interesting to note that infinite version of (15) was considered by Czipszer,
Erdős and Hajnal [2] who proved that if I is independent set in countable shift graph
Sh2

N, then the density of I does not exceed 1/4, i.e.

lim inf
n→∞

∣∣∣I ∩ ([n]
2

)∣∣∣(
n
2

) 6
1

4
. (16)
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(Here 1
4

is clearly optimal, since I = {(i, j) : i < j, i odd, j even} is independent in
Sh2

N.)
To complete this discussion we provide an infinite variant of (14).

Theorem 7. There is G ⊆ V (Sh2
N) such that if I is an independent set in Sh2

N[G], then

lim inf
n→∞

∣∣∣I ∩ ([n]
2

)∣∣∣∣∣∣G ∩ ([n]
2

)∣∣∣ = 0.

Proof. Consider an infinite ordered tree G with V (G) = N, and with vertices labeled vji ,
where j denotes the “level” Lj that vertex vji belongs to and i denotes the order in which
vertices are listed on the level.

Consider a labeling of vertices of G by integers satisfying vji < vj
′

i if j < j′ and vji < vji′
if i < i′ such that for all vji the finite set N+(vji ) of all children of vji forms an interval (and
these intervals on the level Lj+1 follow the order of their parents on Lj, see Figure 2).
Finally we will assume that for all vji

|N+(vji )| > 2j
∑
v<vji

|N+(v)|. (17)

Now, let I ⊆ G be an infinite independent set in Sh2
N and let (vj−1

k , vji ) ∈ I, where vj−1
k

and vji are parent and child respectively. Let w = max{N+(vji )} be the largest son of vji
and let W = {1, . . . , w} (see Figure 2). Then

G[W ] =
⋃
v6vji

{
(v, u) : u ∈ N+(v)

}
. (18)

L0

vj−1
kL1

vji
L2

w

N+(vji )

L3

W

Figure 2: Infinite tree G, vertices are ordered top to bottom, left to right. Edges of I are
labeled with red.
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In particular in view of (17)

|G[W ]| > |
{

(vji , u) : u ∈ N+(v)
}
| = |N+(vji )|. (19)

On other hand, since (vj−1
k , vji ) ∈ I and I is independent set in Sh2

N, the set I does not
contain any other edge incident to vji . Consequently,

|I[W ]| 6

∣∣∣∣∣∣
⋃
v<vji

{
(v, u) : u ∈ N+(v)

}∣∣∣∣∣∣ (17)

6 2−j|N+(vji )|. (20)

In view of (19) and (20) we have |I[W ]|/|G[W ]| 6 1
2j

. Now, since I is infinite there are

edges (vj−1
k , vji ) ∈ I with sufficiently large j, hence the ratio |I[W ]|/|G[W ]| can be made

arbitrary small, finishing the proof.

4 Concluding remarks

In [5] it was proved‡ that for any n, k

αkn >

{
1
2
− 1

k
, if k is even,

1
2
− 1

2k
, if k is odd.

(21)

It remains an open problem to determine for any k > 3 the exact value of limn→∞ α
k
n. For

k = 4 we were able to improve the constant in the lower bound (21) from 1
4

to 3
8
§ and for

k = 3 we believe that estimate in (21) is sharp.

Problem 8. Show that limn→∞ α
3
n = 1

3
.

Finally, all of the results in this paper can be reformulated in terms of subgraphs with
no increasing paths of length two. For instance, Theorem 2 implies that for any ε > 0
there exists an vertex-ordered graph G such that if G′ ⊆ G with |G′| >

(
1
4

+ ε
)
|G|, then

G′ contains an increasing path of length two, i.e. there are i < j < k with (i, j), (j, k) ∈ G′.
One can ask similar questions for longer increasing paths.

Problem 9. For any ε > 0 does there exist an ordered graph G such that if G′ ⊆ G with
|G′| >

(
1
3

+ ε
)
|G|, then G′ contains an increasing path of length three?

Note that in regards to Problem 9, one can consider a random coloring c of V (G)
with colors {0, 1, 2} and define G′ to be the collection of all (i, j) ∈ E(G) with i < j and
c(i) < c(j). Then such G′ on average contains 1

3
|G| edges and has no increasing paths of

length three, motivating the constant 1
3

in the problem.

‡the result follows from the proof of Theorem 1 in [5]
§α(Sh4

n[G]) > 3
8 |G| can be proved by considering a random colouring c : [n] → {0, 1} and forming an

independent set in Sh4
n by taking hyperedges of G of form 1000, 1110, or x01y for some x, y ∈ {0, 1}.
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Appendix

Proof of Claim 4. Let Bε(n, d) = G, where G is a random graph between S and L ob-
tained by selecting a random subset of size n2

2d+1 without replacement from KS,L (complete
bipartite graph between S and L). Then G satisfies (i) and we will show that G satis-
fies (ii) almost surely.

For every X ⊆ S and Y ⊆ L, e(X, Y ) = eG(X, Y ) is distributed as a hypergeometric

random variable H
(
n2

4
, n2

2d+1 , |X||Y |
)

with expectation 1
2d−1 |X||Y |. Let BX,Y be the event

that ∣∣∣∣eG(X, Y )− 1

2d−1
|X||Y |

∣∣∣∣ > εn2

2d+2
,

i.e., BX,Y is the event that (ii) fails for given X and Y .
We will use a concentration inequality for hypergeometric random variables (this ver-

sion is a corollary of Theorem 2.10 and inequalities (2.5),(2.6) of Janson, Luczak, Rucin-
ski [7]).

Theorem 10. Let Z ∼ H(N,m, k) be a hypergeometric random variable with the expec-
tation µ = mk

N
, then for t > 0

P(|Z − µ| > t) 6 2 exp

(
−t2

2(µ+ t/3)

)
.
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For a given X ⊆ L and Y ⊆ R, as a consequence of Theorem 10 with Z = eG(X, Y ),
t = εn2

2d+2 and µ = 1
2d−1 |X||Y | 6 n2

2d+1 we get

P(BX,Y ) = e−Ω(n2),

where constant in Ω() term depends on ε and d only. Therefore,

P

(⋃
X,Y

BX,Y

)
6
∑
X,Y

P (BX,Y ) 6 2ne−Ω(n2) = o(1).

In particular, P(G satisfies (ii)) = P
(⋂

X,Y BX,Y

)
= 1 − o(1). Hence, G almost surely

satisfies (ii).
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