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Abstract

The combinatorics of reduced words and their commutation classes plays an
important role in geometric representation theory. For a semisimple complex Lie
group G, a string polytope is a convex polytope associated with each reduced word
of the longest element w0 in the Weyl group of G encoding the character of a certain
irreducible representation of G. In this paper, we deal with the case of type A, i.e.,
G = SLn+1(C). A Gelfand–Cetlin polytope is one of the most famous examples of
string polytopes of type A. We provide a recursive formula enumerating reduced
words of w0 such that the corresponding string polytopes are combinatorially equiv-
alent to a Gelfand–Cetlin polytope. The recursive formula involves the number of
standard Young tableaux of shifted shape. We also show that each commutation
class is completely determined by a list of quantities called indices.
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1 Introduction

A string polytope, introduced by Littelmann [21], is a convex polytope ∆i(λ) determined
by two data: a reduced word i of the longest element in the Weyl group of a complex
semisimple Lie group and a dominant weight λ. Its lattice points parametrize the dual
canonical basis elements of the irreducible representation with highest weight λ so that it
can be regarded as a non-abelian generalization of a Newton polytope in toric geometry.
The importance of string polytopes has been raised for the study of mirror symmetry of
flag varieties (see, for example, [2]). We refer the reader to [22], [18], [21], [14], and [3] for
various descriptions of string polytopes.

In this paper, we only deal with the case of type A, i.e., G = SLn+1(C). A family of
Gelfand–Cetlin polytopes provides one of the most famous examples of string polytopes.
Similarly to string polytopes, Gelfand–Cetlin polytopes have been used to describe irre-
ducible representations of SLn+1(C). We recall the definition of Gelfand–Cetlin polytopes
from [13] and [16]. Let λ = (λ1, . . . , λn) be a sequence of nonnegative integers. For
each λ, the Gelfand–Cetlin polytope GC(λ) is defined to be the closed convex polytope
in Rn̄ consisting of the points (xk,j)16j6k6n satisfying the inequalities

xk+1,j > xk,j > xk+1,j+1, 1 6 j 6 k 6 n,

where n̄ = n(n+ 1)/2, xn+1,j = λj + · · ·+ λn for 1 6 j 6 n, and xn+1,n+1 = 0. Note that
GC(λ) has the maximum dimension if each λi is positive, i.e., λ is regular. In this case,
we say that GC(λ) is a full dimensional Gelfand–Cetlin polytope of rank n. It is shown
in [21, Corollary 5 in Section 5] that the Gelfand–Cetlin polytope GC(λ) is an example
of a string polytope of SLn+1(C). More precisely, we have

GC(λ) ' ∆(1,2,1,3,2,1,...,n,n−1,...,1)(λ),

where ' means the unimodular equivalence1. In particular, these two polytopes are
combinatorially equivalent. We refer the reader to [1] and references therein for more
information on the combinatorics of Gelfand–Cetlin polytopes.

The string polytope ∆i(λ) has the maximum dimension if and only if the weight λ is
regular. Once the weight is assumed to be regular, the combinatorial type of the string
polytope is independent of the choice of the weight. In this paper, we consider string
polytopes ∆i(λ) of type A for a fixed regular dominant weight λ so that each ∆i(λ) is
determined by the reduced word i.

The motivation of this paper is to enumerate the string polytope ∆i(λ) of type A
which are combinatorially equivalent to the Gelfand–Cetlin polytope GC(λ). To this end,
we study the reduced words i which give rise to such string polytopes ∆i(λ). To state our
results, we introduce some terminologies.

Let Sn+1 be the symmetric group (i.e., the Weyl group of SLn+1(C)) on [n + 1] :=
{1, . . . , n+1} and denote by si := (i, i+1) the simple transposition which swaps i and i+1

1Given integral polytopes P ⊂ Rd and Q ⊂ Rd, we say that P and Q are unimodularly equivalent if
there exist a matrix U ∈ Md×d(Z) and an integral vector v ∈ Zd such that detU = ±1 and Q = fU (P )+v.
Here, fU is the linear transformation defined by U .
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and fixes all other elements of [n + 1]. The set {s1, . . . , sn} of simple transpositions
generates Sn+1, hence every element w ∈ Sn+1 can be written in the following form:

w = si1 · · · sir , i1, . . . , ir ∈ [n].

In this case, the sequence i := (i1, . . . , ir) is called a word of w. The length `(w) of w is
defined to be the smallest integer r for which (i1, . . . , ir) is a word of w. A word (i1, . . . , ir)
of w is reduced if r = `(w). We denote by R(w) the set of reduced words of w. There is

a unique element w
(n+1)
0 , called the longest element, in Sn+1 such that `(w) 6 `(w

(n+1)
0 )

for all w ∈ Sn+1.
For i, j ∈ [n] satisfying |i− j| > 1, we have sisj = sjsi. This induces an operation on

the set R(w) defined by (. . . , i, j, . . . ) 7→ (. . . , j, i, . . . ), which is called a commutation (or
a 2-move). Define an equivalence relation ∼ on R(w) by

i ∼ i′ ⇐⇒ i is obtained from i′ by a sequence of commutations.

An element in [R(w)] := R(w)/ ∼ is called a commutation class for w. For a recent
account of the study of commutation classes, we refer the reader to [5, 26, 12, 17] and
references therein.

One important fact about commutation classes for our purpose is that two string
polytopes ∆i(λ) and ∆i′(λ) are combinatorially equivalent if (but not necessarily only if)
i and i′ are in the same commutation class (see [7, Lemma 3.1]). Accordingly, studying the

elements in [R(w
(n+1)
0 )] is closely related to the classification problem of the combinatorial

types of string polytopes.
We say that i ∈ R(w

(n+1)
0 ) is a Gelfand–Cetlin type reduced word if the correspond-

ing string polytope ∆i(λ) is combinatorially equivalent to a full dimensional Gelfand–
Cetlin polytope of rank n. Let gc(n) be the number of Gelfand–Cetlin type reduced

words in R(w
(n+1)
0 ). By the definition of gc(n), it also counts the number of string poly-

topes ∆i(λ) with i ∈ R(w
(n+1)
0 ) that are combinatorially equivalent to a full dimensional

Gelfand–Cetlin polytope of rank n.
The first main result in this paper is the following recurrence relation for gc(n).

Theorem 1 (Theorem 37). The number gc(n) of Gelfand–Cetlin type reduced words

in R(w
(n+1)
0 ) satisfies

gc(n) =
n∑
k=1

g(n,n−1,...,n−k+1)gc(n− k),

where gµ is the number of standard Young tableaux of shifted shape µ = (µ1, . . . , µt) and

gµ =
|µ|!

µ1!µ2! · · ·µt!
∏
i<j

µi − µj
µi + µj

.

As a consequence of the proof of the above theorem, we obtain that the number of
commutation classes consisting of Gelfand–Cetlin type reduced words in R(w

(n+1)
0 ) is 2n−1
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(see Corollary 34). This result was also proved in a recent paper [17] using a different
method.

We note that the number of string polytopes ∆i(λ) (for i ∈ R(w
(n+1)
0 )) which are

unimodularly equivalent to the Gelfand–Cetlin polytope GC(λ) is the same as the number
gc(n). Accordingly, the above theorem also enumerates the number of string polytopes
∆i(λ) which are unimodularly equivalent to the Gelfand–Cetlin polytope GC(λ) (see
Corollary 38).

A crucial object in the proof of Theorem 1 is a quantity, called the δ-index. For a
sequence δ ∈ {A,D}n−1 of two letters A and D, the δ-index indδ(i) of a reduced word

i ∈ R(w
(n+1)
0 ) is an element in Zn−1 which measures how far a given word is from the

standard reduced word
(1, 2, 1, 3, 2, 1, . . . , n, n− 1, . . . , 1)

of w
(n+1)
0 . See Section 3 for the precise definition.

Recently, the first and the third authors together with Kim and Park [7, Theorem A]

classified all Gelfand–Cetlin type reduced words in R(w
(n+1)
0 ) in terms of δ-indices. More

precisely, they showed that i ∈ R(w
(n+1)
0 ) is a Gelfand–Cetlin type reduced word if and

only if there is a sequence δ ∈ {A,D}n−1 such that indδ(i) = (0, . . . , 0) ∈ Zn−1.

It turns out that for i, j ∈ R(w
(n+1)
0 ), if indδ(i) = indδ(j) = (0, . . . , 0) ∈ Zn−1 for some

δ ∈ {A,D}n−1, then i ∼ j (see Proposition 32). However, the condition indδ(i) = indδ(j)
for some δ ∈ {A,D}n−1 does not always imply i ∼ j (see Example 33).

The second main result in this paper shows that the δ-indices indδ(i) for all δ ∈
{A,D}n−1 completely determine the commutation class of i.

Theorem 2 (Theorem 39). Let i, j ∈ R(w
(n+1)
0 ). Then, indδ(i) = indδ(j) for all δ ∈

{A,D}n−1 if and only if i ∼ j.

In order to prove our main results, we consider word posets, which are similar to
wiring diagrams. A word poset is a poset P together with a function fP : P → Z>0. Each
commutation class in [R(w

(n+1)
0 )] corresponds to a word poset and the cardinality of the

commutation class is equal to the number of linear extensions of the corresponding word
poset. See Section 2.3 for the precise description.

This paper is organized as follows. In Section 2, we give basic definitions. In Section 3,
we recall the operations on R(w

(n+1)
0 ) called contractions and extensions. Moreover, we

provide the definition of indices and prove several properties of them. In Section 4, we
study Gelfand–Cetlin type reduced words and provide a proof of Theorem 1. In Section 5,
we give a proof of Theorem 2.

2 Basic definitions

In this section, we give basic definitions and properties of commutation classes, wiring
diagrams, and word posets which will be used throughout this paper.
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2.1 Commutation classes

Let w be an element in Sn+1 and denote by R(w) the set of reduced words of w, i.e.,

R(w) = {(i1, . . . , i`) ∈ [n]` | si1si2 · · · si` = w},

where ` = `(w) is the length of w. It is well known that

`(w) = #{1 6 i < j 6 n | w(i) > w(j)}.

We denote by w
(n+1)
0 the longest element n + 1 n · · · 1 of Sn+1 (using the one-line

notation). The length n̄ of the longest element w
(n+1)
0 is given by

n̄ = `(w
(n+1)
0 ) =

n(n+ 1)

2
for n ∈ Z>0 := {1, 2, . . . }. (1)

Recall that for a given i ∈ R(w), one can produce new reduced words using braid
moves. There are two types of braid moves as follows:

• A 2-move replaces two consecutive elements i, j in i by j, i for some integers i and
j with |i− j| > 1.

• A 3-move replaces three consecutive elements i, j, i in i by j, i, j for some integers i
and j with |i− j| = 1.

Note that braid moves do not change the product of the simple transpositions for i since
sisj = sjsi for |i− j| > 1 and sisi+1si = si+1sisi+1. According to Tits’ Theorem [30], any
two reduced words in R(w) are connected by a sequence of braid moves. The braid moves
and Tits’ theorem can be generalized to other Coxeter systems (see [4, §3.3]).

Define an equivalence relation ‘∼’ on R(w) by

i ∼ i′ ⇐⇒ i is obtained from i′ by a sequence of 2-moves.

We denote by [R(w)] := R(w)/ ∼ the set of equivalence classes and call an element [i] ∈
[R(w)] a commutation class.

Remark 3. There is no known exact formula for the number c(n + 1) of commutation

classes of w
(n+1)
0 . Some upper and lower bounds for c(n) were provided by Knuth [19,

Section 9]. Felsner and Valtr [11, Theorem 2 and Proposition 1] found the following upper
and lower bounds for c(n+ 1) improving Knuth’s results: for a sufficiently large n,

20.1887n2

6 c(n) 6 20.6571n2

.

The first few terms of c(n) are 1, 1, 2, 8, 62, 908, 24698, 1232944, see A006245 in [24].
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2.2 Wiring diagrams

There are several combinatorial models for the commutation classes of the longest element
of Sn+1. For example, see Remark 11. We recall a well known combinatorial model, called
a wiring diagram (cf. [15]).

Definition 4. Let i = (i1, i2, . . . , i`) be a word of w ∈ Sn+1.

1. The wiring diagram G(i) of i is given by collections of line segments as follows.

• For 1 6 i 6 n and 1 6 j 6 n+1, define Gi to be the collection of line segments
(Aj, Bsi(j)) connecting Aj and Bsi(j), where Aj = (j, 1) and Bj = (j, 0) are
points in R2. The intersection of the segments (Ai, Bi+1) and (Ai+1, Bi) is
called a crossing in column i. See Figure 1.

• Define G(i) to be the configuration obtained by arranging Gi1 , Gi2 , . . . , Gi`

vertically in this order. More precisely,

G(i) = ρ`−1(Gi1) ∪ ρ`−2(Gi2) ∪ · · · ∪ ρ0(Gi`),

where ρ is the translation by (0, 1). See Figure 2.

2. The jth row of G(i) is ρ`−j(Gij). The points (j, `) and (j, 0) are called the jth
starting point and the jth ending point of G(i), respectively. A wire of G(i) is a
path from a starting point to an ending point of G(i) obtained by taking the union
of ` segments one from each row. If a wire starts at the jth starting point, it is
called the jth wire of G(i).

3. We denote by WD(w) the set of wiring diagrams G(i) for all reduced words i of w.

By the definition of G(i), it is clear that the jth wire is from the jth starting point to
the w(j)th ending point. One can reconstruct i from G(i) because the unique crossing in
row j of G(i) is in column ij. This gives a bijection between R(w) andWD(w). We define
the equivalence relation ‘∼’ on WD(w) by G(i) ∼ G(j) if and only if i ∼ j. Equivalently,
we have G(i) ∼ G(j) if and only if G(i) is obtained from G(j) by a sequence of operations
exchanging two adjacent rows in which the crossings are not in adjacent columns.

Let [WD(w)] = WD(w)/ ∼. Then we have an obvious bijection between [WD(w)]
and [R(w)] induced by the correspondence explained above.

B1 B2 B3 B4

A1 A2 A3 A4

B1 B2 B3 B4

A1 A2 A3 A4

B1 B2 B3 B4

A1 A2 A3 A4

Figure 1: The configurations G1, G2, and G3 (from left to right) for n = 4.
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t1
t2

t3
t4

t5
t6

row 1
row 2
row 3
row 4
row 5
row 6

t1
t2

t3
t4

t5
t6

Figure 2: The wiring diagrams G(i) (left) and G(j) (right) for i = (1, 2, 1, 3, 2, 1) and

j = (1, 3, 2, 1, 3, 2) in R(w
(4)
0 ). The 3rd wire in each wiring diagram is colored red. The

crossing in row j is labeled by tj. The crossing t4 in G(i) (respectively, G(j)) is in column 3
(respectively, column 1).

2.3 Word posets

To study commutation classes, we associate a poset and a function on the poset to each
reduced word i ∈ R(w).

Definition 5. A labeled poset is a pair (P, fP ) of a poset P and a function fP : P → Z>0.
Two labeled posets P and Q are isomorphic, denoted by P ∼ Q, if there is a poset
isomorphism φ : P → Q such that fP (x) = fQ(φ(x)) for all x ∈ P .

Following [25], we define word posets.

Definition 6. Let i = (i1, . . . , i`) ∈ R(w). The word poset of i is the labeled poset (Pi, fPi
)

such that

• Pi is the poset on [`] which is the transitive closure of the binary relation containing
(r, r) for r ∈ [`] and (j, k) for j, k ∈ [`] with |ij − ik| = 1 and j < k;

• fPi
: Pi → Z>0 satisfies fPi

(j) = ij for all j ∈ Pi.

Denote by P(w) the set of labeled posets P such that P ∼ Pi for some i ∈ R(w). We
also define [P(w)] = P(w)/ ∼.

We will see later in this subsection that word posets are closely related to wiring
diagrams. Throughout this paper, the following convention will be used when we draw
the Hasse diagram of a word poset.

Convention. Let P be a word poset. For j ∈ P , if fP (j) = i, we say that j is in column i.
When we draw the Hasse diagram of P the element j will be placed in column i. For a
subset A of P , we say that Q is the word poset obtained from P by shifting A to the left
(respectively, right) by one column if P and Q are the same as posets and fQ(x) = fP (x)
if x /∈ A, and fQ(x) = fP (x)− 1 (respectively, fQ(x) = fP (x) + 1) if x ∈ A.

By the definition of word posets, every covering relation in a word poset P ∈ P(w)
occurs between two adjacent columns. In other words, if xlP y, then |fP (x)−fP (y)| = 1.

Example 7. We illustrate some examples of the word posets Pi associated with some
reduced words i = (i1, . . . , i`). We will arrange the elements of Pi so that j is in column
fPi

(j) = ij.
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1. Let i = (1, 2, 1, 3, 2, 1). Then the Hasse diagram of the word poset Pi is shown
below.

6
5

3 4
2

1

1 2 3

Here, the elements 1, 3, 6 are in column 1, the elements 2, 5 are in column 2, and
the element 4 is in column 3. Note that if i′ = (1, 2, 3, 1, 2, 1), then i′ ∼ i and the
word poset Pi′ shown below is isomorphic to Pi.

6
5

4 3
2

1

1 2 3

2. Let j = (1, 3, 2, 1, 3, 2). Then the Hasse diagram of the word poset Pj is given as
follows.

1 2
3

4 5
6

1 2 3

A linear extension of a poset P is a permutation p1p2 . . . pn of the elements in P such
that j < k whenever pj <P pk.

Proposition 8. [25, Theorem 1.1] Let i, j ∈ R(w).

1. There is a bijection between the linear extensions of the poset Pi and the elements
in the commutation class [i] given as follows. A linear extension p1p2 . . . pn of Pi

corresponds to the word (ifPi (p1), ifPi (p2), . . . , ifPi (p`)) in [i].

2. We have i ∼ j if and only if Pi ∼ Pj.
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We note that Proposition 8(1) has a similar result on partial commutation monoids,
see [20, §5.1.2, Exercise 11], [27, Exercise 3.123], or [9, Proposition 4.11].

By Proposition 8(2), we can identify the commutation class [i] with [Pi].

Proposition 9. The map [i] 7→ [Pi] is a bijection from [R(w)] to [P(w)].

There is also a direct and natural correspondence between [WD(w)] and [P(w)], which
we now explain. Let [G] ∈ [WD(w)]. We define the corresponding word poset class
[P ] ∈ [P(w)] as follows.

• The elements of the underlying set P are the crossings in G.

• For two distinct elements a, b ∈ P , we have a <P b if there is a downward path
from the crossing a to the crossing b in G. Here, a downward path means a path
following wires (it is allowed to switch between the two wires at a crossing) in the
direction that the y-coordinate decreases.

• For a ∈ P , define fP (a) = c if the crossing a is in column c in G.

For example, the wiring diagrams G(i) and G(j) in Figure 2 correspond to the word
posets Pi and Pj in Example 7.

Proposition 10. Let w ∈ Sn+1. Then the map [G] 7→ [P ] described above is a bijection
from [WD(w)] to [P(w)].

Proof. We first show that the map [G] 7→ [P ] is well defined. Suppose that G′ is obtained
from G by exchanging two adjacent rows in which the crossings are not in adjacent
columns. It is easy to see that a downward path from a crossing a to a crossing b in G
remains a downward path from a to b in G′. This shows that the images of [G] and [G′]
under this map are identical. Thus the map is well defined.

Now we show that the map is a bijection. Since [WD(w)] = {[G(i)] : i ∈ R(w)}
and [P(w)] = {[Pi] : i ∈ R(w)} both in bijection with [R(w)], it suffices to show that
[G(i)] 7→ [Pi]. This is straightforward to check by the construction of the map. We omit
the details.

Remark 11. There are several different combinatorial models presenting commutation
classes. For example, heaps for the longest element in Sn (see [28, Section 2.2]); rhombic
tilings of a regular 2n-gon, where all side lengths of the rhombi and the 2n-gon are the
same (see [10]). We refer the reader to [8] and references therein for more information.

3 Contractions, extensions, and indices

In this section, we define A-, D-, and δ-indices of a word poset, and two operations on
word posets, called contractions and extensions. We also provide some results on these
objects which will be used in later sections.

From now on, we concentrate on the reduced words of the longest element w
(n+1)
0 in

the symmetric group Sn+1 and the word posets in P(w
(n+1)
0 ). In order to define indices,

we prepare the following two lemmas.
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Lemma 12 (cf. [14, §2.2]). Let i ∈ R(w
(n+1)
0 ). The wiring diagram G(i) has the following

properties.

1. The ith wire travels from the ith starting point to the (n+ 2− i)th ending point for
1 6 i 6 n+ 1.

2. Two different wires meet exactly once.

3. Every wire has exactly n crossings.

4. Let c1, . . . , cn be the crossings that lie on the 1st wire (respectively, (n + 1)st wire)
of G(i) in this order, i.e., the row of ci+1 is lower than the row of ci. Then each ci
is in column i (respectively, n+ 1− i).

Lemma 13. Let i = (i1, . . . , in̄) ∈ R(w
(n+1)
0 ). Then there are unique integers d1, . . . , dn

such that

1 6 d1 < · · · < dn 6 n̄, (id1 , . . . , idn) = (n, n− 1, . . . , 2, 1), (2)

and there are unique integers a1, . . . , an such that

1 6 a1 < · · · < an 6 n̄, (ia1 , . . . , ian) = (1, 2, . . . , n− 1, n). (3)

Moreover, |{a1, . . . , an} ∩ {d1, . . . , dn}| = 1.

Proof. We will use the wiring diagram G(i) of i. Let d1 < · · · < dn be the row indices
of the crossings in the (n + 1)st wire of G(i). Then, by Lemma 12, d1, . . . , dn satisfy
(2). Similarly, let a1 < · · · < an be the row indices of the crossings in the 1st wire of
G(i). Then, by Lemma 12, a1, . . . , an satisfy (3). Since the 1st and the (n + 1)st wires
meet exactly once, we get |{a1, . . . , an}∩ {d1, . . . , dn}| = 1. It remains to show that these
integers are unique.

To show the uniqueness of d1, . . . , dn satisfying (2), suppose that d′1, . . . , d
′
n are integers

such that dj 6= d′j for some j and

1 6 d′1 < · · · < d′n 6 n̄, (id′1 , . . . , id′n) = (n, n− 1, . . . , 2, 1).

Let k be the smallest integer such that dj = d′j for j < k and dk 6= d′k.
For simplicity, we write an (i, j)-crossing to mean a crossing in row i and column j.

Since the (n+ 1)st wire passes through the (dk−1, n+ 2− k)-crossing, the (dk, n+ 1− k)-
crossing, and the (dk+1, n − k)-crossing, there is no (j, n + 1 − k)-crossing for all dk−1 <
j < dk+1 with j 6= dk. Since dk−1 = d′k−1 < d′k, this shows dk+1 < d′k. See Figure 3.

By the same argument, we can deduce that dj+1 < d′j for j = k, k + 1, . . . , n − 1.
In particular, we have dn < d′n−1 < d′n. However, by the definition of dn, the crossing
in row dn and column 1 is the lowest crossing in this column, which is a contradiction
to dn < d′n. This shows that there are no such integers d′1, . . . , d

′
n, so the uniqueness of

d1, . . . , dn is proved.
Similarly, we can show the uniqueness of a1, . . . , an, and the proof is completed.
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row dk−1 = d′k−1

row dk

row dk+1

row d′k

column n+ 1− k

Figure 3: An illustration of a part of the (n+1)st wire (colored in red) in a wiring diagram
and the crossings in rows dk−1, dk, dk+1, and d′k.

The previous lemma can be restated in terms of word posets as follows.

Proposition 14. Let P ∈ P(w
(n+1)
0 ). Then P contains a unique chain D(P ) such that

D(P ) = {d1 <P d2 <P · · · <P dn}

and fP (di) = n+ 1− i for all 1 6 i 6 n. Similarly, P contains a unique chain A(P ) such
that

A(P ) = {a1 <P a2 <P · · · <P an}

and fP (ai) = i for all 1 6 i 6 n. Moreover, we have |D(P ) ∩ A(P )| = 1.

Proof. Let P ∈ P(w
(n+1)
0 ). By Proposition 9, there exists i ∈ R(w

(n+1)
0 ) satisfying Pi ∼ P .

Accordingly, it is enough to prove the statements for the word poset Pi for an arbitrary
i = (i1, . . . , in̄) ∈ R(w

(n+1)
0 ). Then, using the map in Proposition 9, the statements for Pi

that we need to prove can be reformulated as the statements for i in Lemma 13. Therefore
the proof follows from this lemma.

We call D(P ) the descending chain of P and A(P ) the ascending chain of P . We now
define an important notion in this paper called indices.

Definition 15. Let P ∈ P(w
(n+1)
0 ). The D-index of P , denoted by indD(P ), is the number

of elements in P above the descending chain D(P ) in the Hasse diagram of P . Similarly,
the A-index of P , denoted by indA(P ), is the number of elements in P above the ascending
chain in the Hasse diagram of P . More precisely, if D(P ) = {d1 <P d2 <P · · · <P dn} and
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A(P ) = {a1 <P a2 <P · · · <P an}, then

indD(P ) =
n∑
i=1

#{k ∈ [n̄] : k >P di and fP (k) = fP (di)},

indA(P ) =
n∑
i=1

#{k ∈ [n̄] : k >P ai and fP (k) = fP (ai)}.

For i ∈ R(w
(n+1)
0 ), we also define

indD(i) = indD(Pi), indA(i) = indA(Pi).

Note that by the above definition,

|{k ∈ [n̄] : k >P di and fP (k) = fp(di)}|

is the number of elements of P above the element di of D(P ) in column fP (di) = n+ 1− i
in the Hasse diagram of P .

In [7, Definition 3.4], the indices indD(i) and indA(i) of i ∈ R(w
(n+1)
0 ) are defined

without using word posets. It is not hard to see that the two definitions are equivalent.

Example 16. Continuing Example 7, let i = (1, 2, 1, 3, 2, 1) and j = (1, 3, 2, 1, 3, 2). Then
we have

A(Pi) = 1 <Pi
2 <Pi

4, D(Pi) = 4 <Pi
5 <Pi

6,

A(Pj) = 1 <Pj
3 <Pj

5, D(Pj) = 2 <Pj
3 <Pj

4.

The chains D(P ) and A(P ) for P = Pi (left) and P = Pj (right) are shown as follows.

6
5

3 4
2

1

1 2 3

A(P )

1 2 3

D(P )

1 2
3

4 5
6

A(P )

1 2 3

D(P )

Counting the number of elements above A(P ) and D(P ), we obtain

indD(i) = 0, indA(i) = 3, indD(j) = 2, indA(j) = 2.

The following lemma shows that the elements of P ∈ P(w
(n+1)
0 ) in each column form

a chain.

Lemma 17. Let P ∈ P(w
(n+1)
0 ). Then {x ∈ P : fP (x) = i} is a chain in P for each

i ∈ [n].
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Proof. Since P ∈ P(w
(n+1)
0 ), there is a reduced word i = (i1, i2, . . . , in̄) ∈ R(w

(n+1)
0 ) such

that Pi ∼ P . Therefore it suffices to show that {x ∈ Pi : fPi
(x) = i} is a chain. Consider

x, y ∈ Pi with fPi
(x) = fPi

(y) = i and x <Z y. This means ix = iy = i. Since i is
reduced there must be an integer z such that x < z < y and iz ∈ {i − 1, i + 1}. Then
x <Pi

z <Pi
y and therefore x <Pi

y. Since any two elements x, y ∈ Pi with fPi
(x) = fPi

(y)
are comparable, {x ∈ Pi : fPi

(x) = i} is a chain and the lemma is proved.

Now we define two operations, called contractions, on word posets.

Definition 18. Let P ∈ P(w
(n+1)
0 ) and let

D(P ) = {d1 <P d2 <P · · · <P dn},
A(P ) = {a1 <P a2 <P · · · <P an}.

1. The D-contraction of P is the word poset CD(P ) obtained from P by removing the
descending chain D(P ) with the function fCD(P ) : CD(P )→ Z>0 given by

fCD(P )(k) =

{
fP (k) if k ∈ ID(P ),

fP (k)− 1 if k ∈ CD(P ) \ ID(P ),

where ID(P ) = {k ∈ P : k <P di and fP (k) = fP (di) for some i ∈ [n]}. Here, the
poset structure of CD(P ) is induced from that of P , i.e., for x, y ∈ CD(P ) we have
x <CD(P ) y if and only if x <P y.

2. The A-contraction of P is the word poset CA(P ) obtained from P by removing the
ascending chain A(P ) with the function fCA(P ) : CA(P )→ Z>0 given by

fCA(P )(k) =

{
fP (k)− 1 if k ∈ IA(P ),

fP (k) if k ∈ CD(P ) \ IA(P ),

where IA(P ) = {k ∈ P : k <P ai and fP (k) = fP (ai) for somei ∈ [n]}. Here, the
poset structure of CA(P ) is induced from that of P .

Observe that ID(P ) (respectively, IA(P )) is the ideal consisting of the elements below
the descending chain D(P ) (respectively, ascending chain A(P )) in the Hasse diagram of P .
We call ID(P ) (respectively, IA(P )) the D-contraction ideal (respectively, A-contraction
ideal) of P . Here, an ideal of a poset P means a subset I of P with the property that
x ∈ I and y <P x imply y ∈ I.

One may consider CD(P ) as the word poset whose Hasse diagram is obtained from that
of P by removing the descending chain D(P ) and shifting the part (P \D(P ))\ID(P ) above
D(P ) to the left by one column. Similarly one may consider CA(P ) as the word poset
whose Hasse diagram is obtained from that of P by removing the ascending chain A(P )
and shifting the part IA(P ) below A(P ) to the left by one column. See Figure 4.

Example 19. Let i = (4, 3, 4, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 4, 5) ∈ R(w
(6)
0 ). The Hasse diagrams

of Pi, CA(Pi), and CD(Pi) are shown in Figure 4. Note that indA(Pi) = 2 and indD(Pi) = 2.
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1
2

34
5

6
7

8
9

10
11

12
13

14
15 A(Pi)

D(Pi)

1 2 3 4 5

1
2

34
5

6
7

8
14

15

1 2 3 4

1
2

34
5

6
9

10
12

13

1 2 3 4

Pi CD(Pi) CA(Pi)

Figure 4: The Hasse diagrams of Pi, CD(Pi), and CA(Pi) for i =
(4, 3, 4, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 4, 5). In each diagram, the element k is in column
fPi

(k), fCD(Pi)(k), or fCA(Pi)(k).

Now we define the reverse operations of the contractions.

Definition 20. Let P ∈ P(w
(n)
0 ) and let I be an ideal of P .

1. The D-extension of P with respect to I is the word poset ED(P, I) which is a poset
on P t {d1, d2, . . . , dn} with a function fED(P,I) : ED(P, I)→ Z>0 defined as follows.

• The function fED(P,I) : ED(P, I)→ Z>0 is given by

fED(P,I)(x) =


fP (x) if x ∈ I,
n+ 1− i if x = di,

fP (x) + 1 if x ∈ P \ I.

• The covering relations of the poset ED(P, I) on P t {d1, d2, . . . , dn} are given
by xlED(P,I) y if and only if one of the following conditions holds:

(a) x, y ∈ I and xlP y,

(b) x, y ∈ P \ I and xlP y,

(c) x = di and y = di+1 for some i ∈ [n− 1],

(d) x is a maximal element of I in P , y ∈ {d1, . . . , dn}, and

|fED(P,I)(x)− fED(P,I)(y)| = 1, or

(e) x ∈ {d1, . . . , dn}, y is a minimal element of P \ I in P , and

|fED(P,I)(x)− fED(P,I)(y)| = 1.
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2. The A-extension of P with respect to I is the word poset EA(P, I) which is a poset
on P t {a1, a2, . . . , an} with a function fEA(P,I) : EA(P, I)→ Z>0 defined as follows.

• The function fEA(P,I) : EA(P, I)→ Z>0 is given by

fEA(P,I)(x) =


fP (x) + 1 if x ∈ I,
i if x = ai,

fP (x) if x ∈ P \ I.

• The covering relations of the poset EA(P, I) on P t {a1, a2, . . . , an} are given
by xlEA(P,I) y if and only if one of the following conditions holds:

(a) x, y ∈ I and xlP y,

(b) x, y ∈ P \ I and xlP y,

(c) x = ai and y = ai+1 for some i ∈ [n− 1],

(d) x is a maximal element of I in P , y ∈ {a1, . . . , an}, and

|fEA(P,I)(x)− fEA(P,I)(y)| = 1, or

(e) x ∈ {a1, . . . , an}, y is a minimal element of P \ I in P , and

|fEA(P,I)(x)− fEA(P,I)(y)| = 1.

The extensions are the reverse operations of the contractions in the following sense.

Proposition 21. Let P ∈ P(w
(n+1)
0 ). Then

P ∼ ED(CD(P ), ID(P )),

P ∼ EA(CA(P ), IA(P )).

Proof. This is straightforward to check using the definitions of contractions and exten-
sions. We omit the details.

We provide an example of A-extension in Figure 5. In [7, Definition 3.6], the D-

contraction CD(i) and the A-contraction CA(i) of a reduced word i ∈ R(w
(n+1)
0 ) are defined

using wiring diagrams. For i ∈ R(w
(n+1)
0 ), let G(i) be the corresponding wiring diagram.

Removing the (n + 1)st wire from G(i) and shifting the part below this wire to the left
by one, we get a new wiring diagram such that the jth wire travels from the jth starting
point to the (n+ 1− j)th ending point. Since the number of crossings decreases by n, the

new wiring diagram represents a reduced word in R(w
(n)
0 ). Similarly, removing the 1st

wire from G(i) also produces the wiring diagram of a reduced word in R(w
(n)
0 ). One can

check that CD(Pi) ∼ PCD(i) and CA(Pi) ∼ PCA(i). This leads us to the following result.

Proposition 22. Let P ∈ P(w
(n+1)
0 ). Then CD(P ) and CA(P ) are word posets in P(w

(n)
0 ).

Finally, we define the δ-index of a word poset.
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a1

a2
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a3
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a4

a5

1
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34
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6
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1 2 3 4 5

CA(Pi) EA(CA(Pi), IA(Pi))

Figure 5: The Hasse diagram of CA(Pi) with the ideal IA(Pi) colored gray on
the left; the A-extension of CA(Pi) with respect to IA(Pi) on the right for i =
(4, 3, 4, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 4, 5). The A-extension EA(CA(Pi), IA(Pi)) is isomorphic to Pi

as a labeled poset (see Figure 4).

Definition 23. For a sequence δ = (δ1, . . . , δn−1) ∈ {A,D}n−1, the δ-index of P ∈
P(w

(n+1)
0 ) is the integer vector indδ(P ) = (I1, . . . , In−1) defined by

Ik := indδk(Cδk+1
◦ Cδk+2

◦ · · · ◦ Cδn−1(P )), 1 6 k 6 n− 1,

where In−1 = indδn−1(P ). The δ-index of i ∈ R(w
(n+1)
0 ) is defined by indδ(i) = indδ(Pi).

Example 24. Let i = (4, 3, 4, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 4, 5) ∈ R(w
(6)
0 ). Then, for a sequence

δ = (A,A,A,A) ∈ {A,D}4, we obtain indδ(i) = (1, 2, 3, 2) as shown in Figure 6.

1 2 3 4 5 1 2 3 4 1 2 3 1 2

Pi CA(Pi) CA(CA(Pi)) CA(CA(CA(Pi)))

Figure 6: The Hasse diagrams of Pi, CA(Pi), CA(CA(Pi)), and CA(CA(CA(Pi))) for i =
(4, 3, 4, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 4, 5).
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4 Gelfand–Cetlin type reduced words

In this section, we introduce Gelfand–Cetlin type reduced words. We give a recursive
formula for the number of such reduced words using standard Young tableaux of shifted
shapes in Theorem 37.

We first define Gelfand–Cetlin type word posets and Gelfand–Cetlin type reduced
words.

Definition 25. A word poset P ∈ P(w
(n+1)
0 ) is of Gelfand–Cetlin type if there exists

δ ∈ {A,D}n−1 such that indδ(P ) = (0, 0, . . . , 0) ∈ Zn−1. Denote by PGC(n) the set of

Gelfand–Cetlin type word posets in P(w
(n+1)
0 ) and let [PGC(n)] = PGC(n)/ ∼.

Definition 26. A reduced word i ∈ R(w
(n+1)
0 ) is of Gelfand–Cetlin type if Pi is of Gelfand–

Cetlin type. A commutation class [i] is of Gelfand–Cetlin type if it contains a Gelfand–
Cetlin type reduced word. Denote by RGC(n) the set of Gelfand–Cetlin type reduced

words in R(w
(n+1)
0 ) and let [RGC(n)] = {[i] : i ∈ RGC(n)}.

Remark 27. One can deduce from [7, Theorem A] that for i ∈ R(w
(n+1)
0 ), the string

polytope ∆i(λ) is combinatorially equivalent to a full dimensional Gelfand–Cetlin polytope
of rank n if and only if i is of Gelfand–Cetlin type, see the proof of Corollary 38. This is
why we say that such word posets and reduced words are of Gelfand–Cetlin type.

The following proposition easily follows from Proposition 9 and the definitions of PGC(n)
and RGC(n).

Proposition 28. The map [i] 7→ [Pi] is a bijection from [RGC(n)] to [PGC(n)]. Accord-
ingly,

|[RGC(n)]| = |[PGC(n)]|.

We note that if indA(P ) = 0, then CA(P ) = IA(P ). Similarly, we have CD(P ) = ID(P )
when indD(P ) = 0. The succeeding lemma follows immediately from Proposition 21.

Lemma 29. Let P ∈ P(w
(n+1)
0 ). If indA(P ) = 0, then

P ∼ EA(CA(P ), CA(P )).

Similarly, if indD(P ) = 0, then

P ∼ ED(CD(P ), CD(P )).

Lemma 29 implies that if indA(P ) = 0 (respectively, indD(P ) = 0), then P is com-
pletely determined by CA(P ) (respectively, CD(P )) up to isomorphism.

The following definition will be used frequently throughout this section.

Definition 30. For a word poset P , an element x ∈ P is called a top element if x is the
largest element in its column. In other words, x ∈ P is a top element if y 6P x for all
y ∈ P with fP (y) = fP (x). For i ∈ [n], denote by mi(P ) the top element in column i.
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The following lemma shows that if P is a Gelfand–Cetlin type word poset, the top
elements of P must form a chain.

Lemma 31. Let P ∈ P(w
(n+1)
0 ). Then

m1(P ) <P m2(P ) <P · · · <P mn(P ) if indA(P ) = 0,

m1(P ) >P m2(P ) >P · · · >P mn(P ) if indD(P ) = 0.

Moreover, mn(P ) (respectively, m1(P )) is the maximum element of P if indA(P ) = 0
(respectively, indD(P ) = 0).

Proof. We will only consider the case indA(P ) = 0 because the other case indD(P ) = 0
can be proved similarly.

Since indA(P ) = 0, by Lemma 29, we have P ∼ EA(CA(P ), CA(P )). By definition,
Q := EA(CA(P ), CA(P )) is the word poset obtained from CA(P ) by adding n elements
a1, . . . , an with additional covering relations a1 lQ · · ·lQ an and xlQ ai for each maximal
element x in CA(P ) and i ∈ [n] such that |fQ(x) − fQ(ai)| = 1, where fQ(x) = fCA(P )(x)
for x ∈ CA(P ) and fQ(ai) = i for i ∈ [n]. By the construction, we have ai = mi(Q)
for i ∈ [n], and therefore m1(Q) <Q · · · <Q mn(Q). Since P ∼ Q, this shows the first
statement.

For the second statement, let x be an arbitrary element in Q. Suppose fQ(x) = i. Since

Q ∼ P ∈ P(w
(n+1)
0 ), by Lemma 17, {y ∈ Q : fQ(y) = i} is a chain in P for each i ∈ [n].

By definition mi(Q) is the maximum element in this chain. Then x 6Q mi(Q) 6Q mn(Q).
Thus x 6Q mn(Q), and therefore mn(Q) is the maximum element in Q. Since P ∼ Q,
this shows the second statement.

By Lemma 31, if P ∈ PGC(n) and n > 2, then we have indA(P ) = 0 or indD(P ) = 0,
but not both. This means that there is a unique δ = (δ1, . . . , δn−1) ∈ {A,D}n−1 such that
indδ(P ) = (0, . . . , 0). Therefore the map

φ : [PGC(n)]→ {A,D}n−1

sending [P ] to such δ is well defined. This map is in fact a bijection.

Proposition 32. For n > 2, the map φ : [PGC(n)]→ {A,D}n−1 is a bijection.

Proof. We first show that φ is injective. Suppose that P ∈ PGC(n) satisfies φ([P ]) = δ =
(δ1, . . . , δn−1) ∈ {A,D}n−1. By definition, we have indδ(P ) = (0, . . . , 0). We will show
that [P ] is determined by δ.

Define the word posets Pk ∈ PGC(k) for k ∈ [n] recursively as follows. First, we set
Pn = P . For k ∈ [n− 1], define

Pk = Cδk(Pk+1).

Since P1 ∈ P(w
(2)
0 ), P1 is a word poset with one element, say x, and fP1(x) = 1. By

Lemma 29, for k ∈ [n− 1], we have

Pk+1 ∼ Eδk(Cδk(Pk+1), Cδk(Pk+1)) = Eδk(Pk, Pk).
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P(3,2,1,2,3,4,3,2,3,1). P(1,3,2,1,4,3,4,2,3,1).

Figure 7: The word posets P(3,2,1,2,3,4,3,2,3,1) and P(1,3,2,1,4,3,4,2,3,1).

Thus P = Pn is determined uniquely by δ up to isomorphism. This shows that φ is
injective.

To show that φ is surjective take an arbitrary sequence δ = (δ1, . . . , δn−1) ∈ {A,D}n−1.

Define the word posets Pk ∈ PGC(k) for k ∈ [n] by P1 ∈ P(w
(2)
0 ) and

Pk+1 = Eδk(Pk, Pk) for k ∈ [n− 1].

Here we may choose any P1 ∈ P(w
(2)
0 ) because if P1, P

′
1 ∈ P(w

(2)
0 ) then P1 ∼ P ′1. It is

easy to check that φ(Pn) = δ. Thus φ is surjective, which completes the proof.

The proof of the above proposition shows that if P,Q ∈ P(w
(n+1)
0 ) satisfy indδ(P ) =

indδ(Q) = (0, . . . , 0) for some δ ∈ {A,D}n−1, then P ∼ Q since both P and Q are
determined by δ. In general, the condition indδ(P ) = indδ(Q) for some δ ∈ {A,D}n−1

does not imply P ∼ Q as the following example shows.

Example 33. Consider the two words

i = (3, 2, 1, 2, 3, 4, 3, 2, 3, 1), j = (1, 3, 2, 1, 4, 3, 4, 2, 3, 1) ∈ R(w
(5)
0 ).

For any (δ1, δ2) ∈ {A,D}2, we have ind(δ1,δ2,A)(Pi) = ind(δ1,δ2,A)(Pj), but Pi 6∼ Pj. See Fig-
ure 7 for these word posets. Accordingly, a single δ-index of P does not always determine
the word poset class [P ].

Although a single δ-index of P is not enough to determine the word poset [P ], in the
next section, we will show that the δ-indices indδ(P ) for all δ ∈ {A,D}n−1 determine [P ]
(see Theorem 39). Note that in Example 33 we have indD(Pi) = 1 6= 2 = indD(Pj), so Pi

and Pj do not have the same δ-indices for all δ.
Proposition 32 immediately gives the cardinality of the Gelfand–Cetlin type commu-

tation classes.

Corollary 34. For n > 2, we have

|[RGC(n)]| = |[PGC(n)]| = 2n−1.
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We note that Corollary 34 was proved in the recent paper [17, Proposition 20] using
a different method.

Using the construction in the proof of Proposition 32 and standard Young tableaux,
we find a recurrence relation for the number of Gelfand–Cetlin type reduced words. To
this end, we need the following lemma, which allows us to draw the Hasse diagram of a
Gelfand–Cetlin type word poset P corresponding to δ ∈ {A,D}n−1 using only δ.

Lemma 35. Let P ∈ P(w
(n+1)
0 ) and let δ = (δ1, . . . , δn−1) be the element in {A,D}n−1

satisfying indδ(P ) = (0, . . . , 0). Let Pn = P , and for k ∈ [n− 1], define

Pk = Cδk(Pk+1).

Then P1 is isomorphic to the unique word poset (up to isomorphism) in P(w
(2)
0 ) and, for

k ∈ [n− 1], the word poset Pk+1 is constructed as follows (see Figure 8).

• If δk−1 = A and δk = A, then the Hasse diagram of Pk+1 is obtained from that of Pk
by adding the chain m1(Pk+1) lPk+1

· · · lPk+1
mk+1(Pk+1) with additional covering

relations mi(Pk+1) mPk+1
mi(Pk) for i ∈ [k].

• If δk−1 = A and δk = D, then the Hasse diagram of Pk+1 is obtained from that of Pk
by adding the chain m1(Pk+1)mPk+1

· · ·mPk+1
mk+1(Pk+1) with an additional covering

relation mk(Pk) lPk+1
mk+1(Pk+1).

• If δk−1 = D and δk = A, then the Hasse diagram of Pk+1 is obtained from that of Pk
by adding the chain m1(Pk+1)lPk+1

· · ·lPk+1
mk+1(Pk+1) with an additional covering

relation m1(Pk+1) mPk+1
m1(Pk).

• If δk−1 = D and δk = D, then the Hasse diagram of Pk+1 is obtained from that of Pk
by adding the chain m1(Pk+1) mPk+1

· · · mPk+1
mk+1(Pk+1) with additional covering

relations mi(Pk) lPk+1
mi+1(Pk+1) for i ∈ [k].

Proof. Consider the case that δk−1 = A and δk = A. Since Pk = Cδk(Pk+1) = CA(Pk+1)
and indA(Pk+1) = 0, by Lemma 29, we have

Pk+1 ∼ EA(Pk, Pk).

Then it is straightforward to check that we obtain the desired description for Pk+1 by
the definition of A-extension in Definition 20. The other three cases can be checked
similarly.

Now we define standard Young tableaux of shifted shape.

Definition 36. A partition of n is a weakly decreasing sequence µ = (µ1, . . . , µt) of
positive integers summing to n. A partition µ = (µ1, . . . , µt) is strict if µ1 > · · · > µt.
For a strict partition µ = (µ1, . . . , µt), the shifted diagram of µ, denoted by µ∗, is the set

µ∗ := {(i, j) | 1 6 i 6 t, i 6 j 6 µi + i− 1}.
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Pk

m1(Pk+1)

mk(Pk)

m1(Pk)

mk+1(Pk+1)

(a) δk−1 = A, δk = A.

Pk

mk+1(Pk+1)

m1(Pk+1)

mk(Pk)

m1(Pk)

(b) δk−1 = A, δk = D.

Pk

m1(Pk+1)

mk+1(Pk+1)

m1(Pk)

mk(Pk)

(c) δk−1 = D, δk = A.

Pk

mk+1(Pk+1)

m1(Pk+1)

mk(Pk)

m1(Pk)

(d) δk−1 = D, δk = D.

Figure 8: The Hasse diagrams of Pk and Pk+1.

We will identify µ∗ as an array of squares where there is a square in row i and column j
for each (i, j) ∈ µ∗. For a strict partition µ = (µ1, . . . , µt) of n, a standard Young tableau
of shifted shape µ is a bijection T : µ∗ → [n] such that T (i, j) 6 T (i′, j′) if i 6 i′ and
j 6 j′. We will represent a standard Young tableau T of shifted shape µ by filling T (i, j)
in the square in row i and column j of µ∗. Denote by gµ the number of standard Young
tableaux of shifted shape µ.

For example, the shifted diagram of shape µ = (3, 2, 1) is drawn as follows.

µ∗ =

There are two standard Young tableaux of shifted shape µ = (3, 2, 1):

1 2 3
4 5

6

1 2 4
3 5

6

Thrall [29] showed that the number gµ of standard Young tableaux of shifted shape
µ = (µ1, . . . , µt) is given as follows:

gµ =
|µ|!

µ1!µ2! · · ·µt!
∏
i<j

µi − µj
µi + µj

. (4)
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For instance, if µ = (3, 2, 1), then we have

g(3,2,1) =
6!

3!2!1!
· 1 · 2 · 1

5 · 4 · 3
= 2.

There is another formula for gµ called the (shifted) hook length formula, see [23, p.267,
eq.(2)].

For a strict partition µ = (µ1, . . . , µt), we define Qµ to be the poset on µ∗ with relations
(i, j) 6Qµ (i′, j′) if i 6 i′ and j 6 j′. For example, if µ = (4, 3, 2), then the poset Qµ is
given as follows.

µ∗ =

(1,1) (1,2) (1,3) (1,4)

(2,2) (2,3) (2,4)

(3,3) (3,4)

Qµ =

(3,4)

(3,3) (2,4)

(2,3)

(2,2)

(1,4)

(1,3)

(1,2)

(1,1)

There is a natural bijection between the standard Young tableaux of shifted shape µ
and the linear extensions of Qµ. Therefore the number of linear extensions of Qµ is equal
to gµ.

Now we are ready to state our first main theorem.

Theorem 37. Let gc(n) be the number of Gelfand–Cetlin type reduced words in R(w
(n+1)
0 ),

i.e., gc(n) = |RGC(n)|. Then gc(0) = gc(1) = 1 and for n > 2, we have

gc(n) =
n∑
i=1

g(n,n−1,...,n−i+1)gc(n− i),

where gµ is the number of standard Young tableaux of shifted shape µ (see (4)).

Proof. Clearly, we have gc(0) = gc(1) = 1. Suppose n > 2. Observe that

gc(n) = |RGC(n)| =
∑

[i]∈[RGC(n)]

|[i]|. (5)

By Proposition 28, the map [i] 7→ [Pi] is a bijection from [RGC(n)] to [PGC(n)]. Moreover,
by Proposition 8, |[i]| is equal to the number of linear extensions of Pi. This shows that
we can rewrite (5) as

gc(n) =
∑

[P ]∈[PGC(n)]

e(P ), (6)

where e(P ) is the number of linear extensions of P .
Define a(n) and d(n) by

a(n) =
∑

[P ]∈[PGC(n)],
indA(P )=0

e(P ), d(n) =
∑

[P ]∈[PGC(n)],
indD(P )=0

e(P ).
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We claim that

a(n) =
n∑
i=1

g(n,n−1,...,n−i+1)d(n− i), (7)

d(n) =
n∑
i=1

g(n,n−1,...,n−i+1)a(n− i). (8)

Since gc(n) = a(n) + d(n), the identity in this theorem is obtained by adding (7) and (8).
Thus it suffices to show these two identities. We will only show (7) because (8) can be
shown similarly.

To show (7), consider [P ] ∈ [PGC(n)] with indA(P ) = 0. By Proposition 32, there is
a unique δ ∈ {A,D}n−1 such that indδ(P ) = (0, . . . , 0). Let Pn = P , and for k ∈ [n− 1],
define

Pk = Cδk(Pk+1).

Then, by Lemma 35, Pk+1 is obtained from Pk by adding a descending or ascending chain
of length k + 1 depending on δk−1 and δk. Since indA(P ) = 0, there is a unique integer
i ∈ [n − 1] such that δn−1 = δn−2 = · · · = δn−i = A and δn−i−1 = D, where the second
condition is ignored if i = n−1. By Lemma 35, one can easily see that P = Pn is obtained
from Pn−i by adding the poset Q(n,n−1,...,n−i+1) above it as shown in Figure 9. Since every
element of Pn−i is smaller than every element of Q(n,n−1,...,n−i+1), we have

e(P ) = e(Pn−i)e(Q(n,n−1,...,n−i+1)) = e(Pn−i)g
(n,n−1,...,n−i+1).

Note that [Pn−i] ∈ [PGC(n − i)] and indD(Pn−i) = 0. Conversely, for any such Pn−i, one
can construct P in this way. This shows that

a(n) =
n∑
i=1

g(n,n−1,...,n−i+1)
∑

[Pn−i]∈[PGC(n−i)],
indD(Pn−i)=0

e(Pn−i),

which is the same as (7). Similarly, we obtain the formula (8) and the proof is completed.

By (4), we have

g(2,1) = 1, g(2) = 1,

g(3,2,1) = 2, g(3,2) = 2, g(3) = 1,

g(4,3,2,1) = 12, g(4,3,2) = 12, g(4,3) = 5, g(4) = 1.

Applying Theorem 37, we can compute gc(n) for n = 2, 3, 4 as follows.

gc(2) = g(2,1)gc(0) + g(2)gc(1) = 1 + 1 = 2,

gc(3) = g(3,2,1)gc(0) + g(3,2)gc(1) + g(3)gc(2) = 2 + 2 + 2 = 6,

gc(4) = g(4,3,2,1)gc(0) + g(4,3,2)gc(1) + g(4,3)gc(2) + g(4)gc(3) = 12 + 12 + 10 + 6 = 40.
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Pn−i

Q(n,n−1,...,n−i+1)

D4
D5

A2
A3

A6
A7

A8

Figure 9: The Hasse diagram of a word poset P ∈ PGC(n) such that indδ(P ) = (0, . . . , 0)
for δ = (A,A,D,D,A,A,A). In this case, δn−1 = δn−2 = · · · = δn−i = A and δn−i = D,
where n = 8 and i = 3. For r = 2, 3, . . . , n, the set Pr \ Pr−1 forms is an ascending chain
Ar or a descending chain Dr. The word poset P = Pn is decomposed into two parts Pn−i
and Pn \ Pn−i ∼ Q(n,n−1,...,n−i+1).

n 0 1 2 3 4 5 6 7 8

gc(n) 1 1 2 6 40 916 102176 68464624 317175051664

Table 1: The first few terms of gc(n).

We present the first few terms of gc(n) in Table 1, which can also be found in A337699
in [24].

We close this section by presenting the following corollary of Theorem 37.

Corollary 38. Let λ be a regular dominant weight of SLn+1(C). The number of reduced

words i ∈ R(w
(n+1)
0 ) such that the string polytope ∆i(λ) is unimodularly equivalent to the

Gelfand–Cetlin polytope GC(λ) is the same as gc(n).

Proof. We first recall the known result from [7, Theorem A] that for i ∈ R(w
(n+1)
0 ),

the string polytope ∆i(λ) is unimodularly equivalent to the Gelfand–Cetlin polytope
GC(λ) if and only if the string polytope ∆i(λ) has exactly n(n + 1) facets. Here, facets
are codimension one faces. We note that the number of facets of any full dimensional
Gelfand–Cetlin polytope of rank n is n(n+ 1) (cf. [1]). Accordingly, if the string polytope
∆i(λ) is combinatorially equivalent to a full dimensional Gelfand–Cetlin polytope of rank
n, then it is also unimodularly equivalent to GC(λ) because it has n(n + 1) facets. This
proves the corollary.
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5 Word posets are determined by δ-indices

In this section, we prove that the δ-indices of P for all δ ∈ {A,D}n−1 completely determine

P ∈ P(w
(n+1)
0 ) up to isomorphism as labeled posets in Definition 5. Equivalently, the δ-

indices of i ∈ R(w
(n+1)
0 ) for all δ ∈ {A,D}n−1 determine the commutation class [i] ∈

[R(w
(n+1)
0 )].

Theorem 39. Let P,Q ∈ P(w
(n+1)
0 ). Then, indδ(P ) = indδ(Q) for all δ ∈ {A,D}n−1 if

and only if P ∼ Q.

In order to prove Theorem 39, we need the following two lemmas.

Lemma 40. Let P ∈ P(w
(n+1)
0 ). Then

A(P ) ∩ CD(P ) = A(CD(P )),

D(P ) ∩ CA(P ) = D(CA(P )).

In other words, the ascending chain of P restricted to CD(P ) is the ascending chain of
CD(P ), and similarly, the descending chain of P restricted CA(P ) is the descending chain
of CA(P ).

Proof. By Proposition 14, we have

D(P ) = {d1 <P d2 <P · · · <P dn},
A(P ) = {a1 <P a2 <P · · · <P an},

where fP (ai) = i and fP (di) = n+ 1− i for 1 6 i 6 n; D(P )∩A(P ) has a unique element,
say ak. By the definition of contractions, CD(P ) = P \ D and

{a1 <CD(P ) · · · <CD(P ) ak−1 <CD(P ) ak+1 <CD(P ) · · · <CD(P ) an}. (9)

Moreover, since a1, . . . , ak−1 are below the descending chain D(P ) and ak+1, . . . , an are
above D(P ) in the Hasse diagram of P , we have

fCD(P )(ai) =

{
i if 1 6 i 6 k − 1,

i− 1 if k + 1 6 i 6 n,

see Figure 10. Therefore, (9) is the ascending chain of CD(P ), which shows the first
identity. The second identity can be proved similarly.

The following lemma shows that an ideal of a word poset P ∈ P(w
(n+1)
0 ) is determined

by the number of elements in each column.

Lemma 41. Let P ∈ P(w
(n+1)
0 ). Suppose that I and J are ideals of P such that

|{x ∈ I : fP (x) = i}| = |{x ∈ J : fP (x) = i}|

for all 1 6 i 6 n. Then we have I = J .
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a1

. . .
ak−1

ak

ak+1

. . .
an A(P )

D(P )

a1

. . .
ak−1

ak+1

. . .
an A(CD(P ))

Figure 10: The ascending chain A(P ) induces the ascending chain A(CD(P )).

Proof. Consider the ideals I and J in the statement of this lemma. Observe that I is the
disjoint union of {x ∈ I : fP (x) = i} for 1 6 i 6 n. Thus it suffices to show that

{x ∈ I : fP (x) = i} = {x ∈ J : fP (x) = i} for all 1 6 i 6 n. (10)

We fix 1 6 i 6 n, and let

r = |{x ∈ I : fP (x) = i}| = |{x ∈ J : fP (x) = i}|.

By Lemma 17, {x ∈ P : fP (x) = i} is a chain and we denote it by

C := {x ∈ P : fP (x) = i} = {c1 <P c2 <P · · · <P ct}.

Since I is an ideal, I ∩ C is also an ideal of C. Because C is a chain, we obtain

I ∩ C = {c1 <P c2 <P · · · <P cr}.

By the same argument we also have

J ∩ C = {c1 <P c2 <P · · · <P cr}.

Therefore I ∩ C = J ∩ C, which is (10). This completes the proof.

We are now ready to prove Theorem 39.

Proof of Theorem 39. Let P,Q ∈ P(w
(n+1)
0 ). By the definition of δ-indices, it is straight-

forward that if P ∼ Q, then indδ(P ) = indδ(Q) for all δ ∈ {A,D}n−1. Thus it is sufficient
to prove the ‘only if’ part.
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Let P,Q ∈ P(w
(n+1)
0 ) such that indδ(P ) = indδ(Q) for all δ ∈ {A,D}n−1. We will

prove P ∼ Q by induction on n.
Since P,Q ∈ P(w

(n+1)
0 ), there are reduced words i, j ∈ R(w

(n+1)
0 ) with P ∼ Pi and

Q ∼ Pj. If n = 1, then R(w
(n+1)
0 ) has only one element (1). Thus i = j and P ∼ Pi =

Pj ∼ Q. If n = 2, there are two reduced words (1, 2, 1) and (2, 1, 2) in R(w
(n+1)
0 ). Since

indA(1, 2, 1) = 1 and indA(2, 1, 2) = 0, if indδ(Pi) = indδ(Pj) for all δ ∈ {A,D}n−1, we
must have i = j. Therefore we also have P ∼ Pi = Pj ∼ Q.

Now let n > 2 and suppose that the statement holds for n−1. Since indδ(P ) = indδ(Q)
for all δ ∈ {A,D}n−1, by the definition of δ-indices, we have

indδ(CD(P )) = indδ(CD(Q)) for all δ ∈ {A,D}n−2,

indδ(CA(P )) = indδ(CA(Q)) for all δ ∈ {A,D}n−2.

Thus, by the induction hypothesis, we have CD(P ) ∼ CD(Q) and CA(P ) ∼ CA(Q).
By Proposition 21,

P ∼ ED(CD(P ), ID(P )),

Q ∼ ED(CD(Q), ID(Q)).

Since CD(P ) ∼ CD(Q), in order to show P ∼ Q, it suffices to show that the word poset
isomorphism CD(P ) ∼ CD(Q) induces ID(P ) ∼ ID(Q). By Lemma 41, in order to show
ID(P ) ∼ ID(Q), it suffices to show the following claim: for all i ∈ [n],

|{x ∈ ID(P ) : fCD(P )(x) = i}| = |{x ∈ ID(Q) : fCD(Q)(x) = i}|.

Since fR(x) = fCD(R)(x) for all x ∈ ID(R), where R is P or Q, the claim can be rewritten
as

|{x ∈ ID(P ) : fP (x) = i}| = |{x ∈ ID(Q) : fQ(x) = i}|. (11)

Let R be either P or Q. By Proposition 14, D(R)∩A(R) has a unique element, say z.
Suppose fR(z) = s. For i ∈ [n], define

ai(R) = |{x ∈ ID(R) \ IA(R) : fR(x) = i}|,
bi(R) = |{x ∈ ID(R) ∩ IA(R) : fR(x) = i}|,
ci(R) = |{x ∈ IA(R) \ ID(R) : fR(x) = i}|.

See Figure 11.
By definition,

|{x ∈ ID(R) : fR(x) = i}| =

{
ai(R) + bi(R) if i < s,

bi(R) if i > s.
(12)

By Lemma 40, D(R) \ {z} is the descending chain of CA(R), which is obtained from R
by removing A(R) and shifting the elements below A(R) to the left by one column. This
shows that

|{x ∈ ID(CA(R)) : fCA(R)(x) = i}| =

{
ai(R)− 1 + bi+1(R) if i < s,

bi+1(R) if i > s.
(13)
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IA(R) \ ID(R)

ID(R) ∩ IA(R)

ID(R) \ IA(R)
z

A(R)

D(R)bj(R)

ck(R)ai(R)

1 i s j k n

Figure 11: An illustration of ID(R) \ IA(R), ID(R) ∩ IA(R), IA(R) \ ID(R), ai(R), bk(R),
and cj(R).

Similarly, we have

|{x ∈ IA(CD(R)) : fCD(R)(x) = i}| =

{
bi(R) if i < s,

ci+1(R)− 1 + bi+1(R) if i > s.
(14)

Since CA(P ) ∼ CA(Q) (respectively, CD(P ) ∼ CD(Q)), the left hand side of (13)
(respectively, (14)) is the same for both cases R = P and R = Q. Comparing the right
hand sides of (13) and (14) for the cases R = P and R = Q, we obtain bi(P ) = bi(Q) for
all 1 6 i 6 n, ai(P ) = ai(Q) for all 1 6 i 6 s− 1, and ci(P ) = ci(Q) for all s+ 1 6 i 6 n.
By (12), this implies the claim (11) and the proof is completed.

We note that Bédard [5] studied the combinatorics of commutation classes for Weyl
groups of any Lie types by introducing a level function on a certain subset of positive
roots of the corresponding root system. Indeed, for each reduced word a level function is
defined, and this function distinguishes commutation classes, i.e., i ∼ j if and only if the
corresponding level functions are the same.

Question 42. Recall that the indices have been defined for the reduced words of the
longest element in Sn+1, which is the Weyl group of Lie type A. The level functions
introduced by Bédard [5] and string polytopes are defined for any Lie type. In this
regard, we may ask whether one can generalize the definitions of indices to other Lie
types to provide more fruitful understanding of the combinatorics of string polytopes.

Remark 43. We have seen that the indices of reduced words are used to classify the
string polytopes combinatorially equivalent to a Gelfand–Cetlin polytope. Recently, the
combinatorics of string polytopes associated with reduced words of small indices has been
studied in [6]. A reduced word i ∈ R(w

(n+1)
0 ) has small indices if indδ(i) = (0, . . . , 0, k)

for some δ ∈ {A,D}n−1 and k 6 κ(δn−2, δn−1). Here, κ(δn−2, δn−1) = 2 if δn−2 = δn−1; and
κ(δn−2, δn−1) = n− 1 otherwise. In [6], Cho et al. found the number of codimension one
faces and the description of the vertices for the string polytopes associated with reduced
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words having small indices. These examples show that the notion of indices may have a
potential role to study the combinatorics of string polytopes.
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