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mk@informatik.uni-tuebingen.de

Torsten Ueckerdt
Karlsruhe Institute of Technology

torsten.ueckerdt@kit.edu

Submitted: Jun 22, 2021; Accepted: Jan 21, 2022; Published: Feb 11, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A topological drawing of a graph is fan-planar if for each edge e the edges
crossing e form a star and no endpoint of e is enclosed by e and its crossing edges.
A fan-planar graph is a graph admitting such a drawing. Equivalently, this can be
formulated by three forbidden patterns, one of which is the configuration where e
is crossed by two independent edges and the other two where e is crossed by two
incident edges in a way that encloses some endpoint of e. A topological drawing is
simple if any two edges have at most one point in common.

Fan-planar graphs are a new member in the ever-growing list of topological
graphs defined by forbidden intersection patterns, such as planar graphs and their
generalizations, Turán-graphs and Conway’s thrackle conjecture. Hence fan-planar
graphs fall into an important field in combinatorial geometry with applications in
various areas of discrete mathematics. As every 1-planar graph is fan-planar and
every fan-planar graph is 3-quasiplanar, they also fit perfectly in a recent series of
works on nearly-planar graphs from the areas of graph drawing and combinatorial
embeddings.

In this paper we show that every fan-planar graph on n vertices has at most
5n − 10 edges, even though a fan-planar drawing may have a quadratic number
of crossings. Our bound, which is tight for every n > 20, indicates how nicely
fan-planar graphs fit in the row with planar graphs (3n − 6 edges) and 1-planar
graphs (4n− 8 edges). With this, fan-planar graphs form an inclusion-wise largest
non-trivial class of topological graphs defined by forbidden patterns, for which the
maximum number of edges on n vertices is known exactly.

We demonstrate that maximum fan-planar graphs carry a rich structure, which
makes this class attractive for many algorithms commonly used in graph drawing.
Finally, we discuss possible extensions and generalizations of these new concepts.

Mathematics Subject Classifications: 05C10, 68R10
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1 Introduction

Planarity of a graph is a well-studied concept in graph theory, computational geometry
and graph drawing. The famous Euler formula characterizes for a certain embedding
the relation between vertices, edges and faces, and many different algorithms e.g. [43]
following different objectives have been developed to compute appropriate embeddings in
the plane.

Because of the importance of planarity, a series of generalizations have been devel-
oped in the past. Topological graphs and topological drawings1 respectively are being
considered, i.e., the vertices are drawn as points in the plane and the edges drawn as Jor-
dan curves between corresponding points without any other vertex as an interior point.
In [30], the authors state “Finding the maximum number of edges in a topological graph
with a forbidden crossing pattern is a fundamental problem in extremal topological graph
theory” together with 9 citations from a large group of authors. In this paper we define
fan-planar graphs as those admitting a topological drawing in which each edge is only
allowed to be crossed by a fan of other edges. Equivalently, we forbid three crossing pat-
terns as shown in Figure 1, one of which is an edge crossed by two independent edges.
As our main result we show that every n-vertex planar graph has at most 5n− 10 edges,
and that this bound is tight for n > 20.

Most of the existent literature considers topological drawings that are simple, i.e.,
where any two edges have at most one point in common. In particular, two edges may
not cross more than once and incident edges may not cross at all. We shall consider
simple topological graphs only. Indeed, we shall argue in Section 4 that if we drop this
assumptions and allow non-homeomorphic parallel edges, then even 3-vertex fan-planar
graphs have arbitrarily many edges.

Related work. Most notably, there are k-planar graphs [37] and k-quasiplanar graphs [5].
A k-planar graph admits a topological drawing in which no edge is crossed more than k
times by other edges, while a k-quasiplanar graph admits a drawing in which no k edges

1Formally, topological graphs and topological drawings are synonym and we use the term drawing only
for emphasis.

planar

3n− 6

3-quasiplanar

6.5n + C

2-fan-crossing
free

4n− 8

fan-planar

5n− 10

Topological Graphs Defined by Forbidden Intersection Patterns

config. I config. II config. III

Figure 1: Topological graphs defined by forbidden patterns and the corresponding maxi-
mum number of edges in an n-vertex such graph.

the electronic journal of combinatorics 29(1) (2022), #P1.29 2



pairwise cross each other.
The topic of k-quasiplanar graphs is almost classical [20]. A famous conjecture [20]

states that for constant k the maximal number of edges in k-quasiplanar graphs is lin-
ear in the number of vertices. Note that 2-quasiplanar graphs correspond to planar
graphs. A first linear bound for k = 3, i.e., 3-quasiplanar graphs, appeared in [5] and
was subsequently improved in [37]. The current best bound for 4-quasiplanar graphs
is 76(n − 2) [1]. For the general case, the bounds have been gradually improved from
O(n(log n)O(log k)) [37], to O(n log n · 2α(n)c) [39]. Better upper bounds are known if we
restrict ourselves to simple topological drawings, i.e., where each pair of edges intersects
at most once. In that case 3-quasiplanar graphs have at most 6.5n+O(1) edges [4], while
k-quasiplanar graphs with any fixed k > 2 have at most O(n log n) edges [39]. Despite
significant efforts, it remains open, whether the conjecture holds for general k, that is,
whether k-quasiplanar graphs have at most linearly many edges.

A k-planar graph admits a topological drawing in which each edge has at most k cross-
ings. The special case of 1-planar graphs were introduced by Ringel [38], who considered
the chromatic number of these graphs. There is important work about the characterization
on 1-planar graphs due to Suzuki [40], Thomassen [42] and Hong et al. [32]. Concern-
ing computational questions, it is known that testing 1-planarity is NP-complete for the
general case [31] while there are efficient algorithms for testing 1-planarity for a given
rotation system [28]. Among the rich literature on k-planar graphs, let us also mention
aspects like straight-line embeddings [6] and maximality [9, 19].

Closely related to 1-planar graphs are RAC-drawable graphs [8, 29], that is graphs
that can be drawn in the plane with straight-line edges and right-angle crossings. For the
maximum number of edges in such a graph with n vertices, a bound of 4n− 10 has been
proven [25], which is remarkably close to the 4n−8 bound for the class of 1-planar graphs.
A necessary condition for RAC-drawable graph is the absence of fan-crossings. An edge
has a k-fan-crossing if it crosses k edges that have a common endpoint, cf. Figure 1. RAC-
drawings do not allow 2-fan-crossings. Generalizing RAC-drawings, Cheong et al. [21]
considered k-fan-crossing free graphs and gave bounds for their maximum number of
edges. They obtain a tight bound of 4n− 8 for n-vertex 2-fan-crossing free graphs, and a
tight 4n− 9 when edges are required to be straight-line segments. For k > 2, they prove
an upper bound of 3(k− 1)(n− 2) edges, while all known examples of k-fan-crossing free
graphs on n vertices have no more than kn edges.

Our results and more related work. As stated before we consider only simple topo-
logical drawings, i.e., any two edges have at most one point in common. We mostly
consider only simple graphs, i.e., graphs without self-loops and parallel edges, and explic-
itly write multigraph otherwise. We consider here another variant of sparse non-planar
graphs, somehow halfway between 1-planar graphs and quasiplanar graphs, where we al-
low more than one crossing on an edge e, but only if no endpoint of e is enclosed by e and
its crossing edges. We call this a fan-crossing and the class of topological graphs obtained
this way fan-planar graphs. Note that we do not differentiate on k-fan-crossings as it has
been done by Cheong et al. [21].

the electronic journal of combinatorics 29(1) (2022), #P1.29 3



The requirement that every edge in G is crossed only by a fan-crossing can be stated
in terms of forbidden configurations. We define configuration I to be one edge that is
crossed by two independent edges, and configuration II, respectively configuration III,
to be an edge e that is crossed by adjacent edges, such that the triangle (highlighted
in figure) formed by the three segments between the crossing points and the common
endpoint encloses one of the endpoints of e, respectively both endpoints of e, see Figure 2.
Note that for simple topological drawings, configurations II and III are well-defined. Now
a simple topological graph is fan-planar if and only if neither configuration I nor II nor III
occurs. Note that if we forbid only configurations I and III, then an edge may be crossed
by the three edges of a triangle, which is actually not a star, nor a fan-crossing. However,
if every edge is drawn as a straight-line segment, then neither configuration II nor III can
occur and hence in this case it is enough to forbid configuration I.

fan-crossing
crossing
triangle

configuration
I

configuration
II

configuration
III

e
e

e

Figure 2: Crossing configurations

Obviously, 1-planar graphs are also fan-planar. Furthermore, fan-planar graphs are
3-quasiplanar since there are no three independent edges that mutually cross. So, the
maximum number of edges in an n-vertex fan-planar graph is between 4n and 6.5n. In
the following, we will explore the exact bound.

Theorem 1. Every simple fan-planar graph on n > 3 vertices has at most 5n− 10 edges.
This bound is tight for n > 20.

We remark that fan-planar drawings graphs may have Ω(n2) crossings, e.g., a straight-
line drawing of K2,n with the bipartition classes placed on two parallel lines.

Very closely related to our approach is the research on forbidden grids in topological
graphs, where a (k, l) grid denotes a k-subset of the edges pairwise intersected by an
l-subset of the edges, see [36] and [41]. It is known that topological graphs without
(k, l) grids have a linear number of edges if k and l are fixed. Note that configuration I,
but also a 2-fan-crossing, is a (2, 1) grid. Subsequently [2], “natural” (k, l) grids have
been considered, which have the additional requirement that the k edges, as well as the
l edges, forming the grid are pairwise disjoint. For natural grids, the achieved bounds
are superlinear. Linear bounds on the number of edges have been found for the special
case of forbidden natural (k, 1) grids where the leading constant heavily depends on the
parameter k. In particular, the authors give a bound of 65n for the case of forbidden
natural (2, 1) grids, which correspond to our forbidden configuration I. Additionally, the
case of geometric graphs, i.e., graphs with straight-line edges, has been explored. For
details and differences we refer to [2]. We remark that many arguments in this field of
research are based on the probabilistic method, while we use a direct approach aiming on
tight upper and lower bounds.
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Remark. This paper initiates the study of fan-planar graphs. In fact, the first prelimi-
nary version of this paper dates back to 2014 [34]. Since then, fan-planarity has become a
very popular subject of study among several researchers [3,7,10,12–18,22,23,33]. The in-
terested reader may also have a look at the recent surveys on fan-planarity [11] or general
beyond-planar graphs [26].

Note that in our preliminary version, we excluded configurations I and II only, believing
that this would force every edge to be crossed only by a fan-crossing. Just recently, we
have been contacted by the authors of [35] with a counterexample to our Lemma 3 in
the original context. That example (see Figure 4(c) for a simpler such example) however
contains what we now call configuration III, and is thus not fan-planar for its intended
definition. Lemma 3 in fact holds true for every fan-planar graph — We now mention
explicitly where the absence of configuration III is used in its proof.

2 Examples of Fan-Planar Graphs with Many Edges

The following examples of fan-planar graphs have n vertices and 5n− 10 edges. The first
one results from a K4,n−5, where the n− 5 vertices form a path, see Figure 3(a). An easy
calculation shows that this graph has n−1 vertices and 4(n−5) + (n−6) = 5(n−1)−21
edges. Indeed, one can add 10 edges to the graph, keeping fan-planarity, as well as
additionally one vertex with 6 more incident edges and obtain a multigraph on n vertices
and 5n − 10 edges. We remark that this graph has parallel edges; however every pair
of parallel edges is non-homeomorphic, that is, it surrounds at least one vertex of G.
The second example is the (planar) dodecahedral graph where in each 5-face, we draw 5
additional edges as a pentagram, see Figure 3(b). This graph has n = 20 vertices and
5n− 10 = 90 edges, and has already served as a tight example for 2-planar graphs [37].

(a) (b)

→

(c)

Figure 3: (a) K4,n−4 with n − 4 vertices on a path. (b) The dodecahedral graph with a
pentagram in each face. (c) Adding 2-hops and spokes into a face.

Similarly to the idea with the dodecahedral graph, we can construct arbitrarily large
n-vertex fan-planar graphs with 5n− 10 by starting with an underlying planar graph and
adding crossing edges and a vertex to each of its faces.

Proposition 2. Every connected planar embedded multigraph H with each face of length
at least 3 can be extended to a fan-planar multigraph G with 5|V (G)|−10 edges by adding
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an independent set of vertices and sufficiently many edges, such that the uncrossed edges
of G are precisely the edges of H.

Moreover, if H is 3-connected and each face has length at least 5, then G has no loops
and parallel edges.

Proof. Let n and m be the number of vertices and edges of H, respectively, and F be the
set of all faces of H. We construct the fan-planar graph G by adding one vertex and two
sets of edges into each face f ∈ F . So let f be any face of H. Since H is connected, the
boundary of f corresponds to a single closed walk v1, . . . , vs, s > 3, in H around f , where
vertices and edges may be repeated. We do the following, as illustrated in Figure 3(c).

(1) Add a new vertex vf into f .

(2) For i = 1, . . . , s add a new edge vfvi drawn in the interior of f .

(3) For i = 1, . . . , s add a new edge vi−1vi+1 (with indices modulo s) crossing the edge
vfvi.

In (1) we added |F | new vertices. In (2) we added deg(f) many “spoke edges” inside
face f , in total

∑
f deg(f) = 2m new edges. And in (3) we added again deg(f) many

“2-hop edges” inside face f , in total
∑

f deg(f) = 2m new edges. Thus we calculate
|V (G)| = n+ |F | and |E(G)| = m+ 2m+ 2m = 5m, which together with Euler’s formula
m = n + |F | − 2 gives |E(G)| = 5|V (G)| − 10. It remains to see that no two edges in
G are homeomorphic, and that G is fan-planar. Each “2-hop edge” e = vi−1vi+1 forms a
shortcut for a path vi−1 − vi − vi+1 on the face f . Suppose some edge e′ in G is parallel
to e. In case e′ is also a 2-hop edge in face f , then vertex vf is surrounded by e and e′.
Otherwise e′ is an edge of H or a 2-hop edge of some other face, and either vertex vf or
vertex vi is surrounded by e and e′.

For the fan-planarity of G, observe that each “spoke edge” vfvi crosses only one 2-hop
edge, and each 2-hop edge vi−1vi+1 crosses only three edges vi−2vi, vfvi and vivi+2, which
form a fan-crossing.

Finally, note that if the planar graph H is 3-connected and each face has length at
least 5, then the fan-planar graph G has no loops, nor parallel edges, nor crossing incident
edges. Examples for such planar graphs are fullerene graphs [27]. Moreover, for every
face f in H and the corresponding vertex vf in G we have deg(f) = deg(vf ). So, if every
face in H has degree exactly 5 we can omit all vertices in step (1) and edges in (2) and
obtain a fan-planar graph G′ with V (G′) = V (H) and 5|V (H)| − 10 edges.

3 The 5n − 10 Upper Bound For the Number of Edges

In this section Theorem 1 is proven. It suffices to consider simple topological graphs
G that do not contain configuration I nor II nor III and further satisfy the following
properties.

(i) The chosen embedding of G has the maximum number of uncrossed edges.
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(ii) The addition of any edge to the given embedding violates the fan-planarity of G,
that is, G is maximal fan-planar with respect to the given embedding.

So for the remainder of this paper let G be a maximal fan-planar graph with a fixed
fan-planar embedding with the maximum number of uncrossed edges. Recall that the
embedding of G is simple, i.e., any two edges have at most one point in common.

For such a fixed embedding of G we shall split the edges of G into three sets. The
first set contains all uncrossed edges. We denote by H the subgraph of G with all vertices
in V and all uncrossed edges of G. We may refer to H as the planar subgraph of G.
Note that H might be disconnected even if G is connected. In the second set we consider
every crossed edge whose endpoints lie in the same connected component of H. Note
that two such edges may cross each other only if they correspond to the same connected
component of H. And the third set contains all remaining edges, i.e., every crossed edge
with endpoints in different components of H. We show how to count the edges in each of
the sets and derive the upper bound.

3.1 Notation, definitions and preliminary results

We call a connected component of the plane after the removal of all vertices and edges
of G a cell of G. Whenever we consider a subgraph of G we consider it together with its
fan-planar embedding, which is inherited from the embedding of G. We will sometimes
consider cells of a subgraph G′ of G, even though those might contain vertices and edges
of G − G′. The boundary of each cell c is composed of a number of edge segments and
some (possibly none) vertices of G′. With slight abuse of notation we call the cyclic order
of vertices and edge segments along c the boundary of c, denoted by ∂c. Note that vertices
and edges may appear more than once in the boundary of a single cell. We define the
size of a cell c, denoted by ||c||, as the total number of vertices and edge segments in ∂c
counted with multiplicity.

Note that by assumptions (i) and (ii) it follows that if two vertices are in the same
cell c of G then they are connected by an uncrossed edge of G. However, this uncrossed
edge does not necessarily bound cell c.

Lemma 3. If two edges vw and ux cross in a point p, no edge at v crosses ux between p
and u, and no edge at x crosses vw between p and w, then u and w are contained in the
same cell of G.

Proof. Let e0 = ux and e1 = vw be two edges that cross in point p = p1 such that no
edge at v crosses e0 between p1 and u, and no edge at x crosses e1 between p1 and w. If
no edge of G crosses e0 nor e1 between p1 and u, respectively w, then clearly u and w are
bounding the same cell. So assume without loss of generality that some edge of G crosses
e1 between p1 and w. By fan-planarity (specifically by the absence of configuration I)
such edges are incident to u or x, where the latter is excluded by assumption. Let e2
be the edge whose crossing with e1 is closest to w, and let p2 be the crossing point. As
neither configuration II nor configuration III occurs, w is not surrounded by e0, e1, e2. See
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p = p1

u

v

w

p2

e1

e2

e3
p3 p4

e4

x
e0

(a)

p

u

v

w

x

(b)

p

u

v

w

x

(c)

Figure 4: (a) Illustration of the proof of Lemma 3. (b) A counterexample to Lemma 3
when configuration II is allowed. (c) A counterexample to Lemma 3 when configuration III
is allowed.

Figure 4(a) for an illustration of the actual situation, and Figures 4(b) and 4(c) for the
potential problematic situations if configuration II or III was allowed.

No edge crosses e1 between w and p2. If e2 is not crossed between u and p2, then u
and w are bounding the same cell and we are done. Otherwise let e3 be the edge whose
crossing with e2 is closest to u, and let p3 be the crossing point. By fan-planarity (the
absence of configuration I) e3 and e1 have a common endpoint, and it is not v since e3 does
not cross e0 between p1 and u. (Here we use the absence of configuration II again.) So e3
ends at w and by the absence of configuration III, u is not surrounded by e1, e2, e3. By the
choice of e3, we have that e2 is not crossed between u and p3. Again, if u and w are not on
the same cell then some edge crosses e3 between p3 and w. By fan-planarity (the absence
of configuration I) any such edge e4 has a common endpoint with e2, and if it would
not be u then either e1 would be crossed by two independent edges (a configuration I
occurs) or one v, w would be surrounded by e2, e3, e4 (a configuration II or III occurs) –
a contradiction to the fan-planarity of G. So all edges crossing e3 between w and p3 are
incident to u. Let e4 be such edge whose crossing with e3 is closest to w, and let p4 be
the crossing point. Again, by absence of configuration III, v and w are not surrounded
by e2, e3, e4, cf. Figure 4(a) for an illustration.

Iterating this procedure until no edge crosses ei nor ei−1 between pi and u,w we see
that u and w lie indeed on the same cell, which concludes the proof.

Note that we use the absence of both configuration II and configuration III in the
proof of Lemma 3. And indeed, as illustrated in Figure 4(b) and 4(c), the statement of
the lemma is no longer true if configuration II or configuration III may occur. For better
readability of the remainder, we shall from now on just argue “by fan-planarity” without
each time explicitly referring to the specific forbidden configurations. Conclusively, in a
fan-planar drawing each edge is either uncrossed or crossed by a fan.

Lemma 3 has a couple of nice consequences.

Corollary 4. Any two crossing edges in G are connected by an uncrossed edge.
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u1
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w1
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(b)

u0 u1e0 e1

v0

v1

(c)

Figure 5: Illustration of the proofs of (a), (b) Corollary 5 and (c) Corollary 6.

Proof. Let ux and vw be the two crossing edges. By fan-planarity either no other edge at
x or no other edge at u crosses the edge vw, say there is no such edge at x. Similarly, we
may assume without loss of generality that no edge at v crosses the edge ux. However,
this implies that ux and vw satisfy the requirements of Lemma 3 and we have that u
and w are on the same cell. In particular, we can draw an uncrossed edge between u
and w in this cell. Because G is maximally fan-planar, uw is indeed an edge of G. And
since G is embedded with the maximum number of uncrossed edges, uw is also drawn
uncrossed.

Corollary 5. If c is a cell of any subgraph of G, and ||c|| = 4, then c contains no vertex
of G in its interior.

Proof. Let c be a cell of G′ ⊆ G with ||c|| = 4. Then ∂c consists either of four edge seg-
ments or one vertex and three edge segments. Let us assume for the sake of contradiction
that c contains a set S 6= ∅ of vertices in its interior.

Case 1. ∂c consists of four edge segments. Let e0, e1, e2, e3 be the edges bounding c is this
cyclic order. From the fan-planarity of G it follows that e0 and e2 have a common endpoint
v0. Similarly e1 and e3 have a common endpoint v1. See Figure 5(a) for an illustration.
If p denotes the crossing point of e0 = v0u0 and e1 = v1u1, then by fan-planarity no edge
at ui crosses ei+1 between p and vi+1, where i ∈ {0, 1} and indices are taken modulo 2.
Hence by Lemma 3 there exists a cell c′ of G that contains both v0 and v1.

Now consider the subgraph G[S] of G on the vertices inside c. From the fan-planarity
it follows that every edge between G[S] and G[V \ S] has as one endpoint v0 or v1. We
now change the embedding of G by placing the subgraph G[S] (keeping its inherited
embedding) into the cell c′ that contains v0 and v1. The resulting embedding of G is still
fan-planar and moreover at least one edge between G[S] and {v0, v1} is now uncrossed –
a contradiction to our assumption (i) that the embedding of G has the maximum number
of uncrossed edges.

Case 2. ∂c consists of one vertex and three edge segments. Let v be the vertex and vw1,
vw2, u1u2 be the edges bounding c. See Figure 5(b) for an illustration. If p denotes the
crossing point of vw1 and u1u2, then by fan-planarity either no edge at u1 crosses vw1
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between p and v or no edge at u2 crosses vw1 between p and v. Moreover, for i = 1, 2 the
edge vwi is the only edge at wi that crosses u1u2. Hence by Lemma 3 we have that either
v and u1 or v and u2 are contained in the same cell of G – say cell c′ contains v and u2.

Now, similarly to the previous case, consider the subgraph G[S] of G on the vertices
inside c. From the fan-planarity, it follows that every edge between G[S] and G[V \ S]
has as one endpoint v, u1 or u2. Moreover, every edge between a vertex in G[S] and u1
or u2 is crossed only by edges incident to v, as otherwise u1u2 would be crossed by two
independent edges. We now change the embedding of G by placing the subgraph G[S]
(keeping its inherited embedding) into the cell c′ that contains v and u2. The resulting
embedding of G is still fan-planar and moreover at least one edge between G[S] and u2 is
now uncrossed – a contradiction to (i).

Corollary 6. If e0 = u0v0 and e1 = u1v1 are two crossing edges of G such that every edge
of G crossing ei is crossed only by edges incident to ui+1, where i ∈ {0, 1} and indices
are taken modulo 2, then v0 and v1 are in the same connected component of the planar
subgraph H of G.

Proof. Let p be the point in which e0 and e1 cross. For i = 0, 1 let Si be the set of all
edges crossing ei+1 between p and vi+1. (All indices are taken modulo 2.) By assumption
Si is a star centered at ui. Consider the embedding of the graph S0∪S1 inherited from G.
By fan-planarity (specifically, the absence of both, configuration I and II) u0 and u1 are
contained in the outer cell of S0 ∪ S1. Moreover, every inner cell c of S0 ∪ S1 has ||c|| = 4
and thus by Corollary 5 all leaves of S0 and S1 are also contained in the outer cell c∗ of
S0 ∪ S1.

We claim that no edge segment in the boundary ∂c∗ of the outer cell is crossed by
another edge in G. Indeed, if e′ is an edge crossing some edge e ∈ S0 ∪ S1 between the
crossing of e and e0 or e1 and the endpoint of e different from u0, u1, then by assumption
one endpoint of e′ is u0 or u1 – say u1. Moreover, since by Corollary 5 no cell c with
||c|| = 4 contains any vertex, we have that e′ crosses e0 between p and v0 and thus e ∈ S1.
See Figure 6(b).

u0 u1

w1 = v0w2

w3
w4

w5

w6

w7

w8

w9

w10
v1 = w11

e0 e1p

(a)

u0 u1

v1

e0 e1

v0
e

e′

p

(b)

Figure 6: (a) The stars S0 and S1 in the proof of Corollary 6. (b) If an edge e′ crosses
e ∈ S0 between the crossing of e and e1 and the endpoint of e different from u0, and
e′ /∈ S1, then v0 is contained in a cell c bounded by e, e′ and e1 with ||c|| = 4.
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We conclude that if we label the vertices of S0∪S1 such that their cyclic order around
c∗ is u0, u1, v0 = w1, w2, . . . , wk = v1, then for each j ∈ {1, . . . , k − 1} the vertices wj
and wj+1 are contained in the same cell of G and hence by maximality of G joint by an
uncrossed edge. See Figure 6(a) for an illustration.

Recall that H denotes the planar subgraph of G. For convenience we refer to the
closure of cells of H as the faces of G. The boundary of a face f is a disjoint set of (not
necessarily simple) closed walks in H, which we call facial walks. The length of a facial
walk W , denoted by |W |, is the number of its edges counted with multiplicity. We remark
that a facial walk may consist of only a single vertex, in which case its length is 0. See
Figure 7(a) for an example.

For a face f and a facial walk W of f , we define G(W ) to be the subgraph of G
consisting of the walk W and all edges that are drawn entirely inside f and have both
endpoints on W . The set of cells of G(W ) that lie inside f is denoted by C(W ). Finally,
the graph G(W ) is called a sunflower if |W | > 5 and G(W ) has exactly |W | inner edges
each of which connects two vertices at distance 2 on W . See Figure 7(b) for an example
of a sunflower. We remark that for convenience we depict facial walks in our figures as
simple cycles, even when there are repeated vertices or edges. Indeed, we can assume
facial walks to be simple cycles as long as we bound the number of edges in terms of the
length of facial walks and sizes of cells. Only in the final proof of Theorem 1 we bound
the number of edges in terms of the number of vertices, and there those repetitions will
be taken into account by Euler’s formula.

e1

e2

e3

e4

e5

e6

(a) (b)

Figure 7: (a) A cell of H (drawn black) is shown in gray. The boundary of the cell is the
union of the closed walk e1, e2, e3, e4, e5, e5, e6 and the single vertex in the interior. (b)
A sunflower on 8 vertices. The facial walk W is drawn thick. A cell bounded by 8 edge
segments and no vertex is highlighted.

3.2 Counting the Number of Edges

We shall count the number of edges of G in three sets:

• Edges in H, that is all uncrossed edges.

• Edges in E(G(W )) \ E(W ) for every facial walk W .
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• Edges between different facial walks of the same face f of G.

The edges in H will be counted in the final proof of Theorem 1 below. We start
by counting the crossed edges, first within the same facial walk and afterwards between
different facial walks. For convenience, for a facial walk W the edges in E(G(W )) \
E(W ) and their edge segments are called inner edges and inner edge segments of G(W ),
respectively.

Lemma 7. Let W be any facial walk. If every inner edge segment of G(W ) bounds a
cell of G(W ) of size 4 and no cell of G(W ) contains two vertices on its boundary not
consecutive in W , then G(W ) is a sunflower.

Proof. Let v0, . . . , vk be the clockwise order of vertices around W . (In the following,
indices are considered modulo k+ 1.) For any vertex vi we consider the set of inner edges
incident to vi. Since no two non-consecutive vertices of W lie on the same cell, every vi
has at least one such edge. Moreover, note that for each edge vivi+1 of W the unique cell
ci with vivi+1 on its boundary has size at least 5. This implies that every vi has indeed
at least two incident inner edges. Finally, note that every inner edge is crossed, since
otherwise there would be two non-consecutive vertices of W bounding the same cell of
G(W ).

Now let us consider the clockwise first inner edge incident to vi, denoted by e1i . Since
an edge segment of e1i bounds the cell ci, there is a cell of size 4 on the other side of
this segment. This means that e1i and the clockwise next inner edge at vi are crossed by
some edge e. By fan-planarity e crosses only edges incident to vi. Thus each endpoint
of e bounds together with vi some cell of G(W ). Since only consecutive vertices of W
bound the same cell of G(W ), this implies that e = vi−1vi+1. Since this is true for every
i ∈ {0, . . . , k}, we conclude that G(W ) is a sunflower.

Recall that C(W ) denotes the set of all bounded cells of G(W ).

Lemma 8. For every facial walk W with |W | > 3 we have

|E(G(W )) \ E(W )| 6 2|W | − 5−
∑

c∈C(W )

max{0, ||c|| − 5}.

Proof. Without loss of generality we may assume that W is a simple cycle, since we
bound the number of inner edges of W in terms of the length of W . We proceed by
induction on the number of inner edges. As induction base we consider the case that
E(G(W )) \ E(W ) = ∅. Then G(W ) = W and C(W ) consists of a single cell c with
||c|| = 2|W |. Thus

|E(G(W )) \ E(W )| = 0 = 2|W | − 5− (||c|| − 5).

So assume that there is at least one inner edge e. First, consider any inner edge
segment e∗ of e and the two cells c1, c2 ∈ C(W ) containing e∗ on their boundary. If c∗

denotes the cell c1 ∪ c2 of G(W ) \ e, then

||c∗|| = ||c1||+ ||c2|| − 4
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and thus

max{0, ||c∗|| − 5} = max{0, ||c1|| − 5}+ max{0, ||c2|| − 5}+ x, (1)

where x = 1 if ||c1|| > 5 and ||c2|| > 5 and x = 0 otherwise.
Now, we shall distinguish three cases: G(W ) is a sunflower, some inner edge segment

is not bounded by a cell of size 4, and some cell of G(W ) contains two vertices on its
boundary that are not consecutive in W . By Lemma 7 this is a complete case distinction.

Case 1. G(W ) is a sunflower. Then by definition, G(W ) has exactly |W | inner edges.
Moreover, C(W ) contains exactly one cell c of size greater than 4 and for that cell
we have ||c|| = |W |. Thus

|E(G(W )) \ E(W )| = |W | = 2|W | − 5− (|W | − 5).

Case 2. Some edge segment e∗ of some inner edge e bounds two cells c1, c2 of size at
least 5 each. Then applying induction to the graph G′ = G(W ) \ e we get

|E(G(W )) \ E(W )| = 1 + |E(G′) \ E(W )|
6 1 + 2|W | − 5−

∑
c∈C(G′)

max{0, ||c|| − 5}

(1)

6 1 + 2|W | − 5−
∑

c∈C(W )

max{0, ||c|| − 5} − 1.

Case 3. Some cell of G(W ) contains two vertices u,w on its boundary that are not
consecutive on W . Note that uw may or may not be an inner edge of G(W ). In
the latter case we denote by c∗ the unique cell that is bounded by u and w. In any
case exactly two cells c1, c2 of G(W ) ∪ uw are bounded by u and w and we have
||c∗|| = ||c1||+ ||c2|| − 4, provided c∗ exists.

u

w

u

w

u

w

c∗

G(W1) G(W2)G(W )

u

w

G(W )

c1 c2
c1 c2

y=1←−y=0−→

Figure 8: The graph G(W ) is split into two graphs G(W1) and G(W2) along two vertices
u,w that are not consecutive on W but bound the same cell of G(W ).

We consider the two cycles W1,W2 in W ∪ uw that are different from W , such
that W1 surrounds c1 and W2 surrounds c2. For i = 1, 2 consider G(Wi), i.e., the
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subgraph of G(W ) ∪ uw induced by Wi, see Figure 8. We have

|W | = |W1|+ |W2| − 2,

|E(G(W )) \ E(W )| = |(E(G(W1)) \ E(W1))|
+ |(E(G(W2)) \ E(W2))|+ y,∑

c∈C(W )

max{0, ||c|| − 5} (1)
=

∑
c∈C(W1)

max{0, ||c|| − 5}

+
∑

c∈C(W2)

max{0, ||c|| − 5}+ (1− y),

where y = 1 if uw already was an inner edge of G(W ) and y = 0 otherwise. Now,
applying induction to G(W1) and G(W2) gives the claimed bound.

Recall that a face f of G is the closure of a cell of the planar subgraph H. The
boundary of f consists of uncrossed edges of G forming a number of closed walks – the
facial walks of f . Also recall that for such facial walk W we denote by G(W ) the subgraph
of G on W and all edges with both endpoints on W that lie inside f , by C(W ) the set of
all cells of G(W ). Note that some cell c ∈ C(W ) may contain further vertices of G, and
if it does, then some other facial walk of f lies in c. This cell c might be the unbounded
cell of G(W ). Conversely, if W1,W2 are two distinct facial walks for the same face f ,
then G(W1) is completely contained in a unique cell c1 ∈ C(W2) and G(W2) is completely
contained in a unique cell c2 ∈ C(W1).

Now let us define by C(f) the union of C(W ) for all facial walks W of f . Moreover,
we partition C(f) into C∅(f) and C∗(f), where a cell c ∈ C(f) lies in C∅(f) if and only
if (c \ ∂c) ∩ V (G) = ∅. I.e., cells in C∅(f) do not have any vertex of G (equivalently,
no other facial walk of f) in their open interior, whereas cells in C∗(f) contain some
vertex of G (equivalently, at least one other facial walk of f) in their interior. Without
loss of generality we have that for each f , C∗(f) is either empty or contains at least one
bounded cell. This can be achieved by picking a cell of G that has the maximum number
of surrounding Jordan curves of the form ∂c for c ∈ ⋃

f C∗(f), and defining it to be in the
unbounded cell of G.

Before we bound the number of edges between different facial walks of f we need one
more lemma. Consider a face f of G with at least two facial walks and a cell c ∈ C∗(f)
that is inclusion-minimal. Let W1 be the facial walk with c ∈ C(W1) and W2, . . . ,Wk be
the facial walks that are contained in c. For i = 1, . . . , k let ci be the cell of G(Wi) that
contains all walks Wj with j 6= i. In particular, we have c1 = c. Moreover, we call an
edge between two distinct facial walks Wi and Wj a WiWj-edge.

Lemma 9. Exactly one of c1, . . . , ck has a vertex on its boundary.

Proof. We proceed by proving a series of claims first.

Claim 1. If a WiWj-edge and a Wi′Wj′-edge cross, then {i, j} = {i′, j′}.

the electronic journal of combinatorics 29(1) (2022), #P1.29 14



Proof of Claim. Consider a WiWj-edge e1 = u1v1 crossing a Wi′Wj′-edge e2 = u1v2. By
Corollary 4 one endpoint of e1, say u1 ∈ Wi, and one endpoint of e2, say u2 ∈ Wi′ , are
joint by an uncrossed edge. In particular, Wi = Wi′ .

If, Case 1, e1 is crossed by a second edge incident to v2, then applying Lemma 3
gives an uncrossed edge u1v2, which is a contradiction to the fact that Wj′ 6= Wi′ , or an
uncrossed edge v1v2, which implies Wj = Wj′ as desired. See Figure 9(a).

Otherwise, Case 2, e1 is crossed only by edges at u2, and by symmetry e2 is crossed
only by edges at u1. Applying Corollary 6 we get that v1 and v2 are in the same connected
component of H and hence Wj = Wj′ , as desired. 4

u1 u2

e1

e2

v2 v1

u1 u2

Wi = Wi′

e1

e2

v2 v1

Wi = Wi′

(a)

u1

u2

Wj

Wi

e1

e2

v2

v1

p

u3

u4

e3

e4

(b)

u

v

e

u1 v1

Wi

Wj

e2

v2

e1 γ

(c)

Wi

Wj Wj′

(d)

Figure 9: (a) Case 1 in the proof of Claim 1. Illustrations of the proofs of (b) Claim 2,
(c) Claim 3 and (d) Claim 4.

Consider a vertex v on facial walk Wi with an incident WiWj-edge e for some j. As
Wi and Wj are distinct facial walks, edge e is crossed; by some other Wi′Wj′-edges, by
some edge of G(Wi), or by some edge of G(Wj). If no edge of G(Wi) crosses e, then v
must lie on the boundary of the cell ci that contains Wj and all other facial walks. For a
facial walk Wi and a vertex v ∈ Wi, let us call v open if v lies on ∂ci. Moreover, a vertex
v ∈ Wi is called closed if v is not open but v is incident to some WiWj-edge for some
j 6= i. So the endpoints of every WiWj-edge are open or closed, and by fan-planarity (the
absence of configuration I) at least one endpoint is open.

Claim 2. If two WiWj-edges cross then both have exactly one open endpoint, which
moreover are in the same facial walk.

Proof of Claim. Let e1 = u1v1 and e2 = u2v2 be two crossing WiWj-edges. Assume for the
sake of contradiction that e1 has an open endpoint u1 ∈ Wi and e2 has an open endpoint
u2 ∈ Wj. We consider the edges e3 = u3v1 and e4 = u4v2 that are incident to v1 and v2
respectively, cross each other and whose crossing point p is furthest away from v1 and v2.
See Figure 9(b) for an illustration. Note that possibly e1 = e3 and/or e4 = e2.

Now u3 is not in Wj because u1 is an open endpoint and u4 is not in Wi because u2
is an open end. Hence by Claim 1 u3 ∈ Wi and u4 ∈ Wj. Moreover, by Lemma 3 u3u4 is
an uncrossed edge of G – a contradiction to the fact that Wi and Wj are distinct facial
walks. 4
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Claim 2 implies that every edge between different facial walks has exactly one open
endpoint and one closed endpoint. Indeed, by assumption (i) no cell of G has vertices
from distinct facial walks on its boundary, meaning that every WiWj-edge e is crossed
by some other edge e′. If e′ runs between two facial walks, then e has a closed endpoint
by Claim 2, and if e′ runs within Wi or Wj, then e has a closed endpoint by definition.
Let us remark that the second part of Claim 2 uses Lemma 3, which in turn uses the
absence of configuration II, and indeed, the second part of Claim 2 is no longer true if
configuration II may occur.

Claim 3. If a WiWj-edge has a closed endpoint u ∈ Wi and w is the counterclockwise
next open or closed vertex of Wi after u, then there exists a WiWj-edge incident to w
with open endpoint in Wj.

Proof of Claim. Let e = uv be a WiWj-edge that has a closed endpoint u ∈ Wi. By
fan-planarity (absence of configuration I) v is an open vertex of Wj. As u is a closed
endpoint, some edge of G(Wi) crosses e. Let e1 = u1v1 be the edge from G(Wi) whose
crossing with e is closest to v (meaning that this crossing lies on ∂ci), where without loss
of generality v1 comes counterclockwise after u in Wi. Further assume without loss of
generality that e is the WiWj-edge at u whose crossing with e1 is closest to v1.

Consider a Jordan curve γ between v1 and the crossing of e1 and e that runs along
the left side of e1 and is crossed only by those edges crossing e1 on this stretch. Below we
show how to extend γ without creating new crossings so that γ ends at some open vertex
in Wj and argue that G together with γ seen as an edge at v1 is fan-planar. Then the
edge-maximality of G implies that an edge with the same endpoints as γ already exists
in G, which will prove the claim. Note that by fan-planarity (absence of configuration I)
every edge crossing γ is incident to v or u. If one such edge is incident to v, it is the
desired WiWj-edge. Otherwise, all such edges are incident to u and by the choice of e the
other endpoint lies also in Wi.

So let us first assume that e is not crossed between v and its crossing with e1. In this
case we can easily extend γ to end at v and we are done.

So e is crossed between its crossing with e1 and v. Let e2 be such a crossing edge
whose crossing with e is closest to u. Then by fan-planarity (absence of configuration I)
e2 is incident to u1 or v1. Moreover, by Claim 1 and Claim 2 e2 has a closed endpoint
in Wi and an open endpoint in Wj. Thus if e2 is incident to v1, then e2 is the desired
WiWj-edge. So assume that e2 = u1v2 for some v2 ∈ Wj. We extend γ along the left side
of e and e2 all the way to v2. We refer to Figure 9(c) for an illustration. If γ is not crossed
on this stretch, we are done. Otherwise, by the choice of e2, γ is crossed while running
along e2. Let e3 be such a crossing edge. By fan-planarity, e3 ends at u or v and by the
choice of e, it does not end at u. Finally, by Claim 1 the endpoint of e3 different from v
lies in Wi, which makes e3 our desired edge. 4

Claim 3 together with Claim 2 implies that on each facial walk every closed vertex is
followed by another closed vertex. In particular, the facial walks come in two kinds, one
with open vertices only and one with closed vertices only. We remark that one can show
that, if Wi has only closed vertices, then G(Wi) is a sunflower.
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Claim 4. Every facial walk with only closed vertices has edges to exactly one facial walk
with only open vertices.

Proof of Claim. Assume for the sake of contradiction that facial walk Wi with only closed
vertices has edges to two different facials walks Wj,Wj′ with only open vertices. Claim 3
implies that if some closed vertex of Wi has an edge to Wj, then every closed vertex of Wi

has an edge to Wj, and the same is true for Wj′ . Hence, each of the at least three closed
vertices in Wi has an edge to Wj and an edge to Wj′ , which implies that some WiWj-edge
and some WiWj′-edge must cross, see Figure 9(d). (Indeed, if any two such edges would
not cross, then contracting Wj and Wj′ into a single point each and placing a new vertex
in the middle of Wi with an edge to every closed vertex in Wi would give a planar drawing
of K3,3.) Thus by Claim 1 we have Wj = Wj′ – a contradiction to our assumption. 4

We are now ready to prove that at most one facial walk has open vertices. Recall that by
Claim 3 every facial walk is of one of two kinds: only open vertices or only closed vertices.
Moreover, by fan-planarity (absence of configuration I) and Claim 2 no edge runs between
two facial walks of the same kind. We consider a bipartite graph F whose black and white
vertices correspond to facial walks of the first and second kind, respectively, and whose
edges correspond to pairs Wi,Wj of facial walks for which there is at least one WiWj-edge
in G. Since G is connected, F is connected, and by Claim 4 every white vertex is adjacent
to exactly one black vertex. This means that F is a star and has exactly one black vertex,
which concludes the proof.

Now, we can bound the number of WiWj-edges. Recall that c is an inclusion-minimal
cell in C∗(f) for some face f of G, W1 denotes the facial walk of f with c ∈ C(W1) and
W2, . . . ,Wk denote the facial walks of f inside c. Further, for i = 1, . . . , k we denote by
ci the cell of G(Wi) containing all Wj with j 6= i.

Lemma 10. The number of edges between W1, . . . ,Wk is at most

4(k − 2) +
k∑
i=1

||ci||.

Proof. By Lemma 9 exactly one of c1, . . . , ck has vertices on its boundary, say W1. Let U
be the set of vertices on the boundary of c1. For a vertex u ∈ U and an index i ∈ {2, . . . , k}
we call an edge between u and Wi a uWi-edge. We define a bipartite graph J as follows.
One bipartition class is formed by the vertices in U . In the second bipartition class there
is one vertex wi for each facial walk Wi, i = 1, . . . , k. A vertex u ∈ U is connected by an
edge to wi if and only if i = 1 or i > 2 and there is a uWi-edge.

Claim 5. The graph J is planar.

Proof of Claim. We consider the following embedding of J . Afterwards we shall argue
that this embedding is indeed a plane embedding. So take the position of every vertex
u ∈ U from the fan-planar embedding of G. For i > 2, we consider the drawing of Wi

in the embedding of G, for each edge between a vertex u ∈ U and the vertex wi in J we
take the drawing of one uWi-edge in G, and then contract the drawing of Wi into a single
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point – the position for vertex wi. Finally, we place the last vertex w1 outside the cell c1
and connect w1 to each u ∈ U in such a way that these edges do not cross any other edge
in J . See Figure 10(a) for an illustrating example.

→W2

W3

W4

u1

u2

u3

u4

u5

u1

u2

u3

u4

u5

w1

w2

w3

w4

(a)

u1
u2

Wi

v

W1

(b)

Figure 10: (a) Obtaining the graph J . (b) The contradiction in Claim 6.

Now the resulting drawing of J contains crossing edges only if a uWi-edge crosses
a u′Wi′-edge in G. However, by Lemma 9 the cells c2, . . . , ck have no vertices on their
boundary. Hence, for each i = 2, . . . , k every uWi-edge crosses an edge of G(Wi). Now if a
uWi-edge e would cross a u′Wi′-edge with u 6= u′ and i 6= i′, then e would be crossed by two
independent edges, which is configuration I and hence a contradiction to the fan-planarity
of G. 4
Since J is a planar bipartite graph with bipartition classes of size |U | and k we have

|E(J)| =
k∑
i=1

degJ(wi) 6 2(|U |+ k)− 4.

Claim 6. For each i = 2, . . . , k the number of uWi-edges is at most

||ci||+ 2 degJ(wi).

Proof of Claim. Consider the vertices on Wi and the set U ′ ⊆ U of vertices on W1 that
have a neighbor on Wi. For each u ∈ U ′ consider the cyclic ordering of uWi-edges around
u. Since not every edge at u is a uWi-edge (at least one edge ends in W1) we obtain a
linear order on the uWi-edges going counterclockwise around u.

Now we claim that when we remove for each u ∈ U ′ the last two uWi-edges in the
linear order for u, then every vertex v in Wi is the endpoint of at most one uWi-edge.
Indeed, if after the edges have been removed two vertices u1, u2 ∈ U ′ have a common
neighbor v on Wi, then at least two u1Wi-edges, say e1, e2, cross the edge u2v (or the
other way around). As v is closed, u2v is crossed by an edge e in G(Wi). By fan-planarity
(the absence of configurations I and II) e, e1 and e2 have a common endpoint on Wi,
making e1, e2 a pair of parallel edges – a contradiction. So the number of uWi-edges is at
most 2|U ′|+ |Wi| = ||ci||+ 2 degJ(wi). 4
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We can now bound the total number of uWi-edges with i > 2 as follows.

k∑
i=2

#uWi-edges 6
k∑
i=2

(||ci||+ 2 degJ(wi))

=
k∑
i=2

||ci||+ 2|E(J)| − 2 degJ(w1)

6
k∑
i=2

||ci||+ 4(|U |+ k)− 8− 2|U |

=
k∑
i=2

||ci||+ 2|U |+ 4(k − 2) 6
k∑
i=2

||ci||+ ||c1||+ 4(k − 2).

We continue by bounding the total number of crossed edges of G that are drawn inside
a fixed face f of G. To this end let kf be the number of distinct facial walks of f and |f |
be the sum of lengths of facial walks of f , i.e., |f | = ∑

W facial walk of f |W |.

Lemma 11. The number of edges inside f is at most

2|f |+ 5(kf − 2)−
∑

c∈C∅(f)

max{0, ||c|| − 5}.

Proof. We do induction on kf . For kf = 1, the face f is bounded by a unique facial walk
W . Then by Lemma 8 there are at most

2|W | − 5−
∑

c∈C(W )

max{0, ||c|| − 5}

edges inside f . With |W | = |f | and C∅(f) = C(W ) this gives the claimed bound.
For kf > 2, the face f has k = kf distinct facial walks W1, . . . ,Wk. Let c be an

inclusion-minimal cell in C∗(f). Without loss of generality let W1 be the facial walk with
c ∈ C(W1) and W2, . . . ,Wj be the facial walks of f that lie inside c. In particular we have
2 6 j 6 k. Let G′ be the graph that is obtained from G after removing all vertices that
lie inside c. We consider G′ with its fan-planar embedding inherited from G. Clearly, the
face f ′ in G′ corresponding to f in G has exactly k− (j− 1) < k facial walks and we have

|f | = |f ′|+ |W2|+ · · ·+ |Wj|.

For i = 1, . . . , j we denote by ci the cell of G(Wi) containing W1. (Hence c1 = c.)
Moreover, let C = C(W2) ∪ · · · ∪ C(Wj). Then

C∅(f) = (C∅(f
′) ∪ C) \ {c1, c2, . . . , cj}.

Further we partition the edges inside f into three disjoint sets E1, E2, E3 as follows:

• The edges in E1 are precisely the edges of G′ inside f ′.
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• The edges in E2 are precisely the edges of G between W1 and W2 ∪ · · · ∪Wj.

• E3 = (E(G(W2)) \ E(W2)) ∪ · · · ∪ (E(G(Wj)) \ E(Wj)).

Now by induction hypothesis,

|E1| 6 2|f ′|+ 5(k − j − 1)−
∑

c∈C∅(f ′)

max{0, ||c|| − 5}.

By Lemma 10,

|E2| 6
j∑
i=1

||ci||+ 4(j − 2) 6
j∑
i=1

max{0, ||ci|| − 5}+ 9j − 8,

and by Lemma 8,

|E3| 6 2(|W2|+ · · ·+ |Wj|)− 5(j − 1)−
∑
c∈C

max{0, ||c|| − 5}.

Plugging everything together we conclude that the number of edges of G inside f is at
most

|E1∪̇E2∪̇E3| 6 2|f ′|+ 5(k − j − 1)−
∑

c∈C∅(f ′)

max{0, ||c|| − 5}

+

j∑
i=1

max{0, ||ci|| − 5}+ 9j − 8

+2(|W2|+ · · ·+ |Wj|)− 5(j − 1)−
∑
c∈C

max{0, ||c|| − 5}

= 2|f |+ 5(k − 2)− (j − 2)−
∑

c∈C∅(f)

max{0, ||c|| − 5}

6 2|f |+ 5(kf − 2)−
∑

c∈C∅(f)

max{0, ||c|| − 5},

which concludes the proof.

Lemma 11 implies that inside a face f of H there are at most 2|f |+ 5(kf − 2) edges.
Having this, we are now ready to prove our main theorem, namely that every simple
fan-planar graph on n > 3 vertices has at most 5n− 10 edges.

Proof of Theorem 1. Consider a fan-planar graph G = (V,E) on n vertices with proper-
ties (i) and (ii). Let H be the spanning subgraph of G on all uncrossed edges. Note that
V (H) = V (G). We denote by F (H) the set of all faces of H. Since every edge e ∈ E(H)
appears either exactly once in two distinct facial walks or exactly twice in the same facial
walk, we have ∑

f∈F (H)

|f | = 2|E(H)|.
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Further we denote by kf the number of facial walks for a given face f , and by CC(H)
the number of connected components of H. Since a face with k facial walks gives rise to
k connected components of H, we have∑

f∈F (H)

(kf − 1) = CC(H)− 1.

Hence we conclude

|E(G)|
Lemma 11

6 |E(H)|+
∑

f∈F (H)

(2|f |+ 5(kf − 2))

= |E(H)|+ 2
∑

f∈F (H)

|f |+ 5
∑

f∈F (H)

(kf − 1)− 5|F (H)|

= 5|E(H)|+ 5CC(H)− 5|F (H)| − 5 = 5|V (H)| − 10,

where the last equation is Euler’s formula for the plane embedded graph H. With
|V (H)| = |V (G)| = n this concludes the proof.

4 Discussion

We have shown that every simple n-vertex fan-planar graph has at most 5n−10 edges. We
have seen that maximum fan-planar graphs carry an underlying planar structure, possibly
enhanced by relatively simple local (non-planar) substructures like stars or 2-hop edges
along the boundary of each face, and combinations of both. Such properties make this
class attractive for many algorithms commonly used in graph drawing that also use planar
subgraphs as a base, and enhance the drawing by additional crossing edges.

The new concept of fan-planarity opens a variety of possible research directions. Of
course, if we allow G to have parallel edges or self-loops, there could be arbitrarily many
edges, even if the drawing of G is planar. However, if we only forbid configuration I, but
allow configurations II and III, can an n-vertex topological graph have more than 5n− 10
edges?

If we consider topological multigraphs with non-homeomorphic parallel edges and
non-trivial loops, does our 5n − 10 bound still hold? Here, two parallel edges are non-
homeomorphic (a loop is non-trivial) if the bounded component of the plane described by
the edges (the edge) contains at least one vertex. Note for instance that Euler’s formula
still holds for plane graphs with non-homeomorphic parallel edges and non-trivial loops,
and in this case every face still has length at least 3. Hence such plane multigraphs still
have at most 3n− 6 edges. We strongly conjecture that our 5n− 10 bound also holds for
such fan-planar multigraphs.

If we allow non-simple topological graphs, i.e., allow edges to cross more than once and
incident edges to cross, does every n-vertex fan-planar graph still have at most 5n − 10
edges? We remark, that if we allow both, non-simple drawings and non-homeomorphic
parallel edges, then there are 3-vertex topological graphs with arbitrarily many edges. Let
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us simply refer to Figure 11(a) for such an example. The idea is to start with an edge e1
from u to v, and edge ei starts clockwise next to ei−1 at u goes in parallel with ei−1 until
ei−1 ends at v, where ei goes a little further surrounding v once. No two parallel edges
are homeomorphic.

u v

w

(a) (b) (c)

Figure 11: (a) A topological non-simple fan-planar graph with arbitrarily many edges.
(b) The modified dodecahedral graph without extensions and (c) fully extended to 5n−11
straight-line edges.

If we generalize fan-planarity to k-fan-planarity, where every edge may be crossed by
at most k fan-crossings, k > 1, then a simple probabilistic argument from the analysis
of natural grids shows that for fixed k every n-vertex k-fan-planar graph has at most
(3(k + 1)k+1/kk)n edges, see Lemma 2.9 in [2]. However, exact bounds are not known.

Next, we suspect that every n-vertex straight-line fan-planar graph has at most 5n−11
edges, similar to the 4n− 9 bound for straight-line 1-planar graphs [24]. The augmented
dodecahedral graph from Figure 3(b) can be modified into a straight-line fan-planar graph
with 5n− 11 edges: Replace one vertex of the dodecahedron by a triangle, which is used
as the outer face. Draw the planar graph with convex faces, so that all pentagrams can
be drawn straight-line, cf. Figure 11(b). The three pentagons that became hexagons are
filled with 2-hops and spokes as explained in Proposition 2, i.e., by one additional vertex
and 12 edges each.

Finally, how few edges can an edge-maximal fan-planar graph have? An n-cycle with
2-hop, respectively 3-hop, edges provides edge-maximal fan-planar graphs with no more
than 3n edges if parallel edges are allowed and no more than 8

3
n edges, otherwise. We

suspect these examples to be best-possible.
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no large grids. Graphs and Combinatorics, 21(3):355–364, 2005.
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