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Abstract

The augmented Bergman complex of a matroid is a simplicial complex intro-
duced recently in work of Braden, Huh, Matherne, Proudfoot and Wang. It may be
viewed as a hybrid of two well-studied pure shellable simplicial complexes associated
to matroids: the independent set complex and Bergman complex.

It is shown here that the augmented Bergman complex is also shellable, via two
different families of shelling orders. Furthermore, comparing the description of its
homotopy type induced from the two shellings re-interprets a known convolution
formula counting bases of the matroid. The representation of the automorphism
group of the matroid on the homology of the augmented Bergman complex turns
out to have a surprisingly simple description. This last fact is generalized to closures
beyond those coming from a matroid.

Mathematics Subject Classifications: 05C88, 05C89

∗Department of Mathematics, Massachusetts Institute of Technology, Massachusetts, U.S.A.
†Department of Mathematics and Statistics, Washington University in St. Louis, Missouri, U.S.A.
‡School of Mathematics, University of Minnesota, Minnesota, U.S.A.
§Department of Mathematics, UC Santa Barbara, California, U.S.A
¶Department of Mathematics, Yale University, Connecticut, U.S.A.
‖Department of Mathematics and Statistics, Swarthmore College, Pennsylvania, U.S.A.

the electronic journal of combinatorics 29(1) (2022), #P1.31 https://doi.org/10.37236/10739

https://doi.org/10.37236/10739


1 Introduction

Matroids are an abstraction of the combinatorial properties of linear dependence for a set
of vectors in a vector space, introduced independently in the 1930s by H. Whitney and
T. Nakasawa. Here we will work exclusively with a matroid M on a finite ground set E,
which can be specified by either of these two subcollections of the subsets 2E:

• the independent sets I(M), modeling the subsets of the vectors that are linearly
independent, or

• the flats F(M), modeling the subsets of the vectors that are closed under taking
linear span.

The independent sets and flats satisfy certain axioms I1, I2, I3 and F1, F2, F3, recalled in
Section 2 below; see the book by Oxley [11] for further background on matroids. Both
I(M) and F(M) give rise to well-studied abstract simplicial complexes associated to M ,
as we now explain.

The first two axioms I1, I2 for independent sets imply that I(M) forms an abstract
simplicial complex on vertex set E. The third axiom I3 then implies that all inclusion-
maximal independent sets (called bases) have the same cardinality r(M), called the rank of
the matroid. Thus the simplicial complex I(M) is pure, meaning that all of its inclusion-
maximal faces, called facets, have the same dimension r(M)− 1.

On the other hand, one usually considers the collection of flats F(M) as a partial order
via inclusion, and then one can construct its order complex ∆F(M) as the simplicial com-
plex whose vertices are the flats, and whose simplices are the linearly ordered collections
of flats. There are two extreme flats ∅, E which are comparable to all the other flats,
so that they form cone vertices in this simplicial complex ∆F(M). One usually removes
these two cone vertices to obtain the topologically more interesting Bergman complex1

∆M := ∆(F(M) \ {∅, E}), which turns out to be pure of dimension r(M)− 2.
Both I(M) and ∆M were proven around 1980 (in work of Provan and Billera [13] and

of Garsia [7]) to be not only pure, but also shellable, a property with strong topological
and algebraic consequences. In particular, a pure d-dimensional shellable complex ∆
is homotopy equivalent to a β-fold wedge of d-dimensional spheres, where β is its top
(reduced homology) Betti number, or the absolute value |χ̃(∆)| of its (reduced) Euler
characteristic. Shellability can be viewed as a connectivity property much stronger than
gallery-connectedness. The hierarchy of purity, gallery-connectedness and shellability are
reviewed in Subsection 2.3 below.

Our goal here is to study the topology of the following “hybrid” of I(M) and ∆M ,
introduced in the monumental recent work of Braden, Huh, Matherne, Proudfoot and
Wang [4, 5] that resolved several important conjectures in matroid theory.

Definition. Given a matroid M on ground set E, the augmented Bergman complex ∆M

is the abstract simplicial complex on vertex set

{yi : i ∈ E} t {xF : proper flats F ∈ F(M) \ {E}}
1Also sometimes known as the order complex of the proper part F(M) \ {∅, E}; see Subsection 2.2.
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whose simplices are the subsets

{yi}i∈I ∪ {xF1 , xF2 , . . . , xF`} (1)

for which I ∈ I(M) and the proper flats Fi satisfy I ⊆ F1 ( F2 ( · · · ( F` (( E).
It is noted in [4, §2 Prop. 2.3] that ∆M is pure of dimension r(M)−1, that it is gallery-

connected, and that it contains as full-dimensional subcomplexes both the independent
set complex I(M) (as the simplices in (1) with ` = 0), and the cone over the Bergman
complex ∆M with cone vertex x∅ (as the simplices in (1) with #I = 0); we will denote
the latter complex by Cone(∆M) = ∆(F \ {E}).

This motivates our first main result, proven in Section 3.

Theorem 1. The augmented Bergman complex ∆M of a matroid is shellable, via two
families of shellings:

(i) one family that shells the facets of Cone(∆M) first, and the facets of I(M) last,

(ii) one family that shells the facets of I(M) first, and the facets of Cone(∆M) last.

Shellability immediately implies that the geometric realization of ∆M is homotopy
equivalent to a wedge of (r(M) − 1)-dimensional spheres, and gives a combinatorial ex-
pression for the number of spheres. For example, the Provan-Billera shelling of I(M)
shows that it is homotopy equivalent to a wedge of (r(M)−1)-spheres, and the number of
spheres in the wedge is the evaluation TM(0, 1) of the famous Tutte polynomial TM(x, y);
see Björner [2, §7.3]. Similarly, Garsia’s shelling of ∆M shows that it is homotopy equiv-
alent to a TM(1, 0)-fold wedge of (r(M) − 2)-dimensional spheres; see Björner [2, §7.4,
7.6].

Theorem 1 gives the following description of the homotopy type of ∆M , proven in
Section 4. It involves the set B(M) of bases of M , which we recall are the maximal
independent sets, indexing the facets of I(M).

Corollary 2. For a matroid M , the augmented Bergman complex ∆M is homotopy equiv-
alent to a β-fold wedge of (r(M)− 1)-spheres, with two different expressions for β:

β = #B(M) (= TM(1, 1)) (2)

β =
∑

F∈F(M)

TM |F (0, 1) · TM/F (1, 0). (3)

Expressions (2), (3) for β are predicted by the shellings in Theorem 1(i),(ii), respectively.

Here M |F and M/F are the matroids obtained from M by restriction to the flat F and
contraction on the flat F , respectively; see Subsection 2.1 below. We remark that the
concordance between the two expressions for β in Corollary 2 comes from specializing a
well-known Tutte polynomial convolution formula [6, 8]:

TM(x, y) =
∑

F∈F(M)

TM |F (0, y) · TM/F (x, 0).
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Our last main result is a surprisingly simple description for the representation on
the homology of the augemented Bergman complex given by the action of the matroid’s
automorphism group

Aut(M) := {bijections E
σ−→ E : σ(I) ∈ I(M) for all I ∈ I(M)}

= {bijections E
σ−→ E : σ(F ) ∈ F(M) for all I ∈ F(M)}.

Corollary 3. The action of Aut(M) on the top (reduced) homology H̃r(M)−1(∆M ,Z) is

the same as its action on the top oriented simplicial chain group C̃r(M)−1(I(M),Z) for
the complex I(M).

More explicitly, this means that the action is a signed permutation representation of
Aut(M), in which Z-basis elements [B] indexed by bases B in B(M) are permuted up to
(explicit) signs; see Remark 22 below.

Corollary 3 is generalized in Section 6 to a statement (Theorem 6.1) applying beyond
matroids, to a finite set E equipped with an arbitrary closure operator f : 2E −→ 2E.

Example 4. Let M be the uniform matroid of rank 2 on ground set E = {1, 2, 3}, which
has three bases B = {{1, 2}, {1, 3}, {2, 3}}. Figure 1 depicts the Hasse diagram of its
lattice of flats F on the left, along with the simplicial complexes I(M),Cone(∆M) and
∆M from left to right. All three are all (pure) 1-dimensional complexes, that is, graphs.
For graphs, shellability is equivalent to being connected.

123

1 2 3

∅

y1

y2 y3

x∅

x1

x2 x3

x∅

x1

x2 x3

y1

y2 y3

Figure 1: The poset F(M) and the complexes I(M),Cone(∆M), and ∆M from Example 4.

The augmented Bergman complex has homology H̃1(∆M ,Z) ∼= Z3, canonically iden-
tified with the group of oriented 1-chains C̃1(I(M),Z) via Corollary 3. This group of
1-chains has Z-basis {[y1, y2], [y1, y3], [y2, y3]}, indexed by the three bases B(M); here one
should interpret oriented edges as [yi, yj] = −[yj, yi]. The matroid M has automorphism
group G = S3 acting on the vertices via g(yi) = yg(i). Corollary 3 then tells us, for

example, that the transposition g = (1, 3) in S3 acts on H̃1(∆M ,Z) sending

g([y1, y3]) = [y3, y1] = −[y1, y3],

g([y1, y2]) = [y3, y2] = −[y2, y3].
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Example 5. The Boolean matroid M on E = {1, 2, . . . , n} of rank n has only one basis,
E itself, that is, B(M) = {E}. Here the augmented Bergman complex ∆M triangulates
an (n − 1)-sphere that turns out to be isomorphic to the boundary complex of an n-
dimensional convex polytope known as the stellohedron; see [4, Footnote 7] and [12, §10.4].
The examples with n = 2, 3 are depicted in Figure 2.

y1 y2

x1

x∅

x2

y1

y2 y3

x∅

x1

x2 x3

x12 x13

x23

Figure 2: The complex ∆M for a rank n Boolean matroid, where ∆M is the boundary of
the n-dimensional stellohedron. For n = 2, the stellohedron is a pentagon, shown at left.
For n = 3 the stellohedron has 16 boundary triangles (not shaded here), shown at right.

Since there is only one basis for M , Corollary 3 implies that H̃n−1(∆M ,Z) ∼= Z, with
Z-basis element the oriented simplex [E] = [y1, . . . , yn]; this corresponds to the homology
orientation class of the boundary sphere of the stellohedron. Here Aut(M) is the sym-
metric group permuting Sn, and it acts via the sign representation: g([E]) = sgn(g) · [E]
for every permutation g in Sn.

2 Background

2.1 Matroids

We begin with two axiomatizations of matroids; see Oxley [11, Chap. 1] for other axioms.

Definition 6. (Matroids defined by independent sets) A matroid M on ground set E is a
collection I(M) ⊆ 2E, called its independent sets, satisfying axioms:

I1. ∅ ∈ I(M).

I2. I ⊆ J and J ∈ I(M) implies I ∈ I(M).

I3. If I, J ∈ I(M) and #I < #J , then there exists j ∈ J \ I with I ∪ {j} ∈ I(M).
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From Axioms I1, I2, one sees that the collection I(M) forms an abstract simplicial complex
on vertex set E. Axiom I3 shows that it is pure of dimension r− 1 where r = r(M) is the
cardinality of all maximal independent sets B, called the bases B(M).

Equivalently, one can define a matroid via flats.

Definition 7. (Matroids defined by flats) A matroid M on ground set E is a collection
F(M) ⊆ 2E, called its flats, satisfying axioms:

F1. E ∈ F(M).

F2. F,G ∈ F(M) implies F ∩G ∈ F(M).

F3. For every F ∈ F(M) and e ∈ E \ F , there exists a unique G ∈ F(M) containing e
that covers F in this sense: there does not exist H ∈ F(M) with F ( H ( G.

Assume from here on that E is finite. Then the flats F(M) let one define the matroid
closure operator

2E −→ 2E

A −→ A
(4)

where A is the smallest flat containing A, namely

A :=
⋂

F∈F(M):
F⊇A

F.

We will also wish to view F(M) as a partially ordered set (poset) via inclusion, with
unique bottom element ∅ and top element E. In fact, F(M) is a ranked lattice, with rank
function r : F(M)→ {0, 1, 2, . . . , r} satisfying r(∅) = 0, r(E) = r, and r(G) = r(F ) + 1
if there is no flat H satisfying F ( H ( G.

Passing between the independent sets and flats of a matroid M is not hard. First,
given any subset A ⊆ E, one can define its rank function r(A) either using I(M) or F(M)
as follows:

r(A) = max{#I : I ∈ I(M), I ⊆ A}
= r(A).

Then one can recover either I(M) or F(M) from the rank function r as follows:

I(M) := {I ⊆ E : r(I) = #I},
F(M) := {F ⊆ E : r(F ) < r(F ∪ {e}) for all e ∈ E \ F}.

The following two matroid constructions will turn out to be useful in the sequel.

Definition 8. Given a matroid M on ground set E, and a subset A ⊆ E, one can define
two new matroids, the restriction M |A, and the contraction M/A as follows:

I(M |A) := {I ∈ I(M) : I ⊆ A} = I(M) ∩ 2A,

F(M/A) := {F \ A : F ∈ F(A), F ⊇ A}.
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In particular, for a flat F , one has a poset isomorphism between F(M/F ) and the poset
interval

[F,E] := {G ∈ F(M) : F ⊆ G ⊆ E}.

The isomorphism sends a flat G in the interval [F,E] of F(M) to the flat G\F in F(M/F ).

2.2 Order complexes

Several simplicial complexes that we will consider come from this construction.

Definition 9. Given any partially ordered set P , its order complex ∆P is the abstract
simplicial complex on vertex set P , whose simplices are the totally ordered subsets of P .

An element of the poset P that is comparable to all others (such as a least element
or greatest element) will give rise to a cone vertex in ∆P , so that ∆P is contractible.
For this reason, such elements are often removed before forming the order complex. For
example, since the poset of flats F(M) has least element ∅ and greatest element E, they
are removed before forming the Bergman complex

∆M := ∆(F(M) \ {∅, E}).

However, we sometimes put back in the bottom element ∅ to consider the cone over ∆M ,
which we denote

Cone(∆M) := ∆(F(M) \ {E}).

We recall here from the Introduction that both ∆M and I(M) are subcomplexes of the
following complex, introduced recently in the work of Braden, Huh, Matherne, Proudfoot
and Wang [4, Def. 2.2], and central to their further work [5].

Definition 10. Given a matroid M on ground set E, the augmented Bergman complex
∆M is the abstract simplicial complex on vertex set

{yi : i ∈ E} t {xF : proper flats F ∈ F(M) \ {E}}

whose simplices are the subsets

{yi}i∈I t {xF1 , xF2 , . . . , xF`} (5)

for which I ∈ I(M) and the (possibly empty) proper flats Fi satisfy I ⊆ F1 ( F2 ( · · · (
F` (( E).

2.3 Purity, gallery-connectedness, shellability

We recall a hierarchy of simplicial complex properties.

Definition 11. A facet in a simplicial complex ∆ is a face which is maximal under
inclusion. One says that ∆ is pure and d-dimensional if all of its facets have the same
cardinality d+ 1.
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Definition 12. A pure d-dimensional simplicial complex ∆ is gallery-connected2, if for any
two facets φ, φ′ one has a sequence of facets φ = φ0, φ1, . . . , φt = φ′ with dim(φi ∩ φi−1) =
d− 1 for each i = 1, 2, . . . , t.

Definition 13. A pure d-dimensional simplicial complex ∆ is shellable3 if one can order
its facets φ1, φ2, φ3, . . . in a shelling order: for all j > 2, the intersection of the subcomplex
generated by φj and the subcomplex generated by all previous facets {φ1, . . . , φj−1} is a
pure subcomplex of dimension d− 1 inside φj. Here is a useful equivalent way to say that
a total ordering ≺ on the facets of ∆ is a shelling order:

for all facets φ ≺ φ′, there exists φ′′ ≺ φ′ such that φ∩φ′ ⊆ φ′′∩φ′ and #φ′′∩φ′ = #φ′−1.

Shellability of ∆ determines the homotopy type of its geometric realization ‖∆‖; see
Kozlov [9, Chap. 12].

Definition 14. Let ∆ be a shellable simplicial complex with shelling order φ1, φ2, φ3, . . .
on its facets. The restriction face of facet φj is its subface R(φj) containing these vertices:

R(φj) = {x ∈ φj : there exists i with 1 6 i < j and φj \ {x} ⊂ φi}.

Call φj a homology facet in the shelling if R(φj) = φj.

Lemma 15. [9, Thm. 12.3] If a pure d-dimensional shellable complex ∆ has a shelling
with exactly β homology facets, then its geometric realization is homotopy equivalent to a
β-fold wedge of d-spheres.

Intuitively, each homology facet in the shelling “caps off” a d-sphere. Furthermore, the
subcomplex obtained by removing all homology facets is contractible, as it is a shellable
complex with no homology facets.

Example 16. As mentioned in the Introduction, I(M) and ∆M are shellable, and their
shellings have TM(0, 1), TM(1, 0) homology facets, respectively [2, §7.3, 7.4, 7.6], where
TM(x, y) is the Tutte polynomial.

3 Proof of Theorem 1

We recall here the statement of the theorem.

Theorem 1. The augmented Bergman complex ∆M of a matroid is shellable, via two
families of shellings:

(i) one family that shells the facets of Cone(∆M) first, and the facets of I(M) last,

2Also known as connected in codimension one or strongly connected or dually connected.
3Here we restrict our shellable complexes to be pure; see Björner and Wachs [3] for the generalization

to nonpure complexes.
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(ii) one family that shells the facets of I(M) first, and the facets of Cone(∆M) last.

Before proving it, we identify and conveniently index facets of ∆M . Recall from (1) that
faces of ∆M are

φ = {yi}i∈I ∪ {xFj}`j=1

where I ∈ I(M), each Fj ∈ F(M) \ {E}, and I ⊆ F1 ( · · · ( F`. This face φ is a facet if
and only if both

• I = F1 (else one could add the vertex xI to φ), and

• #I + ` = r(M) (else I = F1 ( · · · ( F` ( E is a non-maximal chain in interval
[F1, E] of F(M)).

In comparing facets φ, φ′, with φ as above, and φ′ = {yi}i∈I′ ∪ {xF ′
j
}`′j=1, we will use this

abbreviated notation: letting F• denote the chain of flats F1 ( · · · ( F`, and similarly for
F ′•, write

φ↔ (I, F•),

φ′ ↔ (I ′, F ′•).
(6)

In our proofs that various linear orders ≺ on the facets of ∆M are shellings, as in Defini-
tion 13, we will be given such a pair φ, φ′ as in (6) with φ ≺ φ′, and need to construct

φ′′ ↔ (I ′′, F ′′• ) for which φ ∩ φ′ ⊆ φ′′ ∩ φ′ and #φ′′ ∩ φ′ = #φ′ − 1. (7)

3.1 Flag-to-basis shellings

Definition 17. Call a total order ≺ on the facets φ of ∆M a flag-to-basis ordering if two
facets as in (6) have φ ≺ φ′ whenever either of these conditions hold:

(a) #I < #I ′, or

(b) I = I ′, so F1 = I = I
′
= F ′1, and F• strictly precedes F ′• in some chosen shelling of

∆M/F1
.

Note that in condition (b), we are identifying the flats F(M/F1) with the poset interval
[F1, E] in F(M).

Proof of Theorem 1(i). We check that any flag-to-basis ordering ≺ on the facets of ∆M

gives a shelling. Note Definition 17(a) ensures that ≺ orders facets of Cone(∆M) first and
those of I(M) last. To check it is a shelling, given facets φ ≺ φ′ as in (6), there are two
cases to consider.

Case 1: I = I ′. In this case, the shelling of ∆M/F1 from Definition 17(b) provides the
existence of a maximal chain F ′′• shelled earlier than F ′• in F(M/F1), and having F•∩F ′• ⊆
F ′′• ∩ F ′• and #F ′′• ∩ F ′• = #F ′• − 1. Thus taking φ′′ ↔ (I, F ′′• ) does the job for (7).

Case 2: I 6= I ′. Consider the independent set I ∩ I ′ ( I ′, and use Axiom (I3) repeatedly
to find I ′′ ∈ I(M) having I ∩ I ′ ⊆ I ′′ ( I ′ with #I ′′ = #I ′− 1. Now let F ′′• := {I ′′} ∪F ′•.
One can then check that φ′′ ↔ (I ′′, F ′′• ) has φ′′ ≺ φ′ (since #I ′′ < #I ′), and does the job
for (7).
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3.2 Basis-to-flag shellings

Definition 18. Call a total order ≺ on the facets φ of ∆M a basis-to-flag ordering if two
facets as in (6) have φ ≺ φ′ whenever any of these conditions (a),(b), or (c) hold:

(a) #I > #I ′, or

(b) F1 = F ′1 and F• strictly precedes F ′• in some chosen shelling of ∆M/F1
, or

(c) F• = F ′• (so that I = F1 = F ′1 = I ′), and I strictly precedes I ′ in some chosen
shelling of I(M |F ).

As before, in condition (b), we identify F(M/F1) with the interval [F1, E] in F(M), but
now in condition (c), we also identify I(M |F ) with I(M) ∩ 2F1 .

Proof of Theorem 1(ii). We check that any basis-to-flag ordering ≺ on the facets of ∆M

gives a shelling. Note Definition 18(a) ensures that ≺ orders facets of I(M) first and
those of Cone(∆M) last. To check it is a shelling, given facets φ ≺ φ′ as in (6), there are
three cases to consider.

Case 1: F1 = F ′1, but F• 6= F ′•.
Then Definition 18(c) ensures that F• strictly precedes F ′• in our chosen shelling of

∆M/F1
. As before, this shelling of ∆M/F1

provides the existence of a maximal chain F ′′• in
F(M/F1) having F• ∩F ′• ⊆ F ′′• ∩F ′• and #F ′′• ∩F ′• = #F ′•− 1. Taking φ′′ ↔ (I ′, F ′′• ) does
the job for (7).

Case 2: F• = F ′•.
Here the shelling in Definition 18(c) provides the existence of an independent set I ′′

with I ′′ = F1 having I ∩ I ′ ⊆ I ′′ ∩ I ′ and #I ′′ ∩ I ′ = #I ′ − 1. Thus taking φ′′ ↔ (I ′′, F•)
does the job for (7).

Case 3: F1 6= F ′1.
In this case, choose any element i0 ∈ F ′2 \ F ′1; if #F ′• = 1 so that F ′• = {F ′1}, choose

any i0 ∈ E \ F ′1. Then define I ′′ := I ′ ∪ {i0} and F ′′• := F ′• \ {F ′1}. One can then check
that φ′′ ↔ (I ′′, F ′′• ) has φ′′ ≺ φ′ (since #I ′′ > #I ′), and does the job for (7).

4 Proof of Corollary 2

We recall here the statement of the corollary.

Corollary 2. For a matroid M , the augmented Bergman complex ∆M is homotopy
equivalent to a β-fold wedge of (r(M)− 1)-spheres, with two different expressions for β:

β = #B(M) (= TM(1, 1))

β =
∑

F∈F(M)

TM |F (0, 1) · TM/F (1, 0).

The first and second expressions for β above (labeled (2), (3) in the Introduction) are
predicted by the shellings in Theorem 1(i),(ii), respectively.
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Proof. Recall β counts homology facets φ, that is, those with R(φ) = φ, for the shellings
in Theorem 1(i),(ii).

Proof of (2). Assume that ≺ is a flag-to-basis shelling order on the facets, as in Theo-
rem 1(i). We will show that φ ↔ (I, F•) is a homology facet if and only if F• = ∅, that
is, I is a basis.

For the “if” direction, assume I = {b1, . . . , br} is a basis and F• = ∅, so φ =
{yb1 , . . . , ybr}. Then every vertex ybi lies in R(φ), since φ \ {ybi} ⊂ φ′ ≺ φ where
φ′ ↔ (I ′, F ′•) with I ′ := I \ {bi} and F ′• := {I ′}. The fact that φ′ ≺ φ uses Defini-
tion 17(a).

For the “only if” direction, assume that F• = {xF1 , . . . , xF`} 6= ∅, and we will show
that R(φ) 6= φ because xF1 6∈ R(φ). To see this, note that any facet φ′ ↔ (I ′, F ′•)
containing φ \ {xF1} must either have #I ′ = #I + 1 (so φ′ � φ), or have I ′ = I and hence
F ′1 = I ′ = I = F1, which forces φ = φ′.

Proof of (3).
Assume that ≺ is a basis-to-flag shelling order on the facets, as in Theorem 1(ii). We

will show that φ ↔ (I, F•) is a homology facet if and only if it satisfies the following
conditions: considering the flat F = I (possibly F = E when I is a basis; otherwise
F = F1) one has both that

(I) F• is a homology facet in the chosen shelling for ∆M/F , and

(II) I is a homology facet in the chosen shelling for I(M |F ).

This would prove (3), since then the homology facets for the order ≺ would be parame-
trized as follows: first choose the flat F in F(M) arbitrarily, then choose F• from one of
TM/F (1, 0) choices, and lastly choose I independently from one of TM |F (0, 1) choices; see
Example 16

To check that conditions (I),(II) indeed describe the homology facets for the ≺ shelling
order, first deal with the special case when F := I = E, so that I is a basis and F• = ∅.
It was already noted that Definition 18(a) implies ≺ shells the facets of the subcomplex
I(M) first. Hence I will be a homology facet for the ≺ shelling if and only if it is a
homology facet for the chosen shelling of I(M) = I(M |E), as in condition (II). Since
F• = ∅, condition (I) above is vacuously satisfied in this case.

Now assume we are in the more generic case, when F := I = F1 6= E. We need to
understand whether or not a typical vertex x of φ lies in R(φ), that is, whether φ \ {x}
lies in some earlier facet φ′ ≺ φ. There are three cases to consider for x.

Case 1. x = xF1 . In this case, one always has x ∈ R(φ). To see this, pick any4 i0 ∈ F2\F1,
and define the facet φ′ ↔ (I ′, F ′•) where I ′ := I ∪ {i0} and F ′• := F• \ {F1}. Then
φ′ ⊇ φ \ {x} and φ′ ≺ φ since #I ′ > #I.

Case 2. x = xFj for j > 2. In this case, Definition 18(b) shows that x lies in R(φ) if and
only if the vertex xFj\F1 lies in R(F•) in the chosen shelling for ∆M/F1

.

4As in the proof of Theorem 1(ii), Case 3, if #F ′• = 1, so F ′• = {F ′1}, then one chooses any i0 ∈ E \F ′1.
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Case 3. x = yi for some i ∈ I. In this case, Definition 18(c) shows that x lies in R(φ) if
and only if yi lies in R(I) in the chosen shelling for I(M |F1).

Hence conditions (I),(II) above characterize homology facets for the ≺ shelling, com-
pleting the proof.

Remark 19. Tutte’s original definition of the Tutte polynomial TM(x, y) involved choosing
a linear order ω on the ground set E. From this he defined for each basis B in B(M) its
internal activity iω(B) and external activity eω(B) with respect to ω, and then one has
[2, §7.3,eqn (7.11)]

TM(x, y) =
∑

B∈B(M)

xiω(B)yeω(B).

In particular, TM(0, 1) and TM(1, 0) count the bases with internal and external activity
zero, respectively. One can choose shelling orders for I(M) and ∆M having homology
facets indexed by such bases; see Björner [2, §7.3, 7.6]. Consequently, one can choose
the basis-to-flag shellings in Theorem 1(ii) so that their homology facets are indexed by
triples (F, I, I ′) that combinatorially interpret the right side of (3):

• F is a flat,

• I a basis for M |F with internal activity zero, and

• I ′ a basis of M/F with external activity zero.

Bijections between the set B(M) and the set of triples {(F, I, I ′)} above appear in [6, 8].

5 Proof of Corollary 3

We recall the statement of the corollary.

Corollary 3. The action of Aut(M) on the top (reduced) homology H̃r(M)−1(∆M ,Z) is

the same as its action on the top oriented simplicial chain group C̃r(M)−1(I(M),Z) for
the complex I(M).

Recall that one can compute (reduced) simplicial homology H̃∗(∆,Z) for a simplicial
complex ∆ using oriented simplicial chains; see, e.g., Munkres [10, §1.5]. The ith chain
group C̃d(∆,Z) has the following description. Fix for each i-dimensional simplex σ having
vertex set {v0, v1, . . . , vi} a reference ordering (v0, v1, . . . , vi), and then C̃i(∆,Z) is a free
abelian group having one Z-basis element [v0, v1, . . . , vi], called an oriented simplex, for
each such σ, and for any permutation w in the symmetric group Si+1, one sets

[vw(0), vw(1), . . . , vw(i)] := sgn(w) · [v0, v1, . . . , vi]

where sgn(w) ∈ {+1,−1} is the usual sign of the permutation w.

We claim that Corollary 3 will be another consequence of the flat-to-basis shellings of
∆M from Theorem 1(i), similar to equation (2). The essential point is that matroid auto-
morphisms permute the bases B(M), which index the homology facets for these shellings.
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In fact, we will deduce Corollary 3 from a lemma that applies to a slightly more general
notion of homology facets.

Definition 20. In a simplicial complex ∆, call a collection of its facets B a set of homology
facets if the subcomplex ∆ \ B obtained by removing them is contractible.

This leads to the following generalization of Lemma 15.

Lemma 21. When ∆ has a collection B of homology facets, it is homotopy equivalent to
a wedge of spheres:

∆ ≈
∨
σ∈B

Sdim(σ).

Furthermore, any group G of simplicial automorphisms of ∆ preserving B setwise will act
on H̃i(∆,Z) via its signed permutation representation on the Z-submodule spanZ{[σ] : σ ∈
B, dim(σ) = i}. within C̃i(∆,Z).

Remark 22. More explicitly, if g(σ) = σ′, and σ, σ′ with [σ] = [v0, v1, . . . , vi] and [σ′] =
[v′0, v

′
1, . . . , v

′
i], then g[σ] = ±[σ′] where the± is sgn(w) for w defined by (g(v0), . . . , g(vi)) =

(v′w(0), . . . , v
′
w(i)). One can also view this signed permutation representation as a direct

sum
⊕

σ sgnσ ↑GGσ of induced representations. Here σ runs through any choice of G-orbit
representatives for B, and Gσ is the subgroup of G setwise stabilizing the vertex set
{v0, v1, . . . , vd} of σ, with sgnσ : Gσ → {+1,−1} its sign character.

Proof of Lemma 21. (cf. proof of [2, Theorem 7.7.2]) Name ∆′ := ∆ \ B. Then the
homotopy type assertion is a consequence of what Björner calls the Contractible Sub-
complex Lemma [1, Lemma 10.2]: for a contractible subcomplex ∆′ ⊂ ∆, the projection
‖∆‖� ‖∆‖/‖∆′‖ is a homotopy equivalence.

For the homology assertion, start with the long exact sequence in integral homology
for the pair (∆,∆′),

· · · → H̃i(∆
′)→ H̃i(∆)→ H̃i(∆,∆

′)→ H̃i−1(∆
′)→ · · ·

Contractibility of ∆′ implies H̃i(∆
′) = 0 for all i, giving isomorphisms H̃i(∆) ∼= H̃i(∆,∆

′).
On the other hand, since each simplex in B = ∆ \∆′ is a facet of ∆, lying in no higher-
dimensional faces, the boundary maps in the complex C̃∗(∆,∆

′) computing H̃∗(∆,∆
′)

are all zero. Hence H̃i(∆,∆
′) = C̃i(∆,∆

′) for all i. Furthermore, our assumptions on G
imply that all of these isomorphisms commute with the G-action. Lastly, note C̃i(∆,∆)
has the same Z-basis and G-action as spanZ{[σ] : σ ∈ B, dim(σ) = i} within C̃i(∆).

Proof of Corollary 3. Apply Lemma 21 to the flat-to-basis shellings from Theorem 1(i)
of ∆M . The homology facets are indexed by the bases B(M), and preserved by the
group G = Aut(M), and all have dimension r(M) − 1. Furthermore, note that within
C̃r(M)−1(∆M ,Z), one has

spanZ{[σ] : σ ∈ B(M)} = C̃r(M)−1(I(M),Z)

since the facets of ∆M indexed by bases of M happen to be exactly the facets of I(M).
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Remark 23. Corollary 3 is closely related to an identity of representations from work
of Kook, Reiner and Stanton [8] on eigenspaces of combinatorial Laplacians for I(M).
Specifically, taking i = r(M)− 1 in their [8, Thm. 19], asserts the following isomorphism
of G-representations for G = Aut(M):

C̃r(M)−1(I(M)) ∼=
⊕

F∈F(M)

[
H̃r(F )−1(I(M |F )) ⊗ H̃r(M/F )−2(∆M/F )

]
↑GGF (8)

where GF = {g ∈ G : g(F ) = F}, and [−] ↑GGF denotes induction of representations from
GF to G.

As we have seen, the flat-to-basis shelling in Theorem 1(i) led to Corollary 3, showing
the G-action on the left side of (8) is the same as the one on H̃r(M)−1(∆M). Similarly,
with a bit more work (details omitted here), one can use the basis-to-flat shelling in
Theorem 1(ii), and its resulting bases for H̃r(M)−1(∆M) as in Björner [2, Thm. 7.7.2] to

show that the G-action on H̃r(M)−1(∆M) is isomorphic to the direct sum on the right side
of (8).

Remark 24. The aforementioned work [8] showed a remarkable property for I(M) and its
simplicial boundary maps {∂i}i=1,2,...: their associated combinatorial Laplacian matrices
{∂Ti ∂i} have only integer eigenvalues. One might therefore ask whether ∆M shares this
property. Sadly, this fails already for the Boolean matroid M of rank 2, where ∆M is
the 5-cycle graph shown in Figure 2. One can check that its Laplacian matrix ∂T1 ∂1 has
characteristic polynomial x(x2 − 5x+ 5)2, whose eigenvalues are not all integers.

6 Augmented Bergman complexes for other closures

One can characterize a matroid M on ground set E in terms of its matroid closure operator
A 7−→ A defined in (4). This is an instance of the following more general notion.

Definition 25. Given a set E, a map 2E
f−→ 2E is called a closure operator on E if it

satisfies three axioms: for all subsets A,B ⊆ E,

C1. A ⊆ f(A)

C2. A ⊆ B implies f(A) ⊆ f(B)

C3. f(f(A)) = f(A)

Any closure operator on a finite set E has analogues of the complexes I(M),∆M ,∆M ,
introduced next.

Definition 26. Given a closure operator f on a finite set E, define a subset I ⊆ E to be
independent if

f(I \ {i}) ( f(I) for all i ∈ I.
Let I(f) denote the collection of all independent subsets I ⊆ E. It is not hard to check
that I(f) always satisfies axioms I1, I2 from Definition 6, so that it defines a simplicial
complex, also denoted I(f).
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Definition 27. Given a closure operator f on a finite set E, define its poset of closed sets

F(f) := {F ⊆ E : f(F ) = F}

partially ordered via inclusion. It is not hard to check that F(f) always satisfies axioms
F1,F2 from Definition 7, so that it becomes a lattice. Define the Bergman complex

∆f := ∆( F(f) \ {f(∅), E} )

to be the order complex of the proper part of this lattice F(f).

Definition 28. Given a closure operator f on a finite set E, define its augmented Bergman
complex ∆f to be the abstract simplicial complex on vertex set

{yi : i ∈ E} t {xF : F ∈ F(f) \ {E}}

whose simplices are the subsets

{yi}i∈I ∪ {xF1 , xF2 , . . . , xF`} (9)

for which I ∈ I(f) and the Fi are all closed sets in F(f), satisfying I ⊆ F1 ( F2 ( · · · (
F` (( E).

As before with matroid closures, ∆f always contains as subcomplexes both

• I(f) as the simplices in (9) with ` = 0, and

• Cone(∆f ) = ∆(F(F ) \ {E} ) having cone vertex xf(∅), as the simplices in (9) with
#I = 0.

However, in contrast to matroid closures, the complexes I(f),∆f ,∆f need not be pure,
nor shellable.

Example 29. Consider the closure operator f : 2E → 2E with E = [5] = {1, 2, 3, 4, 5}
whose poset of closed sets F(f) is depicted at top left in Figure 3. One can compute the
closure f(A) as the intersection of all F ∈ F(M) containing A; for example, f({5}) =
{4, 5} and f({1, 4}) = {1, 2, 3, 4, 5}. The complexes I(f) and ∆f are shown in the top
row, in the middle and at right. The second row depicts the deletion ∆f \ {x∅} of the
vertex x∅ from the augmented Bergman complex ∆f .

It is not hard to show that any finite lattice is isomorphic to F(f) for some closure
f , and hence we cannot expect to say much about the homotopy type of the Bergman
complex ∆f in general; we expect that the same holds for the independent set complex
I(f).

Nevertheless, we claim that one still has the assertion of Corollary 3 on the topology
of the augmented Bergman complex ∆f , after appropriately defining bases and automor-
phisms for a closure.
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Figure 3: The lattice F(f), and the complexes I(f) and ∆f , along with the complex
∆f \ {x∅} for the closure in Example 29.

Definition 30. For a closure f on a finite set E, define the set B(f) of bases

B(f) := {B ∈ I(f) : f(B) = E}.

Definition 31. For a closure f on E, define its automorphism group

Aut(f) := {bijections E
g−→ E : f(g(A)) = g(f(A)) for all A ⊆ E}

Note Aut(f) stabilizes B(f), and acts on I(f),∆f ,∆f via simplicial automorphisms.

Theorem 6.1. For any closure operator on a finite set E, the bases B(f) index a collec-
tion of homology facets for ∆f . Hence ∆ is homotopy equivalent to a wedge of spheres∨
B∈B(f) S#B−1. and the action of Aut(f) on H̃i(∆,Z) is the same as on spanZ{[B] : B ∈
B(f),#B − 1 = i}. within C̃i(∆f ,Z).

Proof. In light of Lemma 21, it suffices to show that ∆ = ∆f has its subcomplex ∆′ :=
∆ \ B contractible. Our proof strategy introduces another simplicial complex ∆′′, and
shows it has these two properties:
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(a) ∆′′ is a simplicial subdivision of ∆′, and hence homeomorphic to it.

(b) ∆′′ is homotopy equivalent to the subcomplex Cone(∆f ) = ∆(F \ {E}) inside ∆f .

Since cones are contractible, (b) would show ∆′′ is contractible, and then (a) would show
the same for ∆′. We define ∆′′ to be the simplicial complex on vertex set

{yI : I ∈ I(f) \ B(f)} ∪ {xF : F ∈ F \ {E}}

whose simplices are subsets {yI1 , · · · , yIk} ∪ {xF1 , . . . , xF`} with I1 ( · · · ( Ik ⊆ F1 (
· · · ( F`(( E).

Proof of assertion (a). One can view ∆′′ as having been obtained from ∆′ by performing
barycentric subdivision [10, §2.15] σ 7→ Sd(σ) to every simplex within the subcomplex
I(f) \ B(f) of ∆′; each simplex σ = {yi}i∈I is replaced by the simplices {yI1 , . . . , yIk}
for which I1 ( I2 ( · · · ( Ik ⊆ I. More generally, the typical simplex of ∆′ as in (9)
is the simplicial join σ ∗ σ′ [10, §8.62] of the simplex σ = {yi}i∈I above and the simplex
σ′ = {xF1 , . . . , xF`}; one replaces this with the simplicial join Sd(σ) ∗ σ′ in ∆′′.

Proof of assertion (b). Define a simplicial map ∆′′
π−→ ∆(F \ {E}) via this set map on

vertices:
xF 7−→ xF for F ∈ F(f) \ {E}
yI 7−→ xf(I) for I ∈ I(f) \ B(f)

It is not hard to check that π indeed carries simplices to simplices, that is, it is a well-
defined simplicial map. One can also check that, for every element F in the poset F(f) \
{E}, the inverse image under π of the order complex ∆F(f)6F of the principal order ideal
F(f)6F is the star of the vertex xF within ∆′′, and hence contractible. Thus by Quillen’s
Fiber Lemma [1, (10.5)(i)], the map π induces a homotopy equivalence.

Remark 32. Note that Cone(∆M) = ∆(F(f)\{E}) can be identified with the subcomplex
of ∆′′ induced on the vertex subset {xF : F ∈ F(f) \ {E}}. Since these vertices xF are
all pointwise fixed by π, the same is true for this subcomplex Cone(∆M), so that the map
π is actually a homotopy inverse to the inclusion map Cone(∆M) ↪→ ∆′′, showing that π
is a deformation retraction.

In fact, if one removes the vertex xf(∅) from both ∆′,∆′′, one finds that ∆′′ \ {xf(∅)}
is a subdivision of ∆′ \ {xf(∅)}, and the simplicial map π also restricts to a deformation
retraction

∆′′ \ {xf(∅)}
π−→ ∆f . (10)

This is depicted for the closure f from Example 29 in Figure 4. The top row shows
∆′\{xf(∅)}. The bottom row shows the subdivision ∆′′\{xf(∅)} with the map π indicated
by directed arrows along edges; to its right is the subcomplex ∆f onto which it retracts.
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Figure 4: Continuing Example 29, the deleted subcomplex ∆′ \ {xf(∅)} is shown at top.
The second line shows its subdivision ∆′′ \ {xf(∅)}, along with directed arrows indicating
the retraction π : ∆′′ \ {xf(∅)} → ∆f from (10).
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