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Abstract

We extend an algebra of Mantaci and Reutenauer, acting on the free associative
algebra, to a vector space of operators acting on all graded connected Hopf algebras.
These operators are convolution products of certain involutions, which we view as
hyperoctahedral variants of Patras’s descent operators. We obtain the eigenvalues
and multiplicities of all our new operators, as well as a basis of eigenvectors for
a subclass akin to Adams operations. We outline how to apply this eigendata to
study Markov chains, and examine in detail the case of card-shuffles with flips or
rotations.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

The use of graded Hopf algebras to study combinatorics is increasingly common [JR79,
Hiv07, ABS06, AA17]. These are graded vector spaces H = @, , H, with bases indexed
by combinatorial objects, such as trees [LR98, CP17], graphs [Sch93] or permutations
[MR95a], admitting a product m : H ® H — H and coproduct A : H — H ® H that
encode respectively how these objects combine and break apart. The composition moA, or
more generally the composition of iterated product and coproduct maps m!® o Al : 1 —
H® — H, are the Adams operations, studied in [Lod98, Sec. 4.5] for their connections
to Hochschild homology. Their eigenvalues and multiplicities are obtained in [AL15],
and applied to derive some combinatorial identities. The paper [DPR14] gives a basis of
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eigenvectors for m® o Al? on free-commutative or cocommutative algebras, and interprets
the matrix of these Adams operations as the transition probabilities of a Markov chain
on a basis of H. When H is the shuffle algebra, this probabilistic interpretation recovers
the famous Gilbert-Shannon-Reeds riffle-shuffle of a deck of cards [BD92]: cut the deck
into a piles according to the multinomial distribution, then interleave the piles together
so cards from the same pile stay in the same relative order. The eigenvectors (on the dual
algebra) then lead to bounds for certain probabilities under repeated shuffles.

We may doctor the Adams operations by projecting to a particular graded subspace
after taking the coproduct and before the product; this results in maps of the form
closely related to Solomon’s descent algebra of the symmetric group [Sol76]. The paper
[Pan18] finds the eigenvalues and eigenvectors of their linear combinations, which corre-
spond to more general card shuffles where the deck is cut into a piles according to other
distributions, related to the Tsetlin library models of dynamic storage allocation [Fil96].
Although much is already known about such shuffles, the Hopf-algebraic viewpoint means
that the same eigendata formula can be applied to analyse a diverse range of analogous
“shuffling” Markov chains on various combinatorial objects; for example, setting H to be
the Loday-Ronco Hopf algebra on binary trees generates a chain on trees that removes
some vertices and reattaches them elsewhere.

The present paper presents analogous results on the new class of hyperoctahedral de-
scent operators, motivated by numerous card-shuffling models where, after cutting the
deck, some piles are flipped over before combining [BB92, DFH13, PP98, BW17|; see
Corollary 36 for the precise definition. Our hyperoctahedral descent operators are linear
combinations of maps of the form mo (fi ® --- ® f,) © Aa,,..d,), Where each f; is the
identity or an involution 7 (satisfying certain conditions). These generalise the Mantaci-
Reutenauer algebra of endomorphisms on the free associative algebra [MR95b]. Our main
algebraic results, in Sections 2 and 3, are:

e Proposition 12, that the composition of hyperoctahedral descent operators on a com-
mutative or cocommutative Hopf algebra follows the multiplication in the Mantaci-
Reutenauer algebra;

e Theorem 17, a uniform expression for the eigenvalues and multiplicities for any
hyperoctahedral descent operator;

e Theorems 26, 27 and 29, a complete basis for the non-zero eigenspaces of
m@o (ider®ider®...)o Al (1)

on cocommutative Hopf algebras. This is one analogue of an Adams operation,
corresponding to the hyperoctahedral riffle-shuffles of [BD92, BB92] where, after
cutting the deck, every other pile is flipped upside-down before the interleaving
step.

The remainder of the paper concerns probabilistic connections. We show in Theorem 34
that, under mild positivity conditions, the matrix for a hyperoctahedral descent opera-
tor on an arbitrary graded Hopf algebra H can be rescaled into a matrix of transition
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probabilities, using the same formula as for usual (“type A”) descent operators. As in
the type A case, the stationary distributions of these chains are independent of which
hyperoctahedral descent operator is used; an explicit description of these distributions
are in Theorem 35. We then take H to be a signed shuffle algebra, to analyse two card
shuffles related to (1) (by using different 7): the riffle-shuffle that flips every other pile, as
mentioned above, and a relatively unstudied riffle-shuffle that rotates every other pile by
180 degrees. (The only prior work on the latter known to the author is the eigenvalue cal-
culation in the unpublished manuscript [DS] using coloured versions of left regular bands.)
Specialisation of the general formulas gives a complete basis for the non-zero eigenspaces
in the language of Lyndon words. From these eigenvectors we deduce (starting at the
identity permutation of cards):

e Proposition 53: after t iterations of a riffle-shuffle with flip on a deck of n cards,
the expected number of an unconventional type of descent (see Definition 50) is
(1-— GL*I‘/)”T_1 +at.

e Proposition 55: after t iterations of a riffle-shuffle with flip (resp. rotation) on a
deck of n cards with n even, and with an odd number of piles a, the probability of
having sign +1 is 1(1+a™) (resp. (1 +a"?) ). The flip case is a new proof of
[FKLP21, Th. 5.8].

Thus this paper joins a long list of works calculating eigendata for shuffling models [PP99,
BHR99, Wil04, DS18, Laf20]. As in the type A case, our eigenvector formulas apply to
all graded connected Hopf algebras, and an interesting direction for future work is to
obtain similar expectation results for “flipped shuffles” of trees or permutations. We note
that Markov chains on signed permutations appear in the study of genome rearrangement
[LSK02, Dur08], to compare the chromosomes of two species. Further, since the theory of
the Mantaci-Reutenauer algebra extends easily to cyclic operators in place of involutions
[IMR95b, Sec. 6], the results here should be generalisable to the much greater class of
“cyclic descent operators” without much complications, diagonalising the coloured shuffles
of [Moy15].

The paper is structured as follows: in the algebraic part, Section 2 defines the hyper-
octahedral descent operators and derives their composition law and eigenvalues; Section 3
specialises to mlo (1®T®1®7®...)oAlY finding their eigenvectors. In the probabilistic
part, Section 4 associates a Markov chain to each hyperoctahedral descent operator acting
on a graded connected Hopf algebra and give their general properties; Section 5 focuses
on riffle-shuffles with flips or rotations..

Following the related Coxeter nomenclature, we refer to our new hyperoctahedral
theory as “type B”, and the original descent operators as “type A”.

2 Hyperoctahedral Descent Operators

This work concerns graded connected Hopf algebras - that is, a graded vector space H =
D, M. (over R) equipped with a linear product map m : H; ® H; — H,+; and a linear
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coproduct map A : ‘H,, — @?:o H; @ H,—; satisfying certain associativity, coassociativity,
and compatibility axioms [GR14]. Connectedness means that dimH, = 1, so we will
identify H, with R, writing Ho = span{l}. In many examples where H has a basis
indexed by combinatorial objects, m and A can be interpreted respectively as rules for
combining and breaking these objects, as in our two main examples:

Example 1. Fix N € N, and consider A : = {1,2,...,N,1,2,..., N}, where i represents
a “negative” version of i. We may consider the shuffle algebra on this alphabet, whose
basis is the set of words w; ... w, on A, representing a deck of cards with card w; on top,
card ws second from the top, and so on, so card w,, is at the bottom. There are two useful
interpretations for ¢: either it is a rotation of card i by 180°, or it is card 4 flipped upside
down. We may call this the signed shuffle algebra to differentiate it from the (unsigned)
shuffle algebra on the alphabet {1,2,..., N}, which is a quotient under the identification
of 7 with 1.

The degree of a word is its number of letters, i.e. the number of cards in the deck.
The product of two words u and v is the sum of all their interleavings (meaning all words
containing the letters in u and v, in the same relative order as in u and v), representing
the shuffling of two decks. The coproduct is deconcatenation, or cutting the deck:

n
Awy ... wy,) = g Wy W @ Wigq - W
=0

For example:
m(15 © 32) = (15)(32) = 1532 + 1352 + 1325 + 3152 + 3125 + 3215:
A(316) =2 ®316+3®16+31 ® 6+ 316 ® @.

As Section 5.1 will explain, the action of hyperoctahedral descent operators on the
signed shuffle algebra induce card-shuffling models.

Example 2. On the alphabet A of the previous example, we may construct a free asso-
ciative algebra, which for clarity we’ll term the signed free associative algebra. Its basis is
also the set of words on A. The product is concatenation, representing placing one deck
above another, and the coproduct is “deshuffling”, i.e.

MUy .. Uy @ UL Upy) = U o UpUT - U

Awy ... wy) Z Hwi@)Hwi.

SC{1,2,....N} i€S i¢S

For example:

m(15 ® 32) = (15)

(32) = 1532,
A@31

6)=0®316+3®16+1®36+6® 31
+3lR6+361+1603+ 316 @ @.
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As explained five paragraphs below, the signed free associative algebra is dual to the
signed shuffie algebra, which means the eigenvectors for hyperocatedral descent operators
acting on the signed free associative algebra give probabilistic results about card shuffles
- see Section 5.5.

Note that the product structures of the above two examples were considered in [BB92].
In any Hopf algebra, we abuse notation and write m for the product of more than two
factors, e.g. in the signed shuffle algebra,

m(15® 3 ® 2) = 1532 + 1523 + 1253 + 2153 + 1352 + 1325 + 1235 + 2135
+ 3152 + 3125 + 3215 + 2315.

Dually, because of coassociativity, there is a well-defined notion of splitting a combinatorial
object into I parts: Al : H — H® defined inductively by APl = A] All = (Al gid)oA.
It is useful to constrain the “sizes of the parts” by projecting to graded subspaces after
applying All. Namely, for a weak-composition D = (dy, ..., dyp) of n (i.e. non-negative
integers d; summing to n), set Ap : H, = Hgy @ -+ ® Hdz(p)- For example, in the signed
shuffle algebra, Ay;1(1532) = 15®3®2 and ABI(1532) = 15®3®2+1®53®2+153®
IR2+TQI®1532+ ... (11 more terms).

A key idea for determining the spectrum and eigenvectors of hyperoctahedral descent
operators is the primitive subspace of a Hopf algebra: Prim(H) = {x € H|A(z) =
1®x+ 2 ®1}. Because of the counit axiom, (Prim#) NH, is equivalently characterised
by {z € H,|A(x) C Ho @ Hyp + Hn @ Ho}. Prim(H) is a Lie algebra, meaning that it is
closed under the Lie bracket: if x,y € Prim(H), then [z,y] := zy — yx € Prim(H).

A Hopf algebra H is commutative if wz = zw for all w, 2 € H. And H is cocommutative
if, for all = € H, its coproduct A(z) is invariant under the swapping of tensor-factors, i.e.
Alz) = w® 2z =), 2w,

Given a graded connected Hopf algebra H = EB@() ‘H,, the symmetry of the Hopf
axioms allows the definition of a Hopf structure on the (graded) dual vector space H* :=
@nsoHy: for f,g € H*, set

m(f ®g)(x) = (f®g)(Ar), A(f)(w®z) = f(w2),
with z, z,w € H. (Here, (f®g)(a®0b) = f(a)g(b).) Note that the dual of a commutative

Hopf algebra is cocommutative, and vice versa.
The signed shuffle algebra is commutative, and is dual to the signed free associative
algebra, which is cocommutative.

2.1 The Involutions 7 and T

Here are various adjectives describing endomorphisms of a Hopf algebra, of which the last
is new and convenient for this work.

Definition 3. Let H be a graded connected Hopf algebra, and f : H — H a function.
o fis graded if f(H,) C Han;
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e f is an tnvolution if fo f =id;
e fis an algebra morphism if f(wz) = f(w)f(2) for all w, z € H;
e fis an algebra antimorphism if f(wz) = f(z)f(w) for all w, z € H;

o f is a coalgebra morphism if, whenever A(z) = ) . w; ® z;, then A(f(z)) =
> fwi) @ f(zi);

o f is a coalgebra antimorphism if, whenever A(xz) = > . w; ® z;, then A(f(z)) =
22 f(zi) @ fws);

e fis a Hopf morphism if it is both an algebra morphism and coalgebra morphism.

e f is Hopf ambimorphism if it is either an algebra morphism or algebra antimorphism,
and also either a coalgebra morphism or coalgebra antimorphism.

Let 7 : H — H denote an involution that is linear, graded and a Hopf ambimorphism.
Given the definition of ambimorphism, there are 2 x 2 = 4 possible combinations for how
7 interacts with the Hopf structure of H, and some general results (e.g. Theorem 17
concerning the spectrum of associated descent operators) apply equally in all four cases.
Where the four possibilities behave differently, we may use 7 and 7 to emphasise the
differences, where 7 usually includes the case of a Hopf morphism and perhaps also other
cases.

Note that, if H is commutative, then an algebra morphism is also an algebra anti-
morphism; dually, if H is cocommutative, then a coalgebra morphism is also a coalgebra
antimorphism.

Example 4. Recall the signed shuffle algebra of Example 1. Since this Hopf algebra is
commutative, there are two possible types of Hopf-ambimorphism: we may let 7 be an
algebra morphism and coalgebra morphism, or we may let 7 be an algebra morphism and
coalgebra antimorphism. For the card-shuffling applications in this work, we focus on the
involutions from [BB92]: let 7 model the rotation of a deck by 180°(where i denotes a
rotated copy of card i), and let 7 model the flipping of a deck (where i denotes card i
facing down). In terms of words, we define

7(i) == i;

T(wy .. wy) = 7(wy) ... 7(wy); (2)
(i) =
7(1) =1

T(wy ... wy) = T(wy) ... 7T(w); (3)

and extend linearly. For example, 7(316) = 316 whilst 7(316) = 613. The crucial dif-
ference between rotating and flipping a deck is that flipping reverses the top-to-bottom
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order of the cards while rotation does not - this is why rotation is a Hopf morphism but
flipping is not.

Equations (2) and (3) can also be applied in the signed free associative algebra, then 7
is a Hopf morphism, and 7 is an algebra antimorphism and a coalgebra morphism. (These
involutions are actually dual to the 7 and 7 defined by the same equations on the signed
shuffle algebra.)

Further, 7 is compatible with the quotient of the signed free associative algebra to the
unsigned free associative algebra; in other words, we may define

T(wy .. wy) =Wy ... Wy (4)

on the unsigned free associative algebra, which is an algebra antimorphism and a coalgebra
morphism.

Below is another example that is interesting for future study.

Example 5. The paper [CP17] defines a Hopf algebra structure Camb* on Cambrian
trees, a type of planar binary tree where each internal node has either two upward edges
and one downward edge, or two downward edges and one upward edge. Loosely speaking,
the product assembles one tree on top of another (vertical), and the coproduct divides a
tree into left and right (horizontal). Thus horizontal reflection is an algebra morphism
and a coalgebra antimorphism; vertical reflection is an algebra antimorphism and coalge-
bra morphism; 180°-rotation is an algebra antimorphism and a coalgebra antimorphism.
Indeed, 180°-rotation is a composition of the two reflections, and it is easy to check that
composing two commuting involutive Hopf-ambimorphisms always yields another involu-
tive Hopf-ambimorphism.

The following notation will be useful:

Definition 6. Let V be a vector space and 7 : V. — V be a linear map. Then the
T-1nvariant part of V., written V7, is the eigenspace of eigenvalue 1. The 7-negating part
of V, written V™7, is the eigenspace of eigenvalue -1.

Please note the following easy linear algebra lemma:
Lemma 7. If 7 is an involution on a vector space V', then V =V" o V7.

Proof. Clearly V™ + V™7 is a direct sum since eigenspaces of different eigenvalues have
trivial intersection. Given any v € V| we have v + 7(v) € V7 and v — 7(v) € V77, so
v = v+72—(v) + v—;—(v) cV VT, n

To derive eigenvalues and eigenvectors, it will be important to consider the 7-invariant
and 7T-negating parts of another subspace.

Lemma 8. If H is a graded connected Hopf algebra and 7 : H — H 1is a coalge-
bra morphism or coalgebra antimorphism, then T preserves the primitive subspace, 1i.e.

T(Prim(H)) C Prim(H).
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Proof. It © € Prim(H), then A(z) =1 ® 2 + 2 ® 1. If 7 is a coalgebra morphism, then
A(r(x)) =7(1) @ 7(x) + 7(x) @ 7(1). If 7 is a coalgebra antimorphism, then A(7(zx)) =
T(2)®7(1)+7(1)®7(x). In both cases, 7(z) is primitive, by the equivalent characterisation
just before Section 2.1 (applied linearly to the parts of x in each degree). O]

By the same argument, 7 preserves the “coradical filtration”, which allows impor-
tant associated graded operators to be defined in Lemma 21 below, for computing the
eigenvalues of hyperoctahedral descent operators.

2.2 Hyperoctahedral Descent Operators

The elementary hyperoctahedral descent operators are indexed by signed and tilde-signed
weak-compositions, where some parts are decorated with — or with ~ respectively. For
example, (2,4,0,2) is a signed weak-composition. We do not allow the two types of
decorations to occur together in the same weak-composition. And, unlike in [MR95b],
we also do not allow parts to have a tilde without a sign, since this does not correspond
natually to an endomorphism of a Hopf algebra. These objects are also called bi-coloured
compositions in [BW17].

Given a signed or tilde-signed weak-compositions D = (dy, ..., d;), let DT denote the
weak-composition formed from forgetting the decorations in D. We may also use absolute
value signs to denote this, e.g. DT = (|d4,. .., |d;]). For example, (2,4,0,2)* = (2,4,0,2),
as 2] = 2.

Definition 9. Let H be a graded Hopf algebra, and 7 : H — H be an involution that is
linear, graded and a Hopf morphism. Let D be a signed weak-composition. Then

e the signed refined coproduct Ap(, is the composite: first apply the refined coproduct
Ap+, then apply 7 to the tensorands corresponding to the decorated parts.

e the elementary signed descent operators are the composites m o Ap ..

e the signed descent operators are linear combinations of the m o Ap(;) over different
signed weak-compositions D.

All three maps have tilde-signed analogues, by using tilde-signed weak-compositions, and
an involution 7 that is a Hopf ambimorphism but not a Hopf morphism. We refer to both
families of operators as hyperoctahedral descent operators. In numerical examples, when
7 is clear from the context, we often write m o Ap in place of m o Ap

For example, m o A 5 = mo (id®7) o A, is an elementary tilde-signed descent
operator. In the shuffle algebra, using 7 as defined in (3),

mo A, 5(316) = m o (id®7)(3 ® 16) = m(3 ® 61) = 361 + 631 + 613

And moAs 5+moAzs =mo(T®Id®T)0Asso+mo (T ®id)oAs; is a signed descent
operator.
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Note that the dual of m o Ap(;) is m o Ap(;-) on the dual Hopf algebra, where 7 :
H* — H* denotes the linear-algebraic dual map. This will be important when considering
right eigenfunctions of the associated Markov chains.

If H is commutative or cocommutative, then the vector space of signed descent op-
erators (for a fixed 7) is closed under composition, and is isomorphic to the Mantaci-
Reutenauer algebra. The vector space of tilde-signed descent operators is also closed
under composition. The case where H is the signed free associative algebra and 7,7 are
as in (2) and (3) is part of Theorems 2.2, 3.8 and Corollary 5.3 of [MR95b]. Minor modi-
fications suffice to extend the proof to the general case. Stating the composition formula
requires the following concepts:

Definition 10. Let D = (dy,...,d;) and D' = (d},...,d}) be two signed weak-compo-
sitions or two tilde-signed weak-compositions. An [ x I’ matrix M = (M, ;) of integers is
called compatible with D and D' (the order matters) if the following two conditions are
satisfied:

i) The row sums of M T are Dt and the column sums of M™* are (D')", i.e. 2;/:1 | M; ;]
= |d;| for each i € [1,1], and 31_, [ M| = |d’;| for each j € [1,1].
ii) The sign of M;; is the product of the signs of d; and d.

Let Mat(D, D’) denote the set of matrices compatible with D and D’. For each M €
Mat(D, D’), let wcomp(M) denote the signed weak-composition formed by reading left
to right across each row from the top row to the bottom row

Wcomp(M) = (Ml,h MLQ, ey Ml,l’a M271’, Ce MQ’Z’, c. 7Ml,17 e Ml,l’)-

And let WC/(;HIED(M ) denote the tilde-signed weak-composition formed by reading each
row from the top row to the bottom row, where the ith row is read left to right if d; is
positive, and read right to left if d; is negative (i.e. decorated).

Example 11. Let D = (2,4,1) and D' = (2,5). Then Mat(D, D’) consists of the five

matrices below:

02 11 11 20 0 2
1 3,04,13,0 4,2 2.
10 10 01 01 01
If M is the first matrix in this list, then wecomp(M) = (0,2,1,3,1,0)

Now take D = (5,4:1, 1), D' = (i, 5) and

M = € Mat(D, D).

—R= O
O o bon

Then weomp,, (M) = (2,0,3,1,1,0).

Proposition 12. Under the setup of Definitions 9 and 10:
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i) if H is commutative, then

(m o AD(T)) o (m o AD’(T)) = Z mo chomp(M);
MeMat(D’,D)

(moApm)e(molpm) = Y moA g,
MeMat(D/,D)

i) if H is cocommutative, then

(moApm)o(moApm) =" > moAywmpn;
MeMat(D,D’)

(moApm)o(molpm) = > moA g,
MeMat(D,D’)

Composition formulas for more complex hyperoctahedral descent operators can be
obtained by taking linear combinations of the above. For example, [DFH13, Th. 4.2
treats the composition of ), m o Ap) on the unsigned shuffle algebra, where the sum
ranges over all tilde-signed weak-compositions of a parts and with a fixed sequence of
a signs. As another example, Proposition 24 will derive the composition formula for
hyperoctahedral-rifle-shuffles.

Proof. We follow the argument of [MR95b]. Let D = (dy,...,d;) and D" = (d},...,d})
be signed weak-compositions. For ¢ € [1,1] and j € [1,1'], define

£ id if d; > 0;
s ifd <O

id if d;- > 0;
95 = .
T if d;- < 0.

Then
(m o Apem) o (m o Ap)
=(mo(fi® - ®fi)olAp+)o(mo(g1® - ®gr)oApr)
=Y mo(fi® - ®flomooo(Ap, @ ®Ap,)o (g1 @ @ gr)oAp~
by the compatibility axiom between m and A. Here, the sum is over all [-tuples
(D1, ..., Dy) of weak-compositions of |d}[, ..., |d)| respectively, that satisfy (D;); +---+
(Dy)s = |d;|. And o : H®Y — H® is a permutation of the tensorands corresponding to
reading a matrix in columns instead of rows:
o1 ®@ - Qaw) = (11 Q41 ® -+ ® Iz(l'—1)+1)
® (-TQ Q- $l(l/_1)+2> X ...
X (.Il/ XX 'Ill’)'
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Because g; are coalgebra morphisms, and f; are algebra morphisms, the above is equal to

d mo(fff @@ f ) ooo(gf @ @gi)o(Ap, @@ Ap,)oAps ()
=> mo(fff @@ ff)ooo(¢f @ - @gi") o Ap,...p, (6)

where Dy - --- - Dy is a concatenation of weak-compositions. This last equality follows
from coassociativity.
If H is commutative, then m o o = m, so (6) is equal to

Zmoao((fl(}Z%-'(}Z)fl)@ll)o(gi@)l<§Z>~"<§§>gl§?l)oAD1 ..... Dy

:Zmo(f1091®f2091®"~®f1091 (7)
®f1002@ - ®fioga®...
@fiog @@ fiog)oAp, .,

= Z mo chomp(M)~
MeMat(D',D)

If ‘H is cocommutative, then

0o ADl ..... D,y = A((D1)1,(D2)1,.,.,(Dl,)1,(Dl)2,...,(/31,)2,...,(D,)1,...,(Dl,)l,

so (6) is equal to

Y mo(fff @@ )o(i®- ®g)®)oooAp,. ..p,

Z mo(fiogi®fioga®---® fiogyo
MeMat(D,D’)

Rfa0g1 @R foogr®...
®flogl®'”®flogl’)kocomp(M)+

= Z mo chomp(M)~

MeMat(D,D’)

Now let D, D’ be tilde-signed weak-compositions, and let 7 be an algebra morphism
and a coalgebra antimorphism on a commutative H. Performing the analogous calcu-
lations, the only change is that, in (5), each Ap, must be calculated using the reverse
weak-composition of Dj if d} is tilde-signed. This change persists through to (7), where
additionally fjo g1 ®:--® fjo gy must be replaced by fjogr ®@---® f; 0 g1 whenever d is
tilde-signed. Thus the result is a sum of m o chfor\n/pD( M) terms instead of m o Aycomp(ar)-
The case is similar when 7 is an algebra antimorphism and a coalgebra morphism on a
cocommutative H. O
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2.3 Eigenvalues

Just as the eigenvalues of type A descent operators are indexed by partitions, the eigen-
values of hyperoctahedral descent operators are indexed by double-partitions of n - that
is, pairs of partitions A, A with DN+ A\; = n. (It’s more convenient here to view par-
titions as multisets of integers, not arranged in any particular order.) The values of these
eigenvalues themselves are again in terms of set-compositions, now of signed integers,
compatible with A, \, D as defined below.

Definition 13. Given a set S, a set-composition of S is a sequence By ..., B; of (possibly
empty) disjoint subsets of S with By II---11 B, = S. A set-composition is usually written
as B = By|...|B;, and the B; are called blocks.

Definition 14. Fix a double-partition A, A of n.

e Given a weak-composition D (not signed) of n, a set-composition By II- - - I1 By(py of

{1,2,..., I U{1,2,...,1(\)} is called compatible with X\, X, D if, for each i < I(D),

we have Z]eB A +Z]€B A = d;.

e Given a signed or tilde-signed weak-composition D, let ﬂf\)/—\ denote a signed count

of set-compositions compatible with A, X\, D*. The sign of each set-composition is
the parity of signed integers within a block corresponding to a decorated part of D.

Example 15. Let n = 10 and D = (5,4,1). The set-compositions compatible with
the double-partition A = (4,2),A = (2,1,1), D* are 12|12|3 (corresponding to D =
(A1 + A2, AL+ X2, A3)), 13]12]2, 122]1]3, 123|1]2. Since D is decorated only in the first part,
the sign of a compatible set-composition is —1 if there are an odd number of signed integers
in the first block, as in 12|/12|3 and 13|12|2. For 122|1|3 and 123|1|2, the sign is +1 as their
first blocks contain an even number of signed integers. Thus BS/—\ =—1—-14+1+1=0
in this example.

To describe the multiplicities, we follow the notation of [AS05]:

Notation 16. Given a partition A, let m;(\) denote the number of parts of size 7. Given
also a sequence b = (b;);>1, let ( ) be the number of ways to choose, for each i, m; objects
amongst b;, possibly with repetition. In other words,

b o b1+m1—1 b1+m2—1
A n mq mo o

b) is the coefficient of x) = =z, .. T in the generating function

or equivalently (A

L1 — )~

Point ii. of the Theorem below will apply this to two sequences b and b, which are the
graded dimensions of the 7-invariant and 7-negating subspaces of the primitive subspace
of H, if H is cocommutative (and of a related subspace if H is not cocommutative, which
will be explained in the proof). It is an interesting open problem to express the numbers
(;’) (g) in terms of double-partitions, bi-tableaux, or other known combinatorial objects.
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Theorem 17. Let H = @ H,, be a graded connected Hopf algebra over R, 7 : H — H a
linear graded involution that is a Hopf-ambimorphism. Let D be a signed or tilde-signed
weak-composition of n.

i) The eigenvalues of the associated hyperoctahedral descent operator moAp(yy : Hp —
H, are Bf;\, as A\, \ ranges over all double-partitions of n.

ii) The multiplicity of the eigenvalue ﬁ/’\j;\ is (l;) (f:’\), where the sequences b and b satisfy
the identities

Z dimH, 2" = H(l — g Thimh (8)

> (dimH], — dim H,7)2" = H(1 — )b H(1 + )b (9)

n

ii1) Furthermore, if Dy, ..., D, are signed weak-compositions of n, or are tilde-signed
weak-compositions of n, and ay,...,a, € R, then the eigenvalues of Y ., a;m o
Ap,ry: Hp — Hy are Y, alﬂfg\, with multiplicities as above.

The complicated expressions for the eigenvalues and multiplicities simplify somewhat
for specific operators - see Examples 18 to 20, Proposition 25, and Section 5.4 - in the
latter, the multiplicities for card-shuffling flipping every other pile are interpreted as
hyperoctahedral analogues of Stirling numbers.

Note that, if 7 = id, then the theorem recovers the type A case [Pan18, Th. 3.5], as
all relevant set-compositions have positive sign. For other 7, as long as its action on H
gives the generic case where b;, b; are all non-zero, the eigenvalues are the same regardless
of 7; only the multiplicities depend on 7. (If some b; or b; is zero, then some of the generic
eigenvalues might not be achieved.)

Example 18. We compute the eigenvalues of m o A¢,,_1y. (Under the correspondence
of Theorem 34, this operator models the shuffle that removes the top card from a deck of
n cards, rotates it by 180 degrees, then reinserts it in a uniformly chosen position.) For a
double-partition X, \, the parts of size 1 in A or \ are in bijection with set-compositions
compatible with A, A, (1,n—1), by considering the first block. A part of size 1 in A induces
a positive sign, whereas a part from X induces a negative sign. Hence, if 1(\) denotes the

number of parts of size 1 in A, we have ﬁf\i/l\n_l) = 1(\)—1()). Since 1(A\) and 1()\) can take
any two values in {0,1,...,n} that sum to {0,1,...,n—2}U{n}, the generic eigenvalues
are {—n}U{—n+2,—n+1,...,n—2}U{n}. (To obtain the eigenvalues of the card shuffle,

we should divide by n, i.e. they are £ for k € {—n}U{-n+2,—n+1,...,n—2}U{n}.)
Example 19. We compute the eigenvalues of mo (7 ®id)o A = >"" 'mo A(g n_py this
operator is BRifle 7, in the notation of Section 3, and represents the shuffle that cuts the
deck binomially, flips the first pile upside-down, then interleave the piles together. The

paper [PP98| previously computed these eigenvalues for a related inverse shuffle, that
corresponds to the case of the unsigned free associative algebra, with 7 as in (4).
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Fix a double-partition A, X. Every set-composition of {1,2,...,I(A\)}U{1,2,...,1(\)}
j€B1 /\j +
> e )\ The associated sign is the parity of signed integers in the first block. If A # &,
then there is a sign-reversing involution on these set- composmons if 1 € By, move it to

By, and if 1 € By, move it to B;. Hence the signed count >, ﬁ D 60, TN = &, then

into two blocks is compatible with A, A, (i, n — i) for exactly one i, namely i = >

the associated eigenvalue > B(Z 77 is the number of set- oomposmons of {1,2,...,1(\)}

into two blocks, which is 2/, Since I(\) can take any value in {1,2,...,n} when A\ = &,
the generic eigenvalues are 2,4,...2" and 0. (The eigenvalues of the card shuffle require
dividing by 2", i.e. they are 2% for k € {0,1,...,n — 1}, and 0.)

Example 20. Consider the following new type of card shuffle: deconcatenate the deck
into two piles according to the binomial distribution, then flip a coin for each pile to decide
whether or not to flip it before interleaving the piles together. According to Theorem 34,
the corresponding hyperoctahedral descent operator (up to scaling by 2"72) is Y~ mo Ap,
summing over all tilde- signed weak- compositions D of n with two parts. So its eigenvalues

are Y 05 ini) | ﬁ;; D4 B/\Z; D ,@/\Z; ) Each of the 2W+M set-compositions of

{1,2,...,1(\ )} U{1,2,...,1(\)} into two blocks contributes +1 to ﬁ 70 and (—1)'™ to

Bg’;ﬁ) where i = ) By A ~+Z§€ B, Aj. And, by a sign-reversing 1nvolutlon as in Example

19,377, ﬁ(m 9 =>" ﬁ(z =) 0 if ) # @, and else is 2. Hence the eigenvalues are

Zﬁ,l\),,'\ = QNHN+L g I(X\) > 0 is even;
if I()) is odd.

e}

So the generic eigenvalues are 8,16, ...,2"*2 and 0, and for the card shuffle they are 2%
for k€{0,1,...,n— 1}, and 0.

Remarks.

1. Note that, as for the type A case, the eigenvalues ﬂf\)/—\ may coincide for different

choices of A and A. For example, if D = (1,n — 1), then Bf 5 = 0 whenever neither
A nor \ has a part of size 1.

2. Unlike the type A case, the present theorem does not claim that m o Ap(;) is
diagonalisable on commutative or cocommutative Hopf algebras. Sage computations
show that this is in fact false. The diagonalisability proof in [Panl8, Sec. 3.2] for
type A descent operators does not extend to hyperoctahedral descent operators
because the matrices involved there will gain negative entries when extended to
type B, so Perron-Frobenius will not apply.

3. The proof below can generalise to give the spectrum of convolution products T *
- xTy:=mo (T, ®---®T;) o All, where the T; are simultaneously diagonalisable
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graded Hopf ambimorphisms. Then the eigenvalues 3\ would be a weighted count
of set-compositions, where the weights are the appropriate products of eigenvalues
of the Tz

The two main ideas of the proof, as with [AL15, Th. 3] and [Pan18, Th. 3.5], are:

e reduce to the cocommutative case by working in (gr H)*, the dual of the associated
graded Hopf algebra with respect to the coradical filtration (see [AL15, Sec. 1.3] for
the definitions);

e examine the action of gr(m o Ap(;))* on a Poincare-Birkhoff-Witt basis, i.e. on
products of primitive elements.

The first part requires the following lemma:

Lemma 21. Under the conditions of Theorem 17,

i) The dual associated graded map is

(gr(mo Apgy : Hn = Hn)) = mo Ap(enq) : (grH); — (grH);.

i) (gr7)* is an involution.

iii) The dimensions of the fized subspaces are related by dim H! = dim(gr ’H*)%g”)* and
dim H7 = dim(gr 1), &

i) (gr7)* is a Hopf ambimorphism.
Proof.

i) Since 7 is a coalgebra morphism or antimorphism, 7 preserves the coradical filtration.
Hence gr7 : gr’H — gr’H is well-defined. Then, taking the associated graded map
is functorial and so preserves convolution products. The same is true for dualising.

ii) Taking the associated graded map is functorial and so preserves compositions. Hence
7 o7 = id means (gr7) o (gr7) = id, and dualising this shows that (gr7)* is an
involution.

iii) As noted in [AL15], 7 and gr(7) have the same spectrum, and so does (gr7)*.
Since 7 and (gr7)* are involutions, they are diagonalisable, and so their spectrum
determines their eigenspace dimensions.

iv) It follows from the definition of the Hopf structure on gr(#) that, if 7 is an algebra
morphism (resp. antimorphism), then so is gr(7), and then (gr7)* is a coalgebra
morphism (resp. antimorphism). Similarly, if 7 is a coalgebra morphism (resp.
antimorphism), then (gr 7)* is an algebra morphism (resp. antimorphism). O
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Any coradical-filtration preserving map and its dual associated graded map have the
same spectrum, and (grH)* is cocommutative [Swe69, Th. 11.2.5.a][AS05, Prop. 1.6].
So the Lemma above reduces the proof to the case when H is cocommutative, where
its structure is well-understood. Indeed, by the Cartier-Milnor-Moore theorem [Car07,
Th. 3.8.1], a graded connected cocommutative Hopf algebra H is the universal envelop-
ing algebra of its subspace of primitives. Consequently, H has a Poincare-Birkhoff-
Witt (PBW) basis: if (P, =) is an ordered basis of the primitive subspace of H, then
{p1...pklk € N;p; < --- 2 pp € P} is a basis of H. The basis element p; ... pg has length
k. The key to the proof is the action of hyperoctahedral descent operators on this PBW
basis, as stated in the following Triangularity Lemma (a substitute for the Symmetrisation
Lemma of [Panl8, Lem. 3.8, 3.9]).

Notation 22. Let H be a graded connected Hopf algebra that is cocommutative, and
let 7 : H — H be a linear graded involution that is a Hopf-ambimorphism. Consider
(PrimH)™ and (PrimH)~", which by Definition 6 are eigenspaces of 7 of eigenvalue 1
and —1 respectively; let (P, <) and (P, <) be respectively the ordered bases of these
two subspaces. Then P U P, with the “concatenation” order of p < p for all p € P,
p € P, is an ordered basis of PrimH, and thus can be used to construct a PBW basis
of H. Let p1,....px € P, p1,...,px € P with py < -+ < p, p1 = --- =< Pz, and let
A= (degpy,...,degpy), A = (degpy,...,degpr).

Lemma 23 (Triangularity Lemma). Under the setup of Notation 22:

m o Apy(pr- - Prbr - PE) = ByxPr-- - Dkb1 - - D
+ PBW-basis elements of length less than k + k.

Consequently, relative to this PBW basis, the matriz for m o Apy is triangular with B/’\D;\
as its diagonal entries, and hence 6/’\3/—\ are the eigenvalues.

Proof. By coassociativity,
AD+(P1---]9M71-~]712):Z 1_[101'1_[13g ®--Q H pi H pi |
B \i€eB1 ieB; i€Byp)  i€Byp)

where the sum is over all set-compositions B compatible with A, X, D. Hence

mo Apy(p1-.-PrD1---DE) = Z + HPz’HﬁE H Di H pi |, (10)

Bi,.,By(p) i€B1  ieB; i€Byp)  i€Byp)

where the sign for each summand is the parity of elements of P in decorated parts. (If 7 is
an algebra antimorphism, then for each decorated part d;, the products in the ith bracket
above are taken in the reversed order.) Each summand is a product of py,...,pk, D1 - - ., Dg
in some order, so the PBW straightening algorithm [Kna02, Lem. III.3.9] rewrites each
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summand (excluding the sign) as p; ... ppp1 . .. P+ terms of length less than k + k. Thus
the coefficient of the highest length term p; ... ppp1 ... g in moApy(p1 ... peP1 - - - Pg) 18
the signed number of summands, i.e. the signed number of set-compositions compatible
with A\, \, D. O

To continue the proof of Theorem 17: according to Lemma 23, the matrices of moAp

are simultaneously triangularisable with B/’\D/—\ on the diagonal, hence the eigenvalues of

sums of m o Ap(;y are sums of these diagonal entries. The multiplicity of 5,6;\ is the
number of multiset pairs {p1,...,px} € P, {p1...,P5} C P whose degrees are given by
M If by = dim(PrimHM)] = [P N H;| and b; = dim(PrimH);” = |P N H,|, then the
multiplicities of 55’/—\ are (l;) (g) So it remains to show that the sequences b and b are
determined by the identities (8) and (9).

To see (8) (same argument as in the type A case): the PBW basis elements of degree
n are precisely the products over a multiset in P and a multiset in P, whose degrees total
n.

To see (9): note that the PBW basis element p; ... pgp; ... P5 is T-invariant if & is
even, and T-negating if k is odd. Make a signed enumeration of such products, where
each p € P is signed, and all p € P are unsigned, so that p; ...ppp: ... Py is T-negating if
it is signed, and 7-invariant if it is unsigned. Hence the coefficients are dim H] —dim H,,".

3 The Hyperoctahedral-Riffle-Shuffle Operators

This section focuses on the following four families of operators, whose rescaling (division by
a™) corresponds to a-handed hyperocatahedral riffle-shuffles of decks of n cards, as studied
in [BB92, Ful01, Ful02]. For a linear graded involution 7 that is a Hopf ambimorphism,
define

dRTRideT® - ®id) o Al if g is odd;

BRiffler,f := _ . o
dRTRIdeTr®- - ®7)o Ald if g is even;

®Id®T®id®---® 7)o AlY if ¢ is odd;

.
11
T®idRTId®---®id) o AlM if g is even. (1)

mo (
mo (
BRiffler, := {mo(

mo (

In Sections 3.2 and 5 we will write 7 in place of 7 for an algebra antimorphism, to more
clearly distinguish it from the case of an algebra morphism.

3.1 Compositions and Properties

A well-known feature of type A riffle-shuffles is that a b-handed shuffle followed by an
a-handed shuffle has the same effect as an ab-handed shuffle; this allows repeated shuffles
to be studied by considering a single many-handed shuffle. Below is the hyperoctahedral
analogue, which is derived from Proposition 12; a special case appeared in [DFH13].

Proposition 24. Let H be a graded connected Hopf algebra, and 7 : H — H be a linear
graded involution that is a Hopf ambimorphism. Under any one of these three conditions:
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i) H is commutative and a is odd,
i) H is cocommutative and b is odd,
iit) H is commutative or cocommutative, and T is not a Hopf morphism,

the operators in (11) compose as follows:

BRiffle 7,” o BRiffle7;” = BRiffle7, o BRiffle, = BRiffle7};

a

BRiffle 7,” o BRiffle7;,” = BRiffle7, o BRiffle7;” = BRiffle7,,.

Proof. View BRiffle7;" (resp. BRiffler, ) as >~ m o Ap(;) over all D with a parts, where
even parts (resp. odd parts) are negative. Then, on a commutative algebra H, where 7 is a
Hopf morphism, Proposition 12.i gives BRiffle 7,” o BRiffle 7, = BRiffle 7, o BRiffle7, =
Yoymo Aycomp(m), over all b x a matrices M whose entries have the alternating sign
pattern

If a is odd, then the first row of this matrix ends with a positive entry, which is followed
by a negative entry at the start of the second row when computing wcomp(M). Similar
considerations for other rows shows that wcomp (M) exactly runs through all signed weak-
compositions with ba parts whose even parts are negative. If instead 7 is a coalgebra
antimorphism, then the even rows must be read right to left when computing wcomp p(M).
Thus, if a is odd (resp. even), then the positive (resp. negative) entry at the end of the
first row is followed by a negative (resp. positive) entry at the end of the second, so
weomp, (M) also runs through all signed weak-compositions with ba parts whose even
parts are negative.

The other cases are similar. ]

Next, we specialise Theorem 17 to obtain the spectrum of the hyperoctahedral-riffle-
shuffle operators:

Proposition 25. Let H be a graded connected Hopf algebra, and 7 : H — H be a linear
graded involution that is a Hopf ambimorphism. Let b and b be the sequences defined
in (8) and (9). Consider the operators in (11) acting on H,. Write [g]f to mean the
cofficient of the monomial g in the power series f. Then:

e for even a, the eigenvalues of BRiffler) and BRiffler, are a', with multiplicity

[ty TT,(1 — zy?) b ; and 0;

e for odd a, the eigenvalues of BRiffler,” are af, with multiplicity [x'y"] TT;(1 —
vy )L =)™
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e for odd a, the eigenvalues of BRifle 7 are:
— ', with multiplicity [2'y"] T],(1 — xy*) b1 <HZ (1+y)~ + 1,01 — y) " >
-b

— —a!, with multiplicity [z'y"] TT,(1 — zy’) "1 <H (14" — [, —y")~

Proof. We generalise the ideas in Example 19. Let B;;\r (resp. ﬁ;/{) denote the eigenvalue
of BRiffler] (resp. BRiffler,) corresponding to the double-partition A, \; this is the
signed count of set-compositions B of {1,2,...,1(A\)}U{1,2,...,1(\)} into a blocks, where
the sign is the parity of signed integers in the even (resp. odd) blocks. First suppose a
is even. If A # @, then there is a sign-reversing involution on these set-compositions: if
1 € By;_; for some i, move it to By;, and if 1 € Bs;, move it to By,_;. Hence B;E\L =
B;/{ =0 when X # @. If A = @, then all relevant set-compositions have positive sign, so
Pax =By =,

When a is odd, the above signed involution is still defined when A # @ and 1 ¢ B,.
So, modify the signed involution to move the smallest j such that j & B,. This will be
deﬁned when A # @ and 1,2,...,I(\) are not all in B,. Thus the only contributions
to /\ A or BA 5 come from set- composmons where 1,2,...,1()\) are all in B, - these are

equivalent to the a' set- Composmons of {1,2,..., l(/\)} into a blocks, and the sign is
(— )l()‘) for BAA, and +1 always for 5

To see the multiplicities: by Theorem 17.ii and Notation 16, the multiplicity of Bﬁ;\r

or fy5 is
b 6 —b; — \N—b; _ _
NISY [z 5] H(l —x;) H(l — ;)7 where x\5 =Ty, ... Ty, Ty, - T3

Make the substitution z; — x3*, Z; — ¢’ in the generating series on the right, so z
tracks the number of positive parts and y tracks the total degree. Then [z!'y"]f(x,y) =
Yozl f(@1, 22, ..., T1, To, ... ) summing over all double-partitions A, X of n with [ parts
- this handles the case of BRiffle 7 for odd a. For BRiffler, , the substitution z; — xy’,
Z; — —y" into Theorem 17.ii would introduce a sign when A has an odd number of parts:
[2ly") f(z,y) = S (—=1)!) [y 5]f(21,22,...,%1,T2,...). So, to sum only the coefficients
of x, 5 when A has an even number of parts, we can average the signed and unsigned
substitutions, and similarly take their difference to isolate the coefficients of z, 5 for A
with an odd number of parts. O

3.2 Eigenvectors

We give a basis of eigenvectors for the hyperoctahedral-rifle-shuffle operators. These
will aid in computing the expectations of certain statistics under card-shuffling. The
eigenvector formulas depend on whether the involution is an algebra morphism (Theorem
27, written 7) or antimorphism (Theorem 26, written 7). The antimorphism case is easier,
so we begin there. Let & denote the symmetric group on k& objects.
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Theorem 26. Let H be a graded connected Hopf algebra, and 7 : H — H a linear graded
wnvolution that is an algebra antimorphism and a coalgebra morphism or antimorphism.

i) Take pi,...,px € (PrimH)" and py,...,pp € (PrimH)~" (where k or k may be
zero).

(a) If a is even, then

<ZPU )pl - Dk (7"651’- p1--- (ZPU pa(k>>
geS, ceSy,

is an eigenvector of BRiffle 7, (resp. BRiffle 7, ), with eigenvalue a* if k =0,
or eigenvalue 0 if k > 0.

(b) If a is odd, then

pk(z pa(1)---pa(k> and (Z Po(1) - >p - Dk

cES c€Gy

k

are eigenvectors of BRiffle 7.7, with eigenvalue a”.

(c) If a is odd, then

_k<zpo(1)-~~ ) (Zpa . )pl - Pk
oGy o6y

s an eigenvector of BRiffle 77, for odd a, with eigenvalue (—1)%’“.

a )

i) If P,’P are ordered bases of (PrimH)™, (PrimH)~" respectively, then the vectors of
any fized format in ¢ above, over all choices of pr = -+ X py € P andpy = -+ =
i € P (allowing k and k to vary), are linearly independent.

iii) Furthermore, if H is cocommutative, then the sets described in ii above are bases of
eigenvectors for the appropriate BRife 7 operator.

Theorem 27. Let H be a graded connected Hopf algebra, and 7 : H — H a linear graded
wnvolution that 1s an algebra morphism and a coalgebra morphism or antimorphism. Fix

a odd.
i) Forpy,...,px € (PrimH)" and pu, ..., pp € (PrimH)™" (where k or k may be zero),

<_
> 1» (Z Po(1) - - -Pa(k)) 11 (12)

B i€B; ceBy 1€ Boy
summing over all set-compositions B = Bl|Bg of {1,2,...,k} into 2 blocks, is an
eigenvector of BRiffle 7 with eigenvalue a*, and an ezgenvector of BRiffle 7, with

eigenvalue (—1)Eak. denotes that the product should be taken in the reverse
order, with large index v on the left and small index v on the right - see Fxample 28

below.)
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i) If P,P are ordered bases of (PrimH)7, (PrimH)™" respectively, then the vectors in
(12), over all choices of pr X -+ X pr € P and py X --- 2 pg € P (allowing k and
k to vary), are linearly independent.

ii1) Furthermore, if H is cocommutative, then the set described in ii above is a basis of
eigenvectors for BRiffler,” and BRiffler, .

Example 28. If k£ = 2 and k = 3, then the eigenvector given by (12) is

D3p2p1(p1p2 + pap1) + D2p1(p1p2 + p2p1)Ds
+p3p1(p1p2 + P2p1)D2 + D3P2(P1p2 + p2p1)P1
+p1(p1p2 + pap1)Paps + Pa(P1p2 + P2p1)P1P3
+D3(p1p2 + P2p1)P1b2 + (P12 + P2p1)P1D2Ds.

For a further example in the free associative algebra, see Example 43.

When a is even, we can only identify the eigenvectors of BRiffle 7, and BRiffle 7, with
non-zero eigenvalues:

Theorem 29. Let H be a graded connected Hopf algebra, and 7 : H — H a linear graded
inwolution that is an algebra morphism and a coalgebra morphism or antimorphism. Fix
a even.

i) For pi,...,px € (PrimH)7,

Z Po(1) - - - Po(k)

ceSy

is an eigenvector of BRiffler,” and BRiffle 7, with eigenvalue a®.

ii) If P is an ordered basis of (PrimH)", then the vectors described in i above, over all
choices of py = -+ X pp € P, are linearly independent.

iii) Furthermore, if H is cocommutative, then the set of eigenvectors described in ii
above, for each fived k, is a basis for the eigenspace of eigenvalue a®, for both
BRiffle 7, and BRiffle 7., and there are no generalised eigenvectors for these eigen-
values. In other words, the eigenvectors described in i, over all values of k, is a
basis for a complement of the generalised eigenspace of eigenvalue 0.

The proof of Theorems 26 and 27 follow the same structure of an induction on k, the
number of T-negating (or T-negating) primitives; Lemma 30 below is the common base
case (l;: = 0), and to increase k we use a sign-reversing involution argument: Lemma 32
for an algebra morphism, and Lemma 31 for an algebra antimorphism. Since Theorem 29
does not involve T-negating primitives, its proof requires only the previous “base case” of
Lemma 30, plus a counting argument. Note that this Lemma applies to all four types of
Hopf ambimorphism, i.e. to both 7 and 7.
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Lemma 30. Let H be a graded connected Hopf algebra, and 7 : H — H be a linear graded

involution that is a Hopf ambimorphism. For py,...,pr € (PrimH)", the symmetrised

product ZUEGk Do(1) - - - Dok i an eigenvector of BRiffler,” and BRiffle 7, , of eigenvalue
k

a”.

Proof. The argument is essentially the same for all four operators of (11). For concrete-
ness, consider first BRiffle 7,7 where a is odd.

A[a](pl...pk):Z<Hpi> ® (Hm) ® - ® (sz),

B 1€B1 1€B> 1€B,
summing over all set-compositions B of {1, ..., k} with a blocks. So
&
(defeider @id)Ap...p) =) | [[w)e| [[p)e e ]]e]. 13
B 1€B1 1€Bo 1€Bg

where the arrows above the product signs indicate reversing the order of the product.
Hence BRiffle 7" (p1 ... px) is a sum of products of the same primitives, in a different
order, and the permissable orders do not depend on anything particular about each p;.
Thus Zoe(ﬂ Po(1) - - - Do(k) 1s an eigenvector of BRiffle 7.7 and the eigenvalue is the number
of summands in (13), i.e. the number of set-compositions of {1,...,k} with a blocks.
Since each number can belong to any block, the required number is a*.

The other seven cases (BRiffler,” with a even, BRiffler, with a even or a odd,
BRiffle 7, and BRiffle 7, for all values of a) are similar: the directions of the products in
(13) are different, but each summand is nevertheless a product of the same primitives in
a different order, hence the argument above applies. O]

Proof of Theorem 29. Let Bi;\“ (resp. ()5 ) denote the eigenvalue of BRiffler," (resp.
BRiffle 7,7) corresponding to the double-partition A, A, as in the proof of Proposition 25.

i) Immediate from Lemma 30.

ii) Work in the subalgebra of #H that is the universal enveloping algebra of (PrimH)",
with a PBW basis formed from P. As explained in the Triangularity Lemma (23),
the eigenvector ZUGGk Po(1) - - - Po(k) 15 a sum of products of py,...,p; in different
orders, and hence its highest length term in this PBW basis is k!p; . .. px. Thus each
eigenvector has a different highest length term, and so they are linearly independent.

iii) Let P be a basis of (PrimH*)~". As noted in the paragraph after Lemma 23:
in a cocommutative Hopf algebra, the multiplicity of the eigenvalue B;; or ﬁ;‘g
is the number of multiset pairs {p1,...,px} C P, {p1..., 05} C P where \ =
(degpy,...,degpy) and A = (degpy,...,degp;). The constructed eigenvectors ac-
counts for all cases where A = @. And, in the proof of Proposition 24, a sign-
reversing involution showed that Bi;\r = 5;; =0if A £ @. O
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The following two lemmas are the sign-reversing involutions required to inductively
construct eigenvectors.

Lemma 31. Let H be a graded connected Hopf algebra, and 7 : H — H be a linear graded
involution that is an algebra antimorphism and a coalgebra morphism or antimorphism.

Let p be a T-negating primitive element of H, and s be any product of primitive elements.
Then

for a odd: BRiffler, (ps) = pBRifle7, (s),  BRiffle7, (sp) = BRiffle 7, (s)p,
BRiffle 7, (ps) = — BRiffle7, (s)p, BRiffle7, (sp) = —pBRiffle7, (s);

for a even : BRiffle 7./ (sp) = 0,
BRiffle 7, (ps) = 0. (14)

Proof. Consider first the equations on the left, involving ps. Let s = p;...p, and, for
clearer exposition, first set a = 5.

AP ppy ) = S (ple) ® (H pi> ® (H p¢> ® (H m) ® (H pz)

B i€B1 i€ By i€Bs3 i€By i€Bs
—i—(sz' ®<pHpi)®<Hpi)®<Hpi ®<sz'
1€B1 1€ B2 1€ B3 1€By 1€ Bs
+<sz‘ ®<H]0i ®<pHpi)®<sz‘ ®<H]0i
i€B; i€ Bo i€ B3 i€By i€ Bs
+ (Hpi ® (Hpi ® (Hm) ® (ﬁHpi ® (Hpi
i€B; i€ Bo i€ B3 i€EBy i€ Bs
+<HP¢ ®<Hpi ®<HP¢>®<HP¢>®<Z5HP1 ;
i€EB1 i€Bo i€ B3 i€EBy 1€ Bs
(15)
summing over all set-compositions B of {1,2,...,k} into 5 parts. (Each such set-

composition contributed 5 terms, for all 5 possible blocks where p may be assigned.)
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.

st =32 (100 (110) (100) (112 (110)

(1) ()| (210« (11 (117)
o () (1) |- (1) (11

— | I »:

1€B1
(16)

(The second factor of the second line and the fourth factor of the fourth line uses, for all
x, that 7(pr) = 7(x)7(p) = —7(x)p.) Note that, for each fixed set-composition B, the
second and third lines of (16) are equal, except for their opposite sign, so they cancel.
Similarly, the fourth and fifth lines cancel. Thus only the first line remains, and that is
precisely p BRiffle 72" (p; . .. py).

By this argument, whenever a is odd, BRiffle 7,7 (pp; ... py) is a sum of a terms for
each set-composition of {1,2,...,k} into a parts, and each even term cancels with the
following odd term, so only the first term remains and these give p BRiffle 7,5 (p1 . .. px)-

Similarly,
() (1)« (110) -
(1) (1) (1)
(o) (1) 7 (1))

+...,

BRiffle 7, (pp1 . ..pk) = Z

B

so each odd line cancels with the line below. Hence, if a is even, the sum entirely cancels
and is thus 0; if a is odd, the last line remains:

s3I (1) (1) (1)

= Bleﬂe 7. (p1- .. Dr)P.
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For sp, the calculations are very similar. Again, let s = py...ps.

BRI (1 i) = 3 [(Hm) ﬁ] %(Hpi) (sz.)

B 1€B; i€ Bo i€ B3

() (1) (1)
() (1) (1)

. ey

so each odd line cancels with the line below, leaving the last line (i.e. BRiffle 7,/ (p; ... px)p)
if a is odd, and cancelling entirely if a is even. And, for a odd,

(1)) () 1) <)
(i) ) ()
() ) ()] ()

+

() ) 1) )]

where each even line cancels with the line below, leaving the first line, which is exactly
pBRiffle 7, (p1 ... k). O

BRiffle 7, (p1...prp) = Z —

B

Lemma 32. Let H be a graded connected Hopf algebra, and 7 : H — H be a linear graded
involution that s an algebra morphism and a coalgebra morphism or antimorphism. Let
p be a T-negating primitive element of H, and s be any product of primitive elements.

Then, if a is odd:

BRiffle7,f (ps + sp) = p BRiffle . (s) + BRiffle 7" (s)p;
BRiffle 7, (ps + sp) = —pBRiffle 7, (s) — BRiffle 7, (s)p. (17)

Proof. Let s = py...pg, and, as in the proof of Lemma 31, first set a = 5 for clearer
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exposition. From (15), we have

s o) = (0 TT )« (110 ) (1)~ (11 (11 )

() (1) (1) (110 (1)

() (0) () (1) (1)

1€ B2y 1€ B3 1€By 1€ By

(1) (2t (1) (12 (120
(11» T<Hpi Hpi)f(np) (pnpz-),

1€Bg i€ B3 1€By i€ Bs
(18)

and similarly

BRiffle 7, (p1 ... pkp) = [(H pi> p] T (H pi>

B 1€B, 1€ B2

(1) (112 (117)
(1) ()] (1) (220 (10

(1) (1) (1)) (210 (110
(1) (1) (11 ()| (11

i€Bs

() (1) (1)« (110 (11|

(19)

Note that, for each fixed set-composition B of {1,2,... k} into 5 parts, the second line
of (18) is equal to the first line of (19) except for the opposite sign. So these will cancel in
BRiffle 7.5 (pp1 . . . pr) + BRiffle 7,7 (p; . . . pxp), and similarly the third line of (18) and the
second line of (19) will cancel, and the fourth line of (18) and the third line of (19) will
cancel, and so on. Hence BRiffle 7,7 (pp1 . . . pr) + BRiffle 7,F (p1 . . . pxp) is equal to the first
line of (18) plus the last line of (19) - these are equal respectively to p BRiffle 7, (p; ... p)
and BRiffle 7,/ (p; ... pr)p. The same cancellations occur for other odd values of a.
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As for BRiffle 7, (for a odd):

BRiffler, (pp1 ... px)

(1)) (12)- (1) (11
1) (1) (11) (1)

s
() () ) -(a)
o)) () )]

sz'

i€B; (20)
and
BRiffle 7, ( . DkP) Z (H pz> ] (H pz) (H pi> T (H pi>

o) (1)) (110 (112
(11;11 o) (T0) [ ()] - (110

() () H(m)]

(21)

So, when (20) and (21) are summed, again the ith line of (20) cancels with the i + 1th
line of (21), leaving the first line of (20) and the last line of (21). O

With these sign-reversing involutions in place, we proceed to prove the eigenvector
formulas.

Proof of Theorem 26. i) First note that all lines in (14) are linear in s, i.e. Lemma 31
holds when s is a linear combination of products of primitives.

(a) The k = 0 case is Lemma 30. For k& > 0, use the 3rd and 4th lines of (14), with

5 = (Xpee, Pot) -+ Potr)) D1 -+ D1 and s = Pa... 7 (X yee, Do) - - Polk))
respectively.
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(b) Proceed by induction on k, the base case k = 0 being Lemma 30. By the first

line of (14):

BRiffle 7, (151 PR Y Do) - .p(f(k))

geG

:]31 BleHe 7:;_ (pQ .. ﬁE Z po'(l) .. pa(k’))

oeBy

=p1a*pa . .. Py ZPU < Do(k);
geSy,

and

BRiffle 7, (Z Po(1) - - - Po (k)) D1 - --ﬁk]
= BRiffle 7, (Z Do(l) - - - ) P1- pk—l] Dk

o€y

(zpa ) )pl p“]pk
gEeGy,

using the inductive hypothesis at the second equality each time.

(c) Repeatedly applying the second line of (14):

BRiffle 7, (131]72 ... Dk Z Do(1) - - -]%(k))

geG

= — BRiffle Ta (pg ... Dk Z Do(1) - - .pg(k)) P1
oSG

=DBRiffle7, <_ Dk Z Do(1) - - - Po(k) > D2p1

ceSy
:(—1)E BRiffle 7, (Z Do(1) - - ~pa(k)> Dk - - - P2P1
ceSy,
’a (Z Po(1) - - - Po(k) > Dk -+ - P2P1,
ceSy
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ii)

iii)

and by the same recursive process

BRiffle 7, [(Z Po(i) - - - pa(k)> Dk - - 152151]

cEeS

:(—1)’9@]9]51]52 ... Dg (Z Do(1) - - -pa(k)> .

cEGy

Summing these gives the required eigenvector.

Work in the subalgebra of H that is the universal enveloping algebra of Prim(H).
As in the Triangularity Lemma (23), consider its PBW basis formed from the basis
P U P of Prim(H), with the concatentation order on P U P. Then, for each fixed
format in part i of the Theorem, the eigenvector made from pq,...,pr € P and
P1,-..,Pr € P is a sum of their products in different orders, and hence its highest
length term in this PBW basis is py...pgp1 ... p; (its coefficient is the number of
product terms in the eigenvector, and is hence nonzero). Thus each eigenvector has
a different highest length term, and so they are linearly independent.

As explained above, each set of eigenvectors is triangular with respect to the PBW
basis of the universal enveloping algebra of Prim(#H), thus giving a basis of this uni-
versal enveloping algebra. By the Cartier-Milnor-Moore theorem (as described just
before Notation 22), when H is cocommutative, this universal enveloping algebra is
precisely H. O

Proof of Theorem 27. i) Proceed by induction on k, the base case of k = 0 being

Lemma 30. As noted in the previous proof, all lines in (14) are linear in s, so we
may apply Lemma 31 when s is the eigenvector in (12):

BRiffle7,f (ps + sp) = p BRiffle ;" (s) + BRiffle . (s)p

= pla"s) + (a"s)p = " (ps + sp);
BRiffle 7, (ps + sp) = —pBRiffle 7, (s) — BRiffle, (s)p

= —p(—1)Fars — (=1)*arsp

= (—=1)!a"(ps + sp).

So ps + sp is an eigenvector with the required eigenvalue. It remains to show that,
when s is of the form (12), then so is ps + sp, with k increased by 1. To do so, let
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P = Pry1- Then, for each set-composition B of {1,2,...,k} into 2 blocks,

P (ﬁpi (Z Po(1) - - 'pa(k)> 11 pz-)

1€B1 g€ 1€ B2
(—
+ (sz <Z Do(1) - - -Po(k)) H ﬁi) D41
i€EB1 o€, 1€EBy
— o
ZHE‘ (Z Po(1) - - .Pa(k)) H Di + Hﬁz‘ (Z Po(1) - - J%(k)) H Pi,
i€B] g€6y i€BY) i€BY o€6y, ieBY
where B’ and B” are set-compositions of {1,2,...,k + 1}, obtained from B respec-

tively by adding k + 1 to B; or to By. And all set-compositions of {1,2,...,k+ 1}
into 2 blocks arise from a unique such B in this way.

ii, iii. The same argument as in the proof of Theorem 26 above. ]

4 Markov Chains from Hyperoctahedral Descent Operators

One application of the eigenvalues and eigenvectors of hyperoctahedral descent operators
calculated in previous sections is to study an associated Markov chain, generalising the
type A framework in [DPR14, Panl8]. Each positive hyperoctahedral descent operator,
applied to each basis of a Hopf algebra, determines a different Markov chain. We will
be minimal here, and refer the reader to [Panl8] and [LPWO09] for more background on
Markov chains.

4.1 Chain Construction

Given a finite set B and a matrix K with rows and columns labelled by elements of B,
the Markov chain with state space Q2 and transition matriz K is a sequence of random
variables X1, X, ... taking values in B, such that the conditional probability

Prob(X; =y|X;—1 =2, Xy o = 24-9,..., X1 = x1) = Prob(X; = y|X;-1 = 2) = K(z,v).

In other words, X, the state at time ¢, is only dependent on the state one timestep prior,
not on further past history.

We would like this transition matrix K to be (the transpose of) the matrix of a
hyperoctahedral descent operator, acting on a graded Hopf algebra H, relative to some
fixed basis B (up to scaling). To be probabilities, the matrix entries must be non-negative;
this motivates condition iv below, that the product and coproduct of basis elements
expand positively in B. Condition v, the positivity of 7, is required to scale the matrix so
its rows sum to 1, as probabilities should. Also, in condition ii, we require the involutive
Hopf ambimorphism 7 to send the basis B to itself (as opposed to to a linear combination
of basis elements), so that it can be interpreted as an involution on the combinatorial
objects indexing B, analogous to flipping a deck of cards.
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Setup 33. The following conditions and notations will be assumed when analysing
Markov chains driven by hyperoctahedral descent operators:

i) H = @D, Hn is a graded connected Hopf algebra over R, and each H, is finite-
dimensional, with basis B,,. And B denotes I1,,~0B,,.

ii) 7: B — B is a graded involution that extends linearly to a Hopf ambimorphism on

H.

iii) n is a fixed integer, and P is a probability distribution on signed weak-compositions
of n or on tilde-signed weak-compositions of n (but not a mixture of both). Define

P(D
moAP(T) = Z (n )moAD(T) (22)
D (D+)
where () is the multinomial coefficient (|d1| ~~Tidz(p)\>'

iv) For each signed or tilde-signed weak-composition D with non-zero probability under
P, and for all z,y € By, all z1 € Ba,|, 22 € Bjay), - - -, 21D) € Blayppy:

(a) z122...2(p) = ZyGBn 531,--.,4(13)3/ with 521,.--,%([)) > 0;

() Bpi(@) = Yo, 105 @ 2@ @ ) with 7 20
v) For all z € B, the function
n(x) := sum of coefficients (in the B; ® --- ® B; basis) of A;

evaluates to a positive number.

Theorem 34. Under Setup 33, the matriz

K(z,y) = M coefficient of y in m o Apy(x) (23)

n(zw)

1S a transition matriz, and each step of the associated Markov chain, starting at v € B,
is equivalent to the following four-step process:

1. Choose a signed or tilde-signed weak-composition D according to the distribution P.

2. Choose z1 € Bja,|, 22 € Bdy|s - - 2D € B\dl(p)\ with probability

1 Z15--,21(D)
— Nz nzy) ...z oy)-
) (21) - n(z(p))

3. For all i such that d; is a decorated part, replace z; by 7(z;).

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.32 31



4. Choose y € B,, with probability

((g)”w - ~77<Zl>) ) SO}

where z} = z; if d; is an undecorated part, and z, = 7(z;) if d; is decorated.

We remark that (23) means K is the transpose of the matrix for m o Ap(;y, relative
to the basis {%M € Bn}.

Proof. We follow the proof of [Panl8, Lem. 3.3]. According to [Pan18, Th. 2.3], to show
K is a transition matrix, it suffices to show that n : B, — R, extended linearly to H,, is
an eigenvector of (m o AP(T))* : H* — H* of eigenvalue 1. Recall from Section 2.2 that
(m o AP(T))* = m o Ap(;+), where 7% is an involution on the dual basis B* of H*.

As in [Panl8, Lem. 3.3], let * € H} denote the linear map on #; taking value 1 on
each element of B;. When restricted to #H,, n = (e*)" € H.. Since o* is of degree 1, it is
necessarily primitive, so Ap+((e*)") = () ()" @@ (*). Now e* is the sum of all
elements in B, and 7* is an involution on Bj, so 7* fixes o*. As a Hopf ambimorphism, 7*
also fixes each ()%, so Ap((e*)") = Ap+((e*)") = (o) ()" @ .. (¢*)", and taking
linear combination and then taking the product shows m o Ap(«)((e*)") = ((e*)"), as
required.

The proof of the 4-step description of the chain is essentially the same as that of its

type A version [Panl8, Th. 3.4, once we note that

n(7(z)) = (07)"(7(2:)) = [77(¢7)"] (2:) = (¢7)"(2:) = (=),

since 7* fixes (@*)". O

4.2 Stationary Distribution

One basic question when studying a Markov chain is to find its stationary distributions,
which are functions 7 : B — R satisfying

Y @)K (z,y) = 7(y). (24)

zeB

These are of interest as they include all possible limiting distributions: if Prob(X; = x)
has a limit as t — oo, then this limit must be 7 (x) for some stationary .

To describe the stationary distributions of chains defined in (23), let B] denote the
subset of By that is fixed under 7, and B; the set of averages over each size 2 7-orbit in
B,. (For example, in the signed shuffle algebra with 7 defined as in (2), B; would contain
2(141), 3(2+2),etc., and B] is empty.) Note that B; is also fixed under 7; indeed, a basis
for H7 is B UB; . Given any multiset {cy,...,¢,} in B{UBy, define 7., ., : B, = R by

n(w

'2) Z coefficient of z in the product ¢,y . .. Co(n).
n!

O'EGTL

Tey,...\en (-T) =
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Note that, if B; contains a sole element, denoted e, then necessarily B] = {e}, B; = &,
so the only possible such function simplifies to

Theorem 35. Assume the conditions in Setup 33, and additionally that P is non-zero
on some D with at least two non-zero parts, and on some D with at least one decorated
part. Then any stationary distribution for the Markov chain defined in Equation (23) is
a unique linear combination of the m., .., over all multisets {c1,...,¢c,} in B] U By .
Furthermore, ) cp Tey,..c,(x) = 1. In particular, if B = {e}, then 7 is the unique
stationary distribution.

Proof. Recall that K is the transpose of the matrix for m o Ap(;), relative to the basis

{%M € Bn}. Thus the condition of (24) translates to — > vee, Co(l) - - - Co(n) being an

eigenvector of eigenvalue 1 for mo Ap(;). To check this, recall ¢; € BfUB; C Prim(H)",
so by (10)

m o Apy(Co(1) - - - Com)) = Z (H c(,(i)> - H coti) |

Bi,....Bypy \i€Bi1

summing over all set-compositions B compatible with A = (1,...,1),A = @, D. Each
summand on the right is a product of c,(1),...,¢s(n) in some order, and there are ( 51)
terms, so when symmetrised, ZUGG” Co(1) - - - Co(n) 18 an eigenvector of eigenvalue ( 51) for
m o Ap¢y. Taking the linear combination of hyperoctahedral descent operators as in (22)
gives the result.

The Theorem further claims that these ﬁ deen Co(1) - - - Co(n) Eive a basis of the
eigenspace of eigenvalue 1 for moAp(,, as {c1, ..., ¢, } ranges over all multisets in BfUB; .
To see the linear independence, note that, if the basis P of (PrimH)™ contains B] U By,
then the PBW basis constructed in and before Notation 22 contains ¢;...c,. Hence,
after PBW straightening, the highest length term in % ZJEGn Co(1) -+ Co(n) 1S C1...Cp, &
different term for each choice of multiset {cy,...,¢,} in B] U B, showing linear indepen-
dence. To see that these elements span the eigenspace of eigenvalue 1, we separate into
two claims as in the type A case [Panl8, Th. 3.12]:

i) the only double-partition with ), ED(,LD; 5)% =1lisA=(1,...,1),A = @ — in the
D+ ’

proof of [Pan18, Th. 3.12], it was shown that ﬁf\)’g < (Dﬂ) with equality if and only
if D has a single non-zero part or A = (1,...,1). (In short, this is because 5(D17._.71)’®
by definition counts the set-compositions of {1,2,...,n} into I(D) blocks such that
block i contains |d;| elements, and an alternate view of ﬁf\)’@ is that it counts such
set-compositions with the extra condition that 1,2,...,\; are in the same block,
A+ 1L,A1 4+ 2,..., A + Ag are in the same block, and so on.) Now 6,1\),,‘\ and 5/%/—\’@
are respectively a signed and unsigned enumeration of the same set-compositions,
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SO ﬁf\?j\ < B,I\DUZ\,z with equality if and only if A = @ or, in all set-compositions
compatible with A, A, D, the signed integers 7 can only be in blocks corresponding
to unsigned parts of D. In particular, if \UX = (1,..., 1), then this latter condition
can only happen if D has no decorated parts. So 55;\ < Bqu@ < (51), with
equality if and only if D has a single non-zero part, or A = A = (1,...,1) and D has
no decorated parts, or A = (1,...,1) and A = &. The hypotheses in Theorem 35
exactly rules out the first two equality cases for some D in the sum ), Ea(njf; Bf;\,
K :

SN P(D) B/%\ < 1 with equality if and only if A = (1,...,1),A = @.

(D+)

ii) the multiplicity of the eigenvalue

DAL
D (D+>

is the number of multisets {c,...,c,} in B] UB; — by Theorem 17, the required
multiplicity is ((17.1_’.71)) (g) = (bﬁ:*l). From (8) and (9) defining the sequences b
and b, it is clear that b, = dimH] = |B] U By |, hence (bﬁ:*l) is the number of
n-element multisets in B] U B; .

Finally, we check » _p 7, . c,(7) = 1. The key is the following identity, from the proof
of the type A case [Pan18, Th. 3.12]:

Z n(%)&q, a,...a, = n!, for any choice of dy, ..., d, € B;. (25)

Z‘eBn

Now, given multisets {cy,...,c;} € B and {cps1,...,cn} C By, let ¢; = 3(d; + dj) for
i >k, with d;,d; € B;. Then the coefficient of z in ¢; ...¢, is

1
T T
on—k <§Cl7m7ck,dk+1,m7dn + 5617---,Ck7d§€+1,---7dn
T T
TEer sty g T Setrcpdy, 1l g T )

with 2"7% terms in total, running through each combination of d; or d;. Each of these
2"=F terms, when multiplied by 7(z) and summed over z € B,, gives n! by (25), and the
same is true when considering the coefficient of z in c,(1)...cm) for all o € G,,. O

5 Applications to Hyperoctahedral Riffle-Shuffling

This section applies the eigenvector formulas of Section 3.2 to analyse hyperoctahedral
riffle-shuffles, as defined in Section 5.1 below. Recall that each formula depends on a basis
of primitives, which Section 5.2 will describe, before full computation of the eigenbasis
in Section 5.3 and its application to deduce the expected number of descents and the
probability of having sign equal to 1 in Sections 5.5 and 5.6.
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5.1 Hyperoctahedral Riffle-Shuffles

For the rest of the paper, we study two families of hyperoctahedral riffle-shuffies, the
a-handed riffle-shuffle with rotation and a-handed riffle-shuffle with flip. These are essen-
tially the Markov chains described in Theorem 34, when H is the signed shuffle algebra
of Example 1, 7 and 7 are as defined in (2) and (3), and m o Ap) = = BRiffler," or

= BRiffle7, (for rotation), or = BRiffle7,” or - BRiffle7, (for flip). The factor of 4
is necessary in order that the resulting operator can be written in the form in (22), for a
probability distribution P that sums to 1. For example, for a% BRiffle 7., the distribution
is P(D) = ( l;ﬁr) for all D with a parts and odd parts positive, even parts negative; and
P(D) = 0 otherwise. The case for the other three operators are similar.

We take the state space B, to be all 2"n! ways of ordering n distinct cards and
tracking their orientations. Algebraically, B, is the set of words of length n, where, for
each i € {1,2,...,n}, i or i appear exactly once. We may call these signed permutations
of n, viewed in one-line notation. Technically, B, is not a basis of H,, which should
include decks with repeated cards (words with repeated letters), but the span of B, is
invariant under m o Ap(,y and m o Apz) for all P, so the theory of the previous sections
can apply with minor modifications. Note that n(z) =1 for all = € B,,.

The application of Theorem 34 to this situation shows:

Corollary 36. Fiz an integer n, and let x,y be signed permutations of n. For a fixed
integer a, the matrix

1 1
K(x,y) := coefficient of y in — BRiffler," (z) (resp. — BRifflet, (x) )
a” a”
1s the transition matriz for the following card shuffle:

1. Choose a weak-composition (dy,...,d,) of n according to the multinomial distribu-

tion, 1.e. with probability al"(ch n d )

2. Cut the deck into a piles so the ith pile contains d; cards.

3. Rotate the first, third, fifth, ...piles (resp. second, fourth, sixth, ...piles) by 180
degrees.

4. Uniformly choose one of the (d1 " da) interleavings of the a piles. Equivalently, drop
the cards one-by-one from the bottom of one of the a piles, chosen with probability
proportional to the current pile size.

If we use T in place of T, then Step 3 should flip the piles upside down instead of rotating.
O

The equivalence in step 4 is proved in [BD92, Lem. 1] regarding riffle-shuffles.
Recall that, in type A, a b-handed riffle-shuffle followed by an a-handed shuffle is an
ab-handed shuffle. By Proposition 24.iii, this is true for shuffles with flip, composing the
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signs in BRiffle 7" and BRiffle 7, in the natural way. However, for shuffles with rotation,
Proposition 24.i asserts that a, the number of hands in the second shuffle, must be odd.

We would like to compute the expected value of some functions under this shuffle,
using the eigenvectors of the hyperoctahedral descent operators as proved in Section 3.2.
By Propositions 2.1 and 2.4 of [Pan18] (reproduced below), such calculations should take
place on the dual of the algebra defining the chain, namely the signed free associative
algebra in our case.

Proposition 37. [Pan18, Prop. 2.1, 2.4] Suppose K is the transition matriz for the
Markov chain {X;} on the state space B. Let £ : B — R be a (right) eigenfunction of
{X¢} with eigenvalue B, meaning > 5 K(z,y)f(y) = Bf(x). Then the erpected value of
f s
Expect(F(X;)| Xo = x0) 1= Y K (o, y)f(y) = B'f ().
yeB

In the particular case where {X;} arises from the construction of Theorem 34, the right
eigenfunctions £ are in bijection with the eigenvectors f € H* of the dual map mo Ap(+),
through the vector space isomorphism

5.2 Lyndon Word Combinatorics for Signed Words

Let A be an ordered alphabet, and T'(A) the free associative algebra over A. The usual
basis for Prim(T'(A)) are the “standard-bracketings of Lyndon words in A” [Lot97, Ch.
5]. The following explains this when A = {1 <1 <2 <2 < ... < N < N}, with an
important modification so that the output will be either 7-invariant or 7-negating, and
hence suitable for input into the eigenvector formulas of Theorems 26 and 27.

A word is Lyndon if it is lexicographically smaller than all its cyclic rearrangements.
For example, 1672 is Lyndon, because 1672 < 6721, 7216, 2167. In contrast, 53 and 3535
are not Lyndon.

Remark. A word with distinct letters is Lyndon if and only if its starting letter is minimal
amongst all its letters.

Definition 38. Given a Lyndon word wu, its signed standard-bracketing stdbrac(u) is
computed recursively as follows: if u = i is a single positive letter, set stdbrac(u) := i+ .
If w = i is a single negative letter, set stdbrac(u) := i — i. Otherwise, write u as the
concatentation of Lyndon words % and ¥ both non-empty such that U is of maximal
length — [Lot97, Prop. 5.1.3] asserts that this “standard factorisation” is possible. Then
define

stdbrac(u) := [stdbrac(’w), stdbrac()].

(These brackets denote the Lie bracket, [z, w] := zw — wz.)

Remark. From the previous Remark, it is easy to see that, if u has distinct letters, then
0 begins precisely with the second-minimal letter of w.
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Example 39.

stdbrac(1672) : = [stdbrac(167), stdbrac(2)]
= [stdbrac(167),2 — 2]
[[1 — 1,stdbrac(67)],2 — 2]
[1-1,[646,7—7],2—2]
1672 — 1672 + 1672 — 1672 — 1762 — 1762 + 1762 + 1762
— 1672 + 1672 — 1672 + 1672 + 1762 + 1762 — 1762 — 1762
— 6712 + 6712 — 6712 + 6712 + 7612 + 7612 — 7612 — 7612
+ 6712 — 6712 + 6712 — 6712 — 7612 — 7612 + 7612 + 7612
— 1672 + 1672 — 1672 + 1672
+ ... (28 more terms, analogous to those above)
— 2167 + 2167 — 2167 + 2167 + ... (28 more terms)
+ 2167 — 2167 + 2167 — 2167 + ... (28 more terms).

Proposition 40 and Corollary 41 explain how to determine if stdbrac(u) is 7-invariant
or T-negating.

Proposition 40. Let H be any Hopf algebra.
For 7 : H — H a linear involution that is an algebra morphism,

HTHT CHY,  [HOLHTTICHT,  [HT HTT S
For 7:H — H a linear involution that is an algebra antimorphism,
[HT, HT | CH T, [(HT, H ) CH, [(HT,H ) CHT.
Proof. For x,y € H™ and z,y € H™:

T([z,y]) = 7(ay —yz) = 7(2)7(y) —7(Y)7(x) = =

7([z. 7)) = 7(2y — yz) = 7(2)7(y) — 7(§)7(2) = 2(=Y) — (=§)v = —[z,7];

m([z, 7)) = 7(zy — yz) = 7(2)7(y) — 7(1)7(2) = (=2)(=¥) — (=y)(-7) = [2,7].

For z,y € H™ and Z,5 € H ™

T([z,y]) = 7(xy —yz) = 7(y)7(z) — 7(2)7(y) = yz — 2y = —[z,

Tz, 9]) = 7(2y — yz) = 7(§)7(x) — 7(2)7(Y) = (=y)z — 2(-y) = [2,Y};

[z, 7)) =72y —yz) =7(7)7(2) - 7(2)7(Y) = (=) (=2) + (=2)(=y) = [z,9]. O
Corollary 41. Let u be a Lyndon word in the alphabet A = {1 <1 <2=<2=<..- <

N = N}, and T(A) be the free associative algebra over A, i.e. the signed free associative
algebra. Then

<

stdbrac(u) € (PrimT(A))" <= wu has an even number of negative letters;
stdbrac(u) € (PrimT(A))™7 <= u has an odd number of negative letters;

stdbrac(u) € (PrimT(A))" <= u has an odd number of positive letters;
stdbrac(u) € (PrimT(A))™" <= u has an even number of positive letters.
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Proof. We prove the last line. The other three are entirely analogous.

Apply induction on the length of u. In the base case where u is a single letter, then
it has an even number of positive letters precisely when u is a negative letter, e.g. u = i.
Then stdbrac(u) =i —i € (PrimT(A))~" as required.

Now suppose u has at least two letters. If u has an even number of positive letters,
then there are two possibilities for S and U:

e % and ¥ both have an odd number of positive letters, so by inductive hypothesis
stdbrac(‘w), stdbrac(w) € (PrimT(A))™. So

stdbrac(u) = [stdbrac(%w ), stdbrac()]
C [(PrimT(A))", (PrimT(A))"] C (PrimT(A))"7,

using Proposition 40 for the last inclusion.

e & and ¥ both have an even number of positive letters, so stdbrac(w ), stdbrac(w) €
(PrimT(A))~". So

stdbrac(u) € [(PrimT(A))™", (PrimT(A))™"] C (PrimT(A))™"

also. =

5.3 Eigenbasis Algorithm

The previous section gave a signed standard-bracketing algorithm which converts each
Lyndon word to a 7-invariant or 7-negating primitive. Theorems 26 and 27 associate an
eigenvector for each multiset of such primitives, but it’s more convenient to index the
eigenvectors by words. The latter indexing may be achieved by a bijection sending a
word w to its decreasing Lyndon factorisation (us, ..., u ), where w is the concatenation
of the Lyndon words u; satisfying u; = ug >= --+ > ug in lexicographic order. By the
Remark before Definition 38, if w has distinct letters, then the u; begin at precisely the
left-to-right minima of w. For example, the decreasing Lyndon factorisation of 4351672
is (4,35,1672).
Hence the full eigenvector algorithm is as follows:

Algorithm 42. To associate to a word w an eigenvector of BRiffle ;" or BRiffle 7, for
odd a, or of BRiffle 7, or BRiffle 7, for any a, on the signed free associative algebra:

1. Take the decreasing Lyndon factorisation ug, ..., ux of w.
2. Calculate stdbrac(u;) for each Lyndon factor using Definition 38.

3. Use Corollary 41 to determine whether each result from Step 2 is 7-invariant or
T-negating — relabel the 7-invariant ones as pi,...,p, and the 7-negating ones as

Pre-- o Dk

4. Assemble the p; and p; according to Theorem 26 or 27 for the desired operator.
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By Theorems 26.iii and 27.iii, the eigenvectors associated with all words in the above
manner form a basis of the free associative algebra H.

Example 43. We calculate the eigenvector for BRiffle 75~ corresponding to w = 4351672.
1. The Lyndon factors of w are u; = 4, us = 35, uz = 1672.

2. Their standard bracketings are, respectively, 4 — 4, [3 4+ 3,5+ 5] and [[1 — 1, [6 +
6,7—7]],2-2].
3. 4 has one negative letter, so 4 — 4 is T-negating. Call this p;.
35 has no negative letters, so [3 + 3,5 + 5] is 7-invariant. Call this p;.
1672 has three negative letters, so [[1 — 1,[6 + 6,7 — 7]],2 — 2] is T-negating. Call
this pg.
4. Since a = 3 is odd, Theorem 27 applies. By inputting p1, p1, po above into (12):
(4—4)[1-1,64+6,7—T]],2—2][3+3,5+75]
+(A4-4)B+3,5+5][[1-1,[6+6,7—7],2—2]
+[[1-1,[64+6,7—"7]],2—2][3+3,5+5](4—4)
+[B3+3,5+5][[1-1,[6+6,7—7]],2—2](4—4)

is an eigenvector for BRiffle 757, of eigenvalue 3.

Example 44. We calculate the eigenvector for BRiffle 7" and BRiffle 7; corresponding
to w = 4351672. Steps 1 and 2 are similar to Example 43 above.

3. 4 has no positive letters, so 4 — 4 is 7-negating. Call this p;.
35 has one positive letter, so [3 — 3,5 + 5] is 7-invariant. Call this p;.
1672 has one positive letter, so [[1 —1,[6 + 6,7 — 7]],2 — 2] is 7-invariant. Call this
D2.

4. Since a = 2 is even, input p;, p2 p1 above into the second formula in Theorem 26.ia:

(4—-4)([3-3,5+5][[1—-1,[6+6,7—7]],2— 2]
+B3—-3,5+5][[1—-1,[64+6,7-7]],2—2])
is an eigenvector for BRiffle 7~'2+ , of eigenvalue 0. And, for BRiffle 75", input py, p2.p1
into Theorem 26.ic:
(4—4)([3=3,5+5][[1—1,[6+6,7—7]],2—2]
+B3—-3,5+5][[1—-1,[6+6,7—7]],2—2])
+([3-3,5+5][1-1,[64+6,7—7]],2 2]
+[3=3,5+5][[1-1,[6+6,7—7]],2—2]) (4 — 4)

is an eigenvector of eigenvalue —3.
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parity shuffle eigenvalue multiplicity
of a
- BRiffle en B
o or L BRiffler, a [2¥|z(x+2)(x+4)...(z+2n—2)
v or = BRiffle 7," 0 oyl (20)
or — BRiffle 7, = ol
- BRiffler; ken .
", or L BRiffle 7; a [Z"](z+ 1)(z+3)...(x +2n—1)
— BRiffler, akbn [ZF](z+n—1)(z+1)(z+3)...(z+2n—3)!
or = BRiffle7, | —a" ™" [2F]n(z +1)(x +3)...(x + 2n — 3)

Table 1: Multiplicities of the eigenvalues of the hyperoctahedral riffle-shuffies

5.4 Multiplicities of Eigenvalues

Because B,, is not a basis of H,, (as we’re ignoring decks with repeated cards), Proposition
25 does not apply to determine the multiplicities of the hyperoctahedral riffle-shuffles.
Instead, we enumerate the signed permutations with the required type of Lyndon factors
as listed in Corollary 41.

Theorem 45. Write [g]f to mean the cofficient of the monomial g in the power series f.
The (algebraic) multiplicities of the eigenvalues of the hyperoctahedral riffle-shuffles are
as given in Table 1.

To prove these multiplicities, let ¢(n, k) be the signless Stirling number of the first
kind, i.e. the number of permutations of n with k left-to-right minima. Recall that, in a
word with distinct letters, the Lyndon factors start precisely at the left-to-right minima,
hence ¢(n, k) is also the number of permutations of n with k£ Lyndon factors. Important for
deducing the generating functions of the multiplicities is the following generating function
of ¢(n, k)

Zc(n,k)a:k:x(x—l—l)...(x—i—n—l). (26)
k

We define a hyperoctahedral analogue of c(n,k): let C*(n,k, k) (resp. C~(n,k,k))
be the set of signed permutations of n having & Lyndon factors with an odd number of
positive (resp. negative) letters, and k& Lyndon factors with an even number of positive
(resp. negative) letters. Note that changing the sign of all letters gives a bijection be-
tween C*(n,k, k) and C~(n,k, k), so let C(n,k,k) denote their common size. Observe
C(n,k,k) = C(n, k, k), by changing the sign of the first letter in each factor.

Lemma 46. The hyperoctahedral Stirling numbers are related to the type A Stirling num-
bers by

Cln, b, k) = 22 Fe(n, k + ) (k Z k)

I This is a signless version of OEIS sequence A039762
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Proof. Given k and k, fix any sequence of k positive signs and k negative signs. There are
(k;gk) such sequences. We show below that, for any such sequence, there are 2" *~*¢(n, k+
k) signed permutations whose Lyndon factors u; have an odd number (resp. even number)
of positive letters if the ith term of the sequence is positive (resp. negative).

First, there are c¢(n, k+ k) permutations with k+ k& Lyndon factors in total. The factor
of 2"*=F then enumerates the signs that can be assigned: within each Lyndon factor, all
but the last letter can have arbitrary sign; the sign of the last letter is then determined

by the requirement that this factor have an odd (or even) number of positive letters. [

Lemma 47. The hyperoctahedral Stirling numbers satisfy the recursion

Cn,k,k)=Cn—1,k—1,k)+Cn—1,kk—1)+2n—1)C(n— 1,k k).  (27)

Proof. We construct a bijection between the relevant sets. Each element of C*(n, k, k) is
obtained in precisely one of the following manners:

e Adding n to the start of an element of C*(n — 1,k — 1,k) - n then becomes a new
left-to-right minima, i.e. a new Lyndon factor with one positive letter.

e Adding 7 to the start of an element of C*(n —1,k, k — 1) - @2 is then a new Lyndon
factor with one negative and no positive letters.

e To an element of C*(n — 1,k,k), add 7 between any two letters, or at the end.
This does not produce any new left-to-right minima, so n is inserted into one of the
existing Lyndon factors, and does not change its parity of its positive letters.

e To an element of C*(n — 1, k, k), add n between any two letters, or at the end, and
also change the sign of the preceding letter, which is necessarily within the same
Lyndon factor. This sign change ensures that the parity of positive letters remains
unchanged in this factor. m

Proof of Theorem 45. Fix a even. From Theorems 29 and 26, and Corollary 41, the
multiplicity of the eigenvalue a*~" is |C~(n, 0, k)| for ain BRiffle 7,F and ain BRiffle 7, , and
IC*(n, k,0)| for - BRiffle7,” and - BRiffle 7, . By the symmetry remarks before Lemma
46, their common generating function is

Z C(n, k,0)z" = Z 2" ke(n, k)ak
k

k

=2" Z c(n, k) (g)k

k

X X X
:2“—(— 1)...(— —1)
7 2+ 2+n

=z(z+2)(x+4)...(z+2n—2).

0 is the only other eigenvalue. So that the multiplicities of all eigenvalues sum to 2"n!,
the multiplicity of 0 must be 2"n! —1-3----- (2n —1).
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Now consider a— BRiffle 7, for a odd. From Theorem 27 and Corollary 41, the mul-
tiplicities of the eigenvalues ak " and —a*™", respectively, are > ;. . |C+(n,k, k)| and
Y i odd ICT(n, k, k)|. It can be proved by induction on n that

Zank—nZC — 1k, k),

k odd

> Cn,k k) = (n— DY Cn—1,kk)+> Cn—1k—1k);

Ek even E k
briefly, use (27) to rewrite the left hand side in terms of C'(n—1, —, —), apply the inductive
hypothesis to obtain sums of C'(n — 2, —, —), over all values of k, then collect terms using
(27) to obtain terms of the form C'(n — 1, —, —). Then the claimed generating functions

come from observing that

%;C( — Lk )zt =) ot he(n — 1, k+k)(k7;k>:ck

kk

=> 2" e(n—1,5)(x + 1)

J

=273 e(n - 1,5) (x;d)j

k

1 1 1
:2"—1“'; (m; +1>(x; —|—n—2>

=(x+1)(z+3)...(x+2n-3).

The multiplicity of a*™ for 4 BRifHe 7.7 is the sum of the multiplicities of a*~" and
—a*™ for - BRiffle7,. The cases of — BRiffler, and - BRiffler,” follow from the
symmetry remarks before Lemma 46. O

5.5 Subdominant Eigenfunctions and Expectations of Descents

The paper [DPR14, Exs. 5.8-5.9, Prop. 5.10] identified the eigenvectors of type A riffle-
shuffles with large eigenvalues, and expressed some of them in terms of two classical per-
mutation statistics, namely descents and peaks. This section derives one hyperoctahedral
analogue.

First, to clarify what is meant by “large” eigenvalue:

Definition 48. An eigenvalue A of a Markov chain is subdominant if |A| < 1 and || > ||
for all other eigenvalues \' # 1, —1.

Informally, subdominant eigenvalues have maximal absolute value after 1. Their values
and corresponding eigenspaces have the largest influence on the convergence rate.
The corresponding eigenvectors are expressed in terms of the following terminology:
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Definition 49. If w = w; ... w, where w; denotes the ith letter of w, then a consecutive
subword of w is a word of the form w;w;4; ... w; for some 7 < j.

For example, if w = 4351672, then 351 and 672 are consecutive subwords of w, but
367 is not.

Definition 50. Given a word w, its consecutive subword ij is a descent if ¢ > j. This
applies whether ¢ and j are positive and negative letters. Let des(w) denote the number
of descents in w.

For example, the descents of 4351672 are 43, 51, and 67, so des(w) = 3. Notice that
this differs from the definition of descent in Coxeter type B, where additionally the first
letter is a descent if it is negative.

Notation 51. For i < j, define

(1 if any of ij, ij is a consecutive subword in w;
+ e . .. . . . .
fi(w):=q -1 ifany of ji, jiis a consecutive subword in w; (28)
L0 otherwise,
and ) o
1 if any of ij, ij is a consecutive subword in w;
f(w):=q -1 ifany of ji, jiisa consecutive subword in w; (29)
L0 otherwise,
And for ¢ # 7, define
1 if any of ij, ij, ji, ji is a consecutive subword in w;
fj(w):=<{ —1 ifany of ji, ji, ij, ij is a consecutive subword in w; (30)
0 otherwise.

1 if 7 is the first or last letter of w;
gi(w) ;=< —1 if 7 is the first or last letter of w; (31)
0 otherwise.

Proposition 52. The subdominant eigenvalues of the hyperoctahedral riffle-shuffles, and
a basis of associated eigenfunctions, are as given in Table 2.

The proof is at the end of this section.

Proposition 53. Fix a positive integer a, and let {X,;} denote a-handed riffle-shuffle with
flip, i.e. the Markov chain associated to ain BRiffle 7,7 or aln BRiffle 7, on B,, according to
Section 5.1. Then the “normalised number of descents” functions w > des(w) — =2 is

2
an eigenfunction of {X,;} of eigenvalue 1/a. Hence

-1
Expect(des X;| Xo = wp) = (1 — a_t)nT + a~" des(wy).
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subdominant

parity of a shuffle basis of eigenfunctions
eigenvalues
1 ; 1 : — _
even — BRiffle7;” or - BRiffle 7, 1/a {fiyu{f;}
L BRiffle 7, 1/a {f;}u{fy} Uisl
odd 1 £rlu{f;
a%BRiﬁ'leTa_ /(Z { z]} { z]}
—1/a {gi}
even - BRiffle 7, or - BRiffle 7, 1/a {f;}
L BRiffle 7, 1/a {f,,} U {g}
odd 1/a {f,)

L BRiffle 7,

—1/a {gi}

Table 2: Subdominant eigenvalues for hyperoctahedral riffle-shuffles, and bases for their
eigenfunctions

Proof. We show that

n—1 ~
des(w) — —— = Z fi;(w)
1<J
for all w € B,,. Note that the subwords which cause f'ij (w) = —1, namely ji, ji, ij and i,
are all descents if i < j. And every descent of w is of one of these 4 types, for some i < j.
Opposingly, all consecutive subwords of two letters that are not descents (i.e. “ascents”)
contribute 1 to f;;(w) for some i < j. Hence 3., y f,;(w) is the difference between the
number of ascents and the number of descents in w. Since each pair of consecutive letters
in w is either an ascent or a descent, the number of ascents and descents together total
n — 1. Hence this difference is (n — 1 — des(w)) — des(w).
As for the expectation assertion: by the linearity of expectations, then by Proposition
37,

- —1
Expect(des X;| Xy = wp) = Expect(z £;;(X1)| Xo = w) + Expect <HT‘X0 = w)
i<j

n—1

= a_t Z Ej (wo) + . O

— 2
1<J

Proof of Proposition 52. According to Theorems 26, 27 and 29, for the four operators
— BRiffler;", .- BRiffler, , & BRiffle7, and & BRiffle 7, :
e When a is even, the only subdominant eigenvalue is 1/a, and it corresponds to

k=n—1and k =0, i.e. the corresponding eigenvectors are formed from n — 1
T-invariant (or 7-invariant) primitives, and no T-negating (or 7-negating) primitives.
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e When a is odd, the subdominant eigenvalues all correspond to k = n — 1 and k
can take any value, i.e. the corresponding eigenvectors are formed from n — 1 7-
invariant (or 7-invariant) primitives, and any number of 7-negating (or 7-negating)
primitives. However, since k + k < n (as each primitive has degree at least one,
and the degree of their product is n), the only possible values of k are 0 and 1.
When k = 0, the eigenvalue is 1/a for all four operator families. When k = 1, the
cigenvalue is 1/a for = BRiffler;” and - BRiffle7,", and is —1/a for - BRiffler,,
and ain BRiffle 7.

The proof will be completed by showing the following:

i) {f; |7 < j}U{~f; | j < i} are precisely all the eigenvectors, for BRiffle 7,” and
BRiffle 7, given by Algorithm 42 when £k =n — 1 and k = 0.

a

i) {f |i < j} (vesp. {f; |7 < j}) are, up to scaling, the sums (resp. differences)
of pairs of eigenvectors, for BRiffle 7,7 and BRiffle 7,7, given by Algorithm 42 when
E=n—-1and k=0.

iii) {g:} are precisely all the eigenvectors, for BRiffle7,", BRiffle 7", BRiffle7,” and
BRiffle 7, when a is odd, given by Algorithm 42 when k =n — 1 and k = 1.

And here are the proofs of these three assertions.

i) k=n—1and k = 0 means that the indexing word has n — 1 Lyndon factors, whose
standard-bracketings are all 7-invariant. So, by the third line of Corollary 41, each
Lyndon factor consists of an odd number of positive letters. Necessarily, n — 2 of
these factors must be single positive letters, and the remaining factor consists of one
positive and one negative letter - i.e. it is ij or ij, where i < j. Take the first case;
the standard-bracketing of ij is

li+i,j—l=ij—ij+ij—ij—ji—ji+ji+ji (32)

Observe that, if w consists precisely of i or i once and j or j once, then f;(w) is
precisely the coefficient of w in (32).

Since all primitives involved are 7-invariant, the formulas in parts a, b, ¢ of The-
orem 26 all agree: the common eigenvector for BRiffle 7t and BRiffle7, is the
symmetrised product of (32) with r + 7, ranging over all r # 4, j. In this product,
the terms in (32) stay as consecutive subwords, and the letters distinct from 4, j
may have any order, with equal coefficient. Thus, the coefficient of a word in this
eigenvector is given by f'zj

As for ij, its standard-bracketing is [i — 4,7 + j| = —[j + j, i — ], which differs from
(32) only by a global sign and the exchange of 4 and j. So, by the same argument
as above, —f;;(w) describes the coefficient of w in this eigenvector.
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ii) Similar to case i) above, these eigenvectors are produced from n — 1 Lyndon factors
whose standard-bracketing are all 7-invariant. By the first line of Corollary 41, each
Lyndon factor consists of an even number of negative letters. As in case i), n — 2
of the factors are single positive letters, and the remaining factor is ij or ij. Note
that

stdbrac(ij) = ij +ij +ij +ij — ji — ji — ji — ji;
stdbrac(ij) = ij — ij —ij +j — ji + ji + ji — ji.

So p* := i(stdbrac(ij) + stdbrac(ij)) and p~ := i(stdbrac(ij) — stdbrac(ij)) have
coefficients as decribed by f;f and f;;, respectively, when w consists only of ¢ or i
once and j or j once. The extension to words longer than w is as in case i): take
the symmetrised product of p* or p~ with all r + 7 for r # 4, 7, following Theorems
27 and 29. Note that (with the obvious notation)

sym{pT} U {r +7| r #1i,j} = sym{stdbrac(ij)} U {r + 7| r #i,5}
+ sym{stdbrac(ij)} U{r + 7| r #1i,j}

and similarly for p~—, because taking symmetrised product is linear in each argument.

iii) K =n — 1 and k = 1 means that the indexing word has n Lyndon factors, so each
factor must be a single letter. From Corollary 41, the standard-bracketing of a single
positive letter is both 7-invariant and 7-invariant, and the standard-bracketing of
a single negative letter is both 7-negating and 7-negating. Hence, these n Lyndon
factors are precisely one negative letter, say 4, and n — 1 positive letters. Since
k = 1, the formula in Theorem 26.i.c (for BRifle 7;) and (12) (for BRiffle 7" and
BRiffle7, ) both simplify to (i —4)s + s(i — i), where s denotes the symmetrised
product of r + 7 over all r # ¢. The coefficient of a word in this eigenvector is given
by g;. O

5.6 An Eigenfunction related to Signs

In [FKLP21, Th. 1.4, 5.8], the authors give the probability, under type A riffle-shuffles or
under BRiffle 7, for a odd, that the resulting deck has sign 1, when viewed as a permu-
tation or signed permutation. It is noted there that the type A case may be proved using
a related eigenfunction, constructed using Hopf-algebraic methods. Jimmy He informed
us that the hyperoctahedral result might also be obtainable in this manner, which we do
below, extending the result of [FKLP21] to BRiffle 7, and to riffle-shuffles with rotation
when the number of cards is even.

Definition 54. Given a signed permutation w = wy . .. w,, its sign sgn(w) is the product
of the sign of the permutation |w1]...|w,| € &, and the parity of signed integers in w.

For example, sgn(43512) = 1 because the permutation 43512 has sign —1, and there
are an odd number of signed integers in 43512.
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parity of a shuffle eigenvalue

. . — _n
odd or even | < BRiffler,” or - BRiffler, | a™2 for n even

even — BRiffle 7, or - BRiffle 7, 0

-+ BRiffle 7 a"
odd -

L BRiffle 7, (—)[5lgn

Table 3: Eigenvalues corresponding to the sign function

Proposition 55. sgn is an eigenfunction of the a-handed riffle-shuffles with flip or with
rotation, for eigenvalues 3 as listed in Table 3. Hence, if {X;} denotes one of the shuffles
above,

1
Prob(sgn X; = 1|sgn Xy = 1) = 5(1 + B3Y).

Proof. Given elements py, ..., py in the signed free associative algebra, let sym{pi, ..., px}
denote the symmetrised product ZUEGk Do(1) - - - Po(k). We also write o; instead of o(i).
Let 2, denote the alternating group on n objects, i.e. the set of even permutations.
Below, we first show that

Z Sym{[01 — 071,0'2 — 072], [0'3 — 073,0'4 — 074], Ce
oA,

oy [One1 — 1,00 — 0y} if nis even;

Z sym {[o1 — 01,09 — 03], [03 — 03,04 — T4, . ..
oA,

oy [On2 — Tp 2,001 — Op_1),On — On, } if n is odd;

is a multiple of the sign function, then we verify its eigenvalue.

First observe that, for even n, sym{12,34,... n—1n} is a sum over permutations that
can be obtained from the identity by some number of transpositions of ¢ ¢ +1 with j 7+ 1
(for odd 4, j), and each such transposition-pair is an even permutation, so all permutations
appearing in sym{12,34,...,n — 1 n} are even. Next, sym{[l,2],[3,4],...,[n — 1,n]}
additionally allows transposing i and ¢ + 1 (for odd i), but this incurs a minus sign.
Finally,

sym{[1 —1,2—2],[3-3,4—4],...,[(n—1) — (n—1),n —n]} (33)

additionally allows conversion of i to 4, again at the cost of a minus sign. Hence, for
every signed permutation that appears in (33), its coefficient is equal to its sign. We
then symmetrise (33) over all even permutations, to ensure that all signed permutations
appear in the result, with coefficients proportional to their sign.

For the case for odd n: each permutation appearing in sym{12,34,... , n—2n—1,n}
is a product of some transposition-pairs ¢ ¢ + 1 with j 7 + 1 and one cycle of the form
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(¢i+1 ... n) for odd i. This cycle has sign 1, so all such permutation products have
sign 1. The remainder of the argument applies unchanged.

To deduce the eigenvalues: o; — 7; is T-negating and 7-negating, so by Proposition 40
l0; —0;,0; — 0;] is T-invariant and 7-negating. By Lemma 30, the symmetrised product of
2 r-invariant primitives is an eigenvector of - BRiffle 7" or = BRiffle 7, , with eigenvalue
a~"a?. And by Theorem 26, the product of (%1 T-negating primitives is an eigenvector
of & BRiffle 7, and - BRiffle 7, with eigenvalues as in Table 3.

For the probability assertion:

Expect(sgn X;) = Prob(sgn X; = 1) — Prob(sgn X; = —1)
= 2Prob(sgn X; = 1) — 1

and by the linearity of expectations as in Proposition 53, Expect(sgn X;) = #'sgn Xy. [
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