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Abstract

In this paper, we determine the graphs (respectively, trees) with maximum spec-
tral radius among all graphs (respectively, trees) with zero forcing number at most
k. As an application, we give a sharp lower bound for the zero forcing number of
graphs involving the spectral radius.

Mathematics Subject Classifications: 05C50, 05C15

1 Introduction

All graphs consider here are simple, finite and undirected. For any notation and terminol-
ogy used but not defined, one may refer to [9, 15]. Let G = (V (G), E(G)) be such a graph
with order n = |V (G)|. The color-change rule on G is defined as follows. Originally, color
the vertices in V (G) and its subset S to be white and blue respectively. For each of the
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steps, a blue vertex u in S with exactly one white neighbor v will force v to turn into blue.
At this time, we say u forces v. The set S is said to be a zero forcing set if all vertices
of V (G) become blue by applying the color-change rule. And this process is called the
forcing process of S in G. The zero forcing number of G is the minimum cardinality of
zero forcing sets of G, denoted by Z(G).

As pointed in [20, 26], the forcing process is an instance of a propagation process on
graphs, and it has many applications to other branches of mathematics, computer science
and physics, such as the linear and quantum controllability for systems that stem from
networks [11, 12] and the power domination [34]. Moreover, diverse graph processes are
employed to model technical or societal processes in other fields. For more details and
an overview of the different models and applications, refer to the book [5] and the papers
[20, 26] with the references therein.

Notice that the zero forcing process was proposed in [13]. Independently, the zero
forcing number was introduced in [1] as a bound for the minimum rank or, equivalently,
the maximum nullity M(G) of a graph G. Recall, the minimum rank of G is defined
to be the smallest possible rank over all symmetric real matrices whose ij-th entry (for
i 6= j) is nonzero whenever ij ∈ E(G) in G and is zero otherwise. Then, the minimum
rank of G is n −M(G). In [2], it was shown that Z(G) > M(G) for any graph G. This
parameter has been extensively studied in over half a century, largely due to its connection
to inverse eigenvalue problems for graphs, singular graphs, biclique partitions, as well as
its applications to other problems and disciplines. For more results on this topic, refer to
[1, 22, 35].

Recently, it has attracted great concern about the relations between the zero forcing
number and other graph parameters, such as the connected domination number [3], the
tree-width [4], the degree sequence [14, 24], the perfect dominating set [19], the path cover
number [23], the girth and minimum degree [26], the Grundy (total) domination number
[8, 29] and the chromatic number [32]. Up to now, a mass of papers about the zero forcing
number have been published. We here tend not to list all, but we focus primarily on those
related to the lower bounds for the zero forcing number. Let δ and g be the minimum
degree and the girth of a graph G. Recall that the girth is the length of the shortest cycle in
a graph. Easily to see that a trivial but tight one is Z(G) > δ. Whereas, if g > 3 and δ > 2,
Davila, Kalinowski, and Stephen [17] showed that Z(G) > δ+(δ−2)(g−3), confirming the
earlier conjecture from [18]. Kalinowski, Kamc̆ev and Sudakov [26] essentially improved
this bound with few exception of very small values of δ and g = 3, 4, whose bound is
stated as follows:

Z(G) >

 e−1
(

δk

k+1
− δk−1

)
if g = 2k + 1,

2e−1
(

δk

k+1
− δk−1

)
if g = 2k + 1.

(1)

Further, Inq. (1) was extended to H-free graphs by their method based on the Turán
numbers [26]. When it comes to our interests, we prefer to their spectral bounds on
the zero forcing number of a graph. Some jargon from spectral graph theory are now
introduced. The adjacency matrix A(G) = (aij) of a graph G with order n is an n × n
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Figure 1: The tree Tn,k.

matrix whose entry aij is 1 if ij ∈ E(G), and 0 otherwise. The eigenvalues of G are
those of its adjacency matrix. An (n, d, λ)-graph is a d-regular graph with order n in
which all eigenvalues but the largest one are at most λ in absolute value. Using the
well-known estimate on the edge distribution of a graph in terms of its eigenvalues (eg,
[27]), Kalinowski, Kamc̆ev and Sudakov [26] provided the following spectral bounds for
the (n, d, λ)-graphs G:

Z(G) > n

(
1 +

2λmin

d− λmin

)
, (2)

where λmin is the smallest eigenvalue of G, and the bound is tight. Remember that the
spectral radius, denoted by ρ(G) = λmax, of G is its largest eigenvalue. In the paper, we
will investigate the relations between the zero forcing number and the spectral radius of
a graph.

Let Sn,k be the set of all graphs with order n and zero forcing number at most k
(1 6 k 6 n − 1). The first goal of this paper is about to determine the extremal graphs
with maximum spectral radius in Sn,k. This is the type of Brualdi-Solheid Problem
[10] that determining the maximal spectral radius of graphs in a given family, with a
considerable number of results having been published (see [7, 16, 21] for examples).

Let G∇H be the join obtained from two disjoint graphs G and H by connecting each
vertex of G to each vertex of H. As usual, let Kn and Pn be the complete graph and the
path with order n respectively. It is the time to state the first main result in the paper.

Theorem 1. In Sn,k, the maximum spectral radius is attained by the following unique
graph:

(i) Pn if k = 1;

(ii) Gn,k = Kk−1∇Pn−k+1 if 2 6 k 6 n− 2;

(iii) Kn if k = n− 1.

We next consider the same problem for the trees. Let Tn,k be the set of all trees with
order n and zero forcing number at most k, where k > 1 and n > k + 2.
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Theorem 2. In Tn,k, the maximum spectral radius is attained by the following unique
tree:

(i) Pn if k = 1;

(ii) Tn,k if 2 6 k 6 n− 2,

where Tn,k is shown in Fig. 1 and minutely defined in Definition 13.

Note, in the tree Tn,k with n > 3k, that the pendant paths attached at the vertices ui’s
(1 6 i 6 k + 1) are of almost equal length, and min{|Pi,1|, |Pi,2|} > max{|P0,k|, |P0,k−1|}
(1 6 i 6 k − 1) as well as min{|Pi,1|, |Pi,2|} > max{|Pj,1|, |Pj,2|} (1 6 i < j 6 k − 1),
where |Pi,j| means the length of pendant path Pi,j.

In the end, on the basis of Theorem 1, we can provide the following lower bound for
the zero forcing number of a graph by means of its spectral radius.

Theorem 3. Let G be a graph with order n and spectral radius λmax. Then

Z(G) > 1 +

⌊
n+ λmax −

√
n2 + 2(λmax − 2)n− 3λ2max + 12

2

⌋
. (3)

Moreover, this bound is sharp.

Here is the remainder of the paper. In Section 2 we give a proof of Theorem 1 by
employing the k-trees. In Section 3, to show Theorem 2, we mainly use several old and
new grafting transformations on the spectral radius of graphs. In Section 4, we provide a
proof of Theorem 3, which is based on Theorem 1 and some spectral techniques including
the equitable partition.

2 Proof of Theorem 1

The following lemma follows from the well-know Perron–Frobenius Theorem, referring to
Theorem 2.2.1 in [9].

Lemma 4. Let G be a connected graph, and H be a subgraph of G. Then ρ(H) 6 ρ(G),
and equality holds if and only if H = G.

A column vector x indexed by the vertices of G can be denoted by x = (x1, x2, . . . , xn)t,
where xi is the component of x corresponding to the vertex i for any 1 6 i 6 n, and the
sign t means the transpose of the vector. If G is connected, from Perron–Frobenius
Theorem it follows that ρ(G) is simple and its associated eigenvector, named as Perron
vector, is positive.

The following lemma is a generalization of Theorem 8.1.3 in [15].

Lemma 5. Let G be a connected graph with Perron vector x = (x1, x2, . . . , xn)t. Let u, v,
be any two vertices, and W be a set of vertices which are adjacent to u but not adjacent
to v. Let G

′
be the graph obtained from G by deleting the edges between u and W , and

adding the edges between v and W . If xv > xu, then ρ(G
′
) > ρ(G).
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For an integer r > 1, a subset V ′ ⊆ V (G) is called a r-clique of a graph G if G[V ′],
the subgraph of G induced by V ′, is a compete graph on r vertices. A k-tree is a chordal
graph which has an inductive definition that extends the definition of a tree, which was
introduced by Beineke and Pippert in [6].

Definition 6. [6] For an integer k > 1, a k-tree can be inductively defined as follows:

(i) Every complete graph with k + 1 vertices is a k-tree;

(ii) If G is a k-tree, v /∈ V (G) and V ′ ⊆ V (G) induces a k-clique of G, then G′ =
(V (G) ∪ {v}, E(G) ∪ (v, w) | w ∈ V ′) is also a k-tree;

(iii) Nothing else is a k-tree.

Let Kn,k be the family of all the k-trees with order n and zero forcing number k. Let
G be a graph on n vertices with Z(G) = k. Clearly, k = 1 iff G = Pn. If k = n− 1, then
ρ(G) 6 ρ(Kn) and equality holds iff G = Kn. In what follows we set 2 6 k 6 n− 2.

Mitchell [30] showed the following useful result.

Proposition 7. [30] Let G be a graph in Sn,k with 2 6 k 6 n− 2. Then G is a spanning
subgraph of some graph in Kn,k.

Note, any k-tree with order n has precisely k(k−1)
2

+ k(n − k) edges. For any graph
G ∈ Kn,k, every vertex has degree at least k. Since Z(G) = k, for any minimum zero
forcing set Z ⊆ V (G), the first forcing vertex must have degree k, and its neighbourhood
must induce a k-clique (since each vertex of a k-tree is contained in a (k + 1)-clique).
Recall, a vertex u ∈ V (G) is called a leaf if its degree d(u) = 1.

Proposition 8. Let 2 6 k 6 n − 2. Then the graph Gn,k = Kk−1∇Pn−k+1 is the unique
graph maximizing the spectral radius in Kn,k.

Proof: Clearly, Gn,k = Kk−1∇Pn−k+1 is a k-tree with zero forcing number k, since
the set of vertices in Kk−1 and a leaf of Pn−k+1 is a zero forcing set with k vertices.

Let G be a k-tree in Kn,k with maximum spectral radius. Set x = (x1, x2, . . . , xn)t

to be its Perron vector. Due to Z(G) = k, suppose that Z = {u1, u2, . . . , uk} is a zero
forcing set of G. As mentioned above, G[Z], the induced subgraph by Z, is a k-clique
of G. Let the vertices of Z be initially blue in G. Then by color-change rule, without
loss of generality, we can denote the other vertices (not in Z) of G which are forced blue
in order by uk+1, uk+2, . . . , un. In detail, let the zero forcing process starting with Z be
described as v1 → uk+1, v2 → uk+2, . . . , vn−k → un, where v → u indicates that vertex v
forces vertex u.

Notice that for any i < j, if ui forces uj, by color-change rule we know that ui is
adjacent to uj but not adjacent to any vertex u` for ` > j + 1. For any t > k, set
Zt = {u1, u2, . . . , ut}. For any vertex u of G, let NG(u) denote the neighbourhood of u.
Then the following claims are easy to establish:

(i) G[Zk+1] is a (k + 1)-clique, and NG(v1) = Zk+1 − {v1};
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(ii) NG(vj)
⋂
{uk+j, uk+j+1, . . . , un} = {uk+j} for all j ∈ {1, 2, . . . , n− k};

(iii) NG(uj)
⋂
Zj−1 = Zj−1 − {v1, v2, . . . , vj−1−k} for all j ∈ {k + 2, k + 3, . . . , n}.

Notice that for k + 1 6 j 6 n, the vertex uj has precisely k neighbors in Zj−1.
Moreover, for any k + 1 6 j 6 n − 1, uj is adjacent to the vertex uj+1, and vj−k is the
unique vertex in Zj−1 which is adjacent to uj but not adjacent to uj+1 (This fact will be
used repeatedly in the following paragraph, which is denoted by Fact∗).

Let Z
′
= V (G)−({v1, v2, . . . , vn−1−k}∪{un−1}). We shall prove Z

′
is another zero forc-

ing set of G with k vertices, and the forcing process starting from Z
′
is un → un−1, un−1 →

vn−1−k, un−2 → vn−2−k, . . . , uk+1 → v1 (Note, Z
′
is actually the reversal of Z, which is also

a zero forcing set by [2]. But for the completeness of the proof, we give the details here).
Clearly, G[Z

′
] is a k-clique containing un as a vertex. Now color the vertices in Z

′
to be

blue initially. By letting j = n in (iii), we have that un−1 is the unique neighbor with
white color of un. Then by the color-change rule, the vertex un forces the vertex un−1.
Hence, the vertex un and its neighbors are all forced blue. By Fact∗, vn−1−k is the unique
vertex except the neighbors of un, which is adjacent to un−1. Then, un−1 forces vn−1−k,
and hence the vertex un−1 and its neighbors are all forced blue. Again by Fact∗, vn−2−k
is the unique vertex except the neighbors of un−1, which is adjacent to un−2. Then, un−2
forces vn−2−k, and hence the vertex un−2 and its neighbors are all forced blue. Continue
the process until the vertex uk+1 and its neighbors are all forced blue. Consequently, all
the vertices of G are forced blue. Therefore, Z

′
is a zero forcing set of G.

Let p1, p2, . . . , pk−1 be k − 1 vertices of G such that their corresponding components
xp1 , . . . , xpk−1

in x are the first k − 1 largest ones among all the vertices of G. For
1 6 i 6 k− 1, we shall prove dG(pi) = n− 1, where dG(pi) is the degree of vertex pi in G.
Assume by contradiction that dG(pj) 6 n−2 for some 1 6 j 6 k−1. We next distinguish
into the following two cases.

Case 1. The vertex pj ∈ Z
⋃
{uk+1}. In the forcing process starting from Z, let u` be

the first vertex which is not adjacent to vertex pj, where ` > k + 2. (Then we must have
pj → u`−1.) Since the vertex u` has exactly k neighbors in Z`−1, then there is a neighbor
(say, ub) of u` in Z`−1 such that ub 6∈ {u`−1, p1, p2, . . . , pk−1}, and thus xub 6 xpj . For
` 6 i 6 n, if ui is adjacent to ub (notice that ui is not adjacent to pj), after deleting the
edge ubui and adding the edge pjui to G, we obtain the graph G1. For any ` 6 i 6 n,
since pj is adjacent to all other vertices in G1[Zi−1], then the neighbors within Zi−1 of ui
in G1 induces a k-clique of G1[Zi−1]. Thus G1 is a k-tree on n vertices. Furthermore, Z is
also a zero forcing set in G1 (we just change pj → u`−1 to ub → u`−1 in the forcing process
of Z, and change ub → v to pj → v in G1 if ub → v in G for some vertex v). Hence G1

is a k-tree on n vertices with zero forcing number Z(G1) = k. Thereby, G1 ∈ Kn,k. By
Lemma 5 we get ρ(G) < ρ(G1), a contradiction.

Case 2. The vertex pj 6∈ Z
⋃
{uk+1}. Then we have pj = um for some k+ 2 6 m 6 n.

In the forcing process starting from Z, if there exists a vertex ui (i > m + 1) which is
not adjacent to um, then we can assume that u` is such a vertex with `(> m + 1) being
minimum. Since the vertex u` has precisely k neighbors in Z`−1, there is a neighbor (say,
uc) of u` in Z`−1 such that uc 6∈ {u`−1, p1, p2, . . . , pk−1}, and thus xuc 6 xum . For ` 6 i 6 n,
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if ui is adjacent to uc (notice that ui is not adjacent to um), by deleting the edge ucui and
adding the edge umui in G, we obtain the graph G2. But G2 is a k-tree on n vertices with
zero forcing number Z(G2) = k, with a similar discussion in Case 1. Hence, G2 ∈ Kn,k.
From Lemma 5 it follows that ρ(G) < ρ(G2), a contradiction again.

Consequently, we have that, for any i > m+ 1, the vertex ui is adjacent to the vertex
um. In particular, um is adjacent to un. Since dG(un) = k, thus um is contained in the
(unique) (k + 1)-clique containing un in G. Recall, um = pj. Then pj ∈ Z

′ ⋃ {un−1}.
Considering the forcing process starting from Z

′
, we will have a contradiction by a similar

way to Case 1.
As proved above, dG(pi) = n − 1 for any 1 6 i 6 k − 1. Then, for 1 6 i 6 k − 1, pi

must be in Z ∪{uk+1}, and thus G[V (G)\{p1, p2, . . . , pk−1}] is a tree on n+ 1− k vertices
with zero forcing number 1, and thus G[V (G)\{p1, p2, . . . , pk−1}] is the path on n+ 1− k
vertices. As a consequence, G is the graph Gn,k = Kk−1∇Pn+1−k, as required.

This completes the proof.

Proof of Theorem 1: Let G be a graph G in Sn,k with 2 6 k 6 n− 2. By Proposition
7 there exists a graph H ∈ Kn,k such that G is a spanning subgraph of H. From Lemma
4 and Proposition 8, it follows that ρ(G) 6 ρ(H) 6 ρ(Gn,k), where ρ(G) = ρ(Gn,k) iff
G = Gn,k.

This ends the proof. 2

3 Proof of Theorem 3

The study of spectral radius and its relation to other graph parameters is a hot area of
research with many different techniques and applications, surveyed in the monographs of,
eg., [9, 15, 25]. Due to Theorem 1, we are now in the stage to show Theorem 3.

Proof of Theorem 3: If G is edgeless, then ρ(G) = 0, and thus the inequality (3) holds
as Z(G) > 1. Since Z(Pn) = 1 and ρ(Pn) < 2, the inequality (3) holds for G = Pn. We
next assume that G 6= Pn contains at least one edge. Let Z(G) = k. Then k > 2 and
1 6 ρ(G) 6 n− 1.

For convenience, set ρ(G) = λmax = ρ. We prove Ineq. (3) by contradiction. Assume
that

k = Z(G) 6

⌊
1

2
(n+ ρ−

√
n2 + 2(ρ− 2)n− 3ρ2 + 12)

⌋
. (4)

Due to ρ > 1, a direct calculation shows that

1

2
(n+ ρ−

√
n2 + 2(ρ− 2)n− 3ρ2 + 12) 6 2ρ,

which together with (4) results in 2ρ− k > 0. On the other hand, it is routine to verify⌊
1

2
(n+ ρ−

√
n2 + 2(ρ− 2)n− 3ρ2 + 12)

⌋
6 n− 2.
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Hence 2 6 k 6 n − 2. By Theorem 1 we get ρ 6 ρ(Gn,k). From Lemma 4 it follows
that ρ(Gn,k) < ρ(Kk−1∇Cn+1−k), where Cn+1−k is the cycle with order n + 1 − k. By
the obvious equitable partition of the graph Kk−1∇Cn+1−k (see [9, Chapter 2], or [15,
Theorem 2.1.8]), it is easy to obtain that

ρ(Kk−1∇Cn+1−k) =
k +

√
4(k − 1)n− 3k2 + 12

2
.

Then

ρ <
k +

√
4(k − 1)n− 3k2 + 12

2
, and thus 2ρ− k <

√
4(k − 1)n− 3k2 + 12.

Squaring both sides of the above inequality, we get 4k2 − 4k(ρ+ n) + 4(ρ2 + n− 3) < 0.
Hence,

k >
1

2
(n+ ρ−

√
n2 + 2(ρ− 2)n− 3ρ2 + 12),

which is contradictive to the assumption (4).

We next show that this bound is sharp. Note that ρ(Pn) = 2 cos π
n+1

and Z(Pn) = 1
and ρ(Kn) = Z(Kn) = n − 1. Easily to verify that Pn and Kn satisfy the equality in
Theorem 3.

In fact, the graph Gn,k also satisfies the equality in Theorem 3. Otherwise, from
Theorem 3 it follows that

Z(Gn,k) = k > 2 +

⌊
1

2
(n+ ρ(Gn,k)−

√
n2 + 2(ρ(Gn,k)− 2)n− 3ρ2(Gn,k) + 12)

⌋
,

which results in

k − 1 >
1

2
(n+ ρ(Gn,k)−

√
n2 + 2(ρ(Gn,k)− 2)n− 3ρ2(Gn,k) + 12).

SinceGn,k containsKk+1 as a subgraph, then ρ(Gn,k) > k. Along with the above inequality
we obtain

ρ(Gn,k) <
k − 1 +

√
4(k − 2)n− 3(k − 1)2 + 12

2
. (5)

Note Z(Gn,k) = k. As proved above, ρ(H) =
k+
√

4(k−1)n−3k2+12

2
with H = Kk−1∇Cn+1−k.

Let x = (xi) be the Perron vector of H corresponding to ρ(H). By the symmetry, we can
set xu = a if u is in V (Kk−1), and xu = b if u is in V (Cn+1−k). Hence, (k − 1)a2 + (n +
1− k)b2 = 1. Clearly, a > b, and thus b2 6 1

n
. Then

ρ(Gn,k) > xtA(Gn,k)x = ρ(H)− 2b2 > ρ(H)− 2

n
. (6)

Combining (5) and (6) we get

k +
√

4(k − 1)n− 3k2 + 12

2
− 2

n
<
k − 1 +

√
4(k − 2)n− 3(k − 1)2 + 12

2
,
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which is equivalent to

1− 4

n
<

6k − 4n− 3√
4(k − 1)n− 3k2 + 12 +

√
4(k − 2)n− 3(k − 1)2 + 12

.

Then by k > 2 and n > k + 2 we have

1− 4

k + 2
<

2k − 11

2k + 3
,

which yields 3k + 8 < 0, a contradiction.
This finishes the proof. 2

4 Proof of Theorem 2

In this section, to show Theorem 2 we firstly introduce two grafting transformations on
the spectral radius of graphs, which stem from [28] and can be found in the monograph
[15, Theorem 8.1.20] and [15, Theoem 8.1.22].

Lemma 9. [28] Let G be a connected graph on n > 2 vertices, and v ∈ V (G). Let G(k, `)
(k > ` > 1) be the graph obtained from G by attaching two pendant paths of length k and
` at the same vertex v. Then ρ(G(k, `)) > ρ(G(k + 1, `− 1)).

Lemma 10. [28] Let u, v be adjacent vertices of a connected graph G, both of degree at
least 2. Let G(k, `) (k > ` > 1) be the graph obtained from G by attaching two pendant
paths of length k and ` at u and v respectively. Then ρ(G(k, `)) > ρ(G(k + 1, `− 1)).

Besides the above two ones, we need the following grafting transformation also.

Lemma 11. Let G be a connected graph and x = (xu, xv, · · · , xw)t be its Perron vector
whose components indexed by the vertices of G. Suppose uu1 · · ·us and vv1 · · · vt are two
pendant paths attached at u and v, respectively, where s > t > 0. Let H be the graph
obtained from G by deleting edges uu1 and vv1 (for t > 1), and adding edges uv1 and vu1.
If xv > xu, then ρ(H) > ρ(G).

Proof. We prove the lemma by induction on t. For t = 0 (i.e., v0 = v), the result follows
from Lemma 5. Suppose the lemma is true for t = k − 1, where k > 1. For t = k, we
prove the lemma by the following two cases.

Case 1. xu1 6 xv1 . Note that u1u2 · · ·us and v1v2 · · · vt are two pendant paths attached
at u1 and v1, respectively. Clearly, H is also the graph obtained from G by deleting edges
u1u2 and v1v2, and adding edges u1v2 and v1u2. Notice that the length of v1v2 · · · vt is
equal to t− 1 = k − 1. Along with the induction hypothesis, we have ρ(H) > ρ(G).

Case 2. xu1 > xv1 . From the well-known Rayleigh Theorem it follows that

ρ(H) > xtA(H)x

= xtA(G)x + 2(xuxv1 + xvxu1)− 2(xuxu1 + xvxv1)

= ρ(G) + 2(xu − xv)(xv1 − xu1)
> ρ(G).

(7)
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If equality holds, then xu = xv, and x is also the Perron vector of H. Hence, ρ(G)xu −
ρ(H)xu = xu1 − xv1 > 0, and then ρ(G) > ρ(H), a contradiction.

A vertex u ∈ V (G) is called a major vertex if d(u) > 3, and a branch vertex if it is a
major vertex attached d(u)− 1 pendant paths. Tl1,l2,...,lk stands for the starlike tree with
a major vertex u of degree k satisfying Tl1,l2,...,lk − u = Pl1 ∪ Pl2 ∪ · · · ∪ Plk . The following
conclusion follows from [33, Lemma 2.6] or [31, Theorem 3.8].

Lemma 12. Let T be a tree on n vertices with at least two major vertices, and u be a
branch vertex of T . The subtree T1 is obtained from T by deleting u and the all vertices
in its pendant paths. Then

Z(T ) = Z(T1) + d(u)− 2. (8)

We now introduce the tree Tn,k on n vertices with zero forcing number k.

Definition 13. Let n and k be two integers with n > k + 2 > 4. Set K1,k+1 to be a star
with center u and leaves u1, u2, . . . , uk+1. Then Tn,k is defined as follows (See Fig. 1):

• For n ∈ {k + 2, k + 3}, let Tk+2,k = K1,k+1 and Tk+3,k be the tree obtained from
K1,k+1 by attaching a pendant edge at a leaf of K1,k+1.

• For k + 4 6 n 6 3k − 1, let Tn,k be the tree obtained from K1,k+1 by attaching two
pendant edges at the vertex ui for 1 6 i 6 bn−k

2
c−1, and attaching (n−k)−2bn−k

2
c

(equal to 0 or 1) pendant edge at the vertex uk+1.

• For n > 3k, Tn,k denotes the tree obtained from K1,k+1 by attaching two pendant
paths at each ui for 1 6 i 6 k − 1 and attaching one pendant path at uj for
j = k, k + 1, such that the pendant paths attached at the vertices u1, u2, · · · , uk+1

are almost equal length; moreover, the lengths of the pendant paths attached at uk
and uk+1 are not greater than those of pendant paths attached at u1, u2, . . . , uk−1;
for any 1 6 i < j 6 k − 1, the lengths of the pendant paths attached at ui are not
less than those of pendant paths attached at uj.

Let T ′
n,k is the set of all trees with order n and zero forcing number k, where k > 2

and n > k + 2.

Theorem 14. Let n and k be two integers with k > 2 and n > k + 2, and let T ∈ T ′
n,k.

Then ρ(T ) 6 ρ(Tn,k) with equality if and only if T ∼= Tn,k.

Proof. Suppose that T ∈ T ′
n,k has the maximum spectral radius. Clearly, it is sufficient

to prove T ∼= Tn,k. If n ∈ {k + 2, k + 3}, by Z(T ) = k we arrive at T ∈ {Tk+2,k, Tk+3,k}
easily.

We next consider n > k + 4. Let x = (x1, x2, . . . , xn)t be the Perron vector of T .
Assume that T has a unique major vertex. Then T is a starlike tree with major vertex u
of degree k+1, due to Z(T ) = k. Let u1, u2, . . . , uk+1 be the neighbors of u. Without loss of
generality, set xu1 > xui for any 2 6 i 6 k+1. Since n > k+4, there is a leaf, say v, which
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is not the neighbor of u or u1. Note that ρ(T ) > 2. Then we can deduced that xu1 > xv′ ,
where v′ is the unique neighbor of v. Let T1 be the tree obtained from T by deleting the
edge vv′ and connecting v to u1. Using Lemma 12, we get Z(T1) = Z(T ) = k. However,
by Lemma 5 we obtain ρ(T1) > ρ(T ), which contradicts the choice of T . Thereby, the
tree T owns at least two major vertices.

Let w be the vertex of T with xw = max{xi | 1 6 i 6 n}. By ρ(T ) > 2 we get that
w is a major vertex of T . Let w1 6= w be any branch vertex of T , and h be the (unique)
neighbor of w1 which does not lie in the pendant paths attached at w1. If h 6= w, then
xh 6 xw by the hypothesis. We denote by T2 the tree obtained from T by deleting the edge
w1h and adding the edge w1w. Then by Lemma 12 we deduce that Z(T2) = Z(T ) = k.
From Lemma 5 it follows that ρ(T ) < ρ(T2), a contradiction. Therefore, h = w and w1

is adjacent to w. Consequently, each major vertex other than w is a branch vertex of T
which is a neighbor of w.

Claim 1. The vertex w possesses at least two pendant paths. If not, then w owns i
pendant paths (i = 0, 1). Let w2 be a branch vertex of T . Construct the tree T3 obtained
from T by deleting d(w2)− 1− i pendant paths and attaching them to w. Using Lemma
12, we get Z(T3) = Z(T ) = k. In terms of Lemma 5, by xw > xw2 we get ρ(T ) < ρ(T3), a
contradiction. Hence, there are at least two pendant paths attached at w.

Claim 2. All branch vertices except w of T have degree 3. Otherwise, there exists a
branch vertex w3 with d(w3) > 4. Construct a new tree T4 obtained from T by grafting
one pendant path of w3 to w. Applying Lemma 12 to T4 and T , we get Z(T4) = Z(T ) = k.
Since xw > xw3 , by Lemma 5 we have ρ(T ) < ρ(T4), a contradiction.

Using Claims 1 and 2, by Lemma 12 we have d(w) = k + 1 as Z(T ) = k. In order to
get T ∼= Tn,k, we next distinguish the following two cases.

Case 1. k + 4 6 n 6 3k − 1. Along with d(w) = k + 1 we know that w possesses at
least three pendant paths.

Claim 3. All the pendant paths attached at w have length one, except possibly one
of length two. Assume that there exits a pendant path P of w with length at least three.
Construct a new tree T ′ from T by removing the leaf of P and connecting it to the unique
neighbor of w in this path P . By Lemma 12, we get Z(T ′) = k, and so ρ(T ′) > ρ(T ) by
Lemma 5, a contradiction. Suppose that w has two pendant paths P and P ′ with length
two. Let T ′′ be the tree from T by transferring one leaf in P to the unique neighbor of w
in P ′. By Lemmas 12 and 5 we get Z(T ′′) = k and ρ(T ) < ρ(T ′′), a contradiction.

Claim 4. For any branch vertex u 6= w, any pendant path attached at u has length
one. In fact, if there is a pendant path P attached at u has length at least two, then let
T5 be the tree obtained from T by interchanging P with a pendant path of length one
attached at w. By Lemma 12 we have Z(T5) = Z(T ). But ρ(T5) > ρ(T ) by Lemma 11, a
contradiction.

From Claims 2, 3 and 4 it follows that T ∼= Tn,k defined in Definition 13(ii).
Case 2. n > 3k. We claim that w possesses exactly two pendant paths. If not, assume

that there are at least three pendant paths attached at w. Similarly, Claims 3 and 4 are
still true. But then n 6 3k − 1, contradicting the condition n > 3k.

Recall d(w) = k + 1. Label the k + 1 neighbors of w as w1, w2, . . . , wk+1. Without
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loss of generality, From Claims 2 and the above discussion we can suppose that dwi
= 3

for 1 6 i 6 k − 1, and dwk+1
6 dwk

6 2. By symmetry, we can assume xwi
> xwj

for
1 6 i < j 6 k − 1. Using the similar methods as Claim 4, by Lemma 11 we get that
the length of each pendant path attached at w is not less than that of each pendant path
attached at w1, w2, . . . , wk−1, and for any 1 6 i < j 6 k − 1 the length of each pendant
path attached at wi is not less than that of each pendant path attached at wj. Then by
Lemmas 9 and 10, we see that all the pendant paths of T are of almost equal length.
Hence, T ∼= Tn,k defined in Definition 13(iii).

Lemma 15. Let n be an integer with n > 4. Then ρ(Pn) < ρ(Tn,2) < ρ(Tn,3) < · · · <
ρ(Tn,n−2).

Proof. Let x = (x1, · · · , xn) be the Perron vector of Pn. Choose u ∈ V (Pn) with xu =
max{xi | 1 6 i 6 n}. Then d(u) = 2 by ρ(Pn) > 1. For n > 4, there exists a leaf,
say v, which is not adjacent to u. Let T1 be the tree obtained from Pn by removing v
and connecting it to u. By Lemma 5 we get ρ(Pn) < ρ(T1). Clearly, Z(T1) = 2, and
ρ(T1) 6 ρ(Tn,2) by Theorem 14.

We now prove ρ(Tn,k) < ρ(Tn,k+1) for 2 6 k 6 n − 3. Similarly above, let x = (xi)
be the Perron vector of Tn,k and u be the vertex satisfying xu = max{xi | 1 6 i 6 n}.
By k 6 n − 3, there exists a leaf of Tn,k, say v, which is not adjacent to u. Let T2 be
the tree obtained from Tn,k by removing v from one pendant path and connecting to u.
By Lemma 5 we get ρ(Tn,k) < ρ(T2). From Lemma 12 it follows that Z(T2) = k + 1. In
view of Theorem 14, we arrive at ρ(T2) 6 ρ(Tn,k+1), and thus ρ(Tn,k) < ρ(T2) 6 ρ(Tn,k+1).
Consequently, ρ(Pn) < ρ(Tn,2) < ρ(Tn,3) < · · · < ρ(Tn,n−2).

This completes the proof.

Proof of Theorem 2: The theorem follows from Theorem 14 and Lemma 15 immedi-
ately.
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