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Abstract

If A is a set of integers having positive upper Banach density and r, s, t are
nonzero integers whose sum is zero, a theorem of Bergelson and Ruzsa says that
the set rA + sA + tA := {ra1 + sa2 + ta3 : ai ∈ A} contains a Bohr neighborhood
of zero. We prove a natural generalization of this result for subsets of countable
abelian groups and more summands.

Mathematics Subject Classifications: 11B13, 05B10, 37A45

1 Bohr neighborhoods in iterated difference sets

Let S1 := {z ∈ C : |z| = 1} be the group of complex numbers with modulus 1, with the
usual topology and the operation of multiplication.

Let G be a topological abelian group. If A,B ⊆ G, we write A + B for the sumset
{a + b : a ∈ A, b ∈ B} and A− A for the difference set {a− a′ : a, a′ ∈ A}. A character
of G is a continuous homomorphism χ : G → S1. Of course, when G is discrete, every
homomorphism to S1 is continuous. The set Ĝ of characters of G forms an abelian
group under pointwise multiplication. When G is discrete and Ĝ is given the topology of
pointwise convergence, Ĝ is a compact abelian group. When G is compact Hausdorff and
Ĝ is given the topology of uniform convergence, Ĝ is discrete.

A trigonometric polynomial is linear combination of characters, i.e. a function of the
form

∑d
j=1 cjχj, where χj ∈ Ĝ and cj ∈ C. A function ψ on G is (uniformly) almost

periodic if it is a uniform limit of trigonometric polynomials.
Let d ∈ N and χ1, . . . , χd ∈ Ĝ. The basic Bohr neighborhood of 0 in G having rank d

and radius ε determined by {χ1, . . . , χd} is

Bohr(χ1, . . . , χd; ε) := {g : |χi(g)− 1| < ε for all i = 1, . . . , d}. (1.1)

A we say that B is a Bohr neighborhood of 0 if it contains Bohr(χ1, . . . , χd; ε) for some

d ∈ N, χi ∈ Ĝ, and ε > 0.
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Remark 1.1. If ψ is a real valued trigonometric polynomial with ψ(0) > 0, it is easy to
verify that supp(ψ) := {g ∈ G : ψ(g) 6= 0} is a Bohr neighborhood of 0. The same
holds when ψ is almost periodic, since every such ψ is a uniform limit of trigonometric
polynomials.

A classical theorem of Bogoliouboff [11] states that if G is a countable abelian group
andG = C1∪C2∪· · ·∪Cr is a finite cover ofG, then for at least one i, the iterated difference
set (Ci − Ci) − (Ci − Ci) := {(x − y) − (z − w) : x, y, z, w ∈ Ci} contains a basic Bohr
neighborhood of 0 with rank and radius depending only on r. Note that Bogoliouboff’s
theorem implies that if finitely many translates of C cover G, then (C − C) − (C − C)
contains a Bohr neighborhood of 0. Følner [13] generalizes this to say that (A−A)−(A−A)
contains a Bohr neighborhood of 0 under the weaker hypothesis that d∗(A) > 0, where
d∗ denotes upper Banach density (see §2 for the definition). See §5 in Part II of [17] for
exposition of Bogoliouboff’s and Følner’s results.

Bergelson and Ruzsa extended Følner’s theorem as follows.

Theorem 1.2 ([8], Theorem 6.1). Let r, s, t be nonzero integers with r + s + t = 0, and
let A ⊆ Z have d∗(A) > 0. Then rA + sA + tA := {ra1 + sa2 + ta3 : ai ∈ A} contains a
basic Bohr neighborhood of 0, with rank and radius depending only on r, s, t, and d∗(A).

Our main result is Theorem 1.3, a partial generalization of Theorem 1.2 to arbitrary
countable abelian groups and more summands. We say “partial generalization” because
our Theorem 1.3 does not bound the rank and radius of the Bohr neighborhood.

Let G be a countable (discrete) abelian group. Let q be the exponent of G, meaning
the least m ∈ N such that mg = 0 for every g ∈ G. If there is no such m, we say G has
exponent 0. Often “exponent 0” and “infinite exponent” are used interchangeably; in this
article we say that Z, Z2, etc. have exponent 0.

If ~c = (c1, . . . , cd) ∈ Zd and A ⊆ G, we define

~c · A :=
{ d∑
i=1

ciai : a1, . . . , ad ∈ A are mutually distinct
}
∪ {0}.

Theorem 1.3. Let d ∈ N, d > 3, and let ~c = (c1, . . . , cd) ∈ Zd be such that

(1) ciG := {cig : g ∈ G} has finite index in G for each i,

(2) (cd−1 + cd)G, has finite index in G, and

(3) q divides
∑
ci (meaning

∑
ci = 0 when G has exponent 0).

If A ⊆ G has d∗(A) > 0, then ~c · A is a Bohr neighborhood of 0 in G.

Note: hypothesis (2) can be generalized to “there exists i < j 6 d such that (ci + cj)G
has finite index in G,” since the ci can be reordered without changing the value of ~c · A.

Letting p be an odd prime, G = Fωp := the direct sum of countably many copies of
Z/pZ, and c1 = · · · = cd = 1, we get the following corollary as a special case of Theorem
1.3.
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Corollary 1.4. If p is an odd prime, p divides d ∈ N, and A ⊆ Fωp has d∗(A) > 0, then

{a1 + · · ·+ ad : ai ∈ A are mutually distinct} ∪ {0}

is a Bohr neighborhood of 0.

Remark 1.5. While Theorem 1.2 and the theorems of Bogoliouboff and Følner do not
specify that the sums (a1 − a2) − (a3 − a4) be formed with mutually distinct ai, their
proofs easily yield the same conclusion under this additional specification. We impose
distinctness of the ai here for the sake of an application of Theorem 1.3 in [20].

Remark 1.6. We are currently unable to decide whether hypothesis (2) can be omitted in
Theorem 1.3. It is redundant when d = 3, as hypothesis (3) implies c2 + c3 = −c1 in that
case, and hypothesis (1) implies c1G has finite index in G. See §4 for further discussion.
The other hypotheses cannot be omitted, as the following examples demonstrate.

(i) The assumption d > 3 cannot be weakened to d > 2: setting d = 2 and c1 = 1,
c2 = −1, the set ~c ·A is simply A−A. An example of a set A ⊆ Z having d∗(A) > 0
such that A − A does not contain a Bohr neighborhood of 0 is provided by the
main result of [24] - see [22] for an explanation of why [24] implies this. Such an
example in Fω2 is constructed in [14]. In [19] it is shown that there is an A ⊆ Z with
d∗(A) > 0 where A− A does not contain a Bohr neighborhood of any n ∈ Z.

(ii) The hypothesis that ciG has finite index in G cannot be omitted. To see this, we use
the fact that for each prime p and ε > 0, the group G = Fωp contains a set A having
d∗(A) > 1

2
− 1

2p
− ε such that A− A does not contain a Bohr neighborhood of any

element of G (see [18]). Setting c1 = p, c2 = 1 and c3 = −1, we have c1 +c2 +c3 = p,
but ~c · A ⊆ pA+ A− A = A− A.

(iii) The hypothesis that q|
∑
ci cannot be omitted. For example, in Z, the set A of

odd integers has d∗(A) = 1/2, and A− A+ A = A, which does not contain a Bohr
neighborhood of 0. Similarly in any cyclic group Z/NZ of order N , A := {1} has
d∗(A) = 1

N
and A−A+A = {1}, which does not contain a Bohr neighborhood of 0.

Nevertheless, A−A+A necessarily contains Bohr neighborhoods of many elements
of A whenever d∗(A) > 0; see [22], [10].

The next lemma deals with a technicality arising from our approach. We first observe
that if χ ∈ Ĝ and a, b ∈ G, then

|χ(a− b)− 1| 6 |χ(a)− 1|+ |χ(b)− 1|. (1.2)

This can be verified by writing

χ(a− b)− 1 = χ(a− b)− χ(a) + χ(a)− 1

= χ(a)(χ(b)− 1) + χ(a)− 1

and applying the triangle inequality.
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Lemma 1.7. If B is a Bohr neighborhood of 0 in an abelian group G and c ∈ Z is such
that cG has finite index in G, then cB is a Bohr neighborhood of 0 in G.

Proof. This is somewhat cumbersome to verify directly, but is an easy consequence of
Bogoliouboff’s theorem. Let ε > 0 and let B = Bohr(χ1, . . . , χd, ε) be a basic Bohr
neighborhood of 0 in G. Two applications of inequality (1.2) show that B contains
(A−A)− (A−A), where A := Bohr(χ1, . . . , χd, ε/4). One can verify directly that finitely
many translates of A cover G, so finitely many translates of cA cover cG. Since cG has
finite index in G, we get that finitely many translates of cA cover G. Now cB contains
(cA− cA)− (cA− cA), which must contain a Bohr neighborhood of 0, by Bogoliouboff’s
theorem.

We adopt the usual notation for integrals:
∫
f dµ is the integral of f with respect to

µ; we write
∫
f(x) dµ(x) if we need to specify a variable. When µ is Haar measure on

a compact abelian group K, we may write
∫
f(x) dx in place of

∫
f(x) dµ(x), to shorten

the appearance of iterated integrals.
We will prove Theorem 1.3 by proving that there is an almost periodic function φ with

φ(0) > 0 and cd supp(φ) ⊆ ~c · A (cf. Remark 1.1 and Lemma 1.7). The following lemma
specifies the form of φ.

Lemma 1.8. Let A ⊆ G and let c1, . . . , cd satisfy the hypotheses of Theorem 1.3. Then
there is a compact abelian group K with Haar probability measure m, an m-measurable
f̃ : K → [0, 1] with

∫
f̃ dm = d∗(A), and a homomorphism ρ : G → K with ρ(G) = K

such that φ : G→ C defined by

φ(t) :=

∫
Kd

f̃(k+cds1)f̃(k+cds2) · · · f̃(k+cdsd−1)f̃
(
k+ρ(t)−

d−1∑
i=1

cisi

)
dk ds1 ds2 . . . dsd−1

satisfies cd supp(φ) ⊆ ~c · A.

Proof of Theorem 1.3. Assuming Lemma 1.8, it suffices to prove that the φ defined therein
is almost periodic and satisfies φ(0) > 0 (cf. Remark 1.1).

To prove almost periodicity, let ε > 0, and let p : K → [0, 1] be a trigonometric
polynomial with ‖f̃ − p‖L2(m) < ε/d. Such a p exists as the trigonometric polynomials
are uniformly dense in space of continuous functions on K, and the continuous functions
are dense in L2(m). Set

φε(t) :=

∫
Kd

p(k+cds1)p(k+cds2) · · · p(k+cdsd−1)p
(
k+ρ(t)−

d−1∑
i=1

cisi

)
dk ds1 ds2 . . . dsd−1.

This φε is a trigonometric polynomial, as can be verified by evaluating the integral when
each instance of p is replaced by a character of K, and noting that φε is a linear combi-
nation of such evaluations. Now we will show that |φ(t) − φε(t)| < ε for all t. We apply
the identity

(a1a2 · · · ad)− (b1b2 · · · bd) =
d∑
j=1

a1 · · · aj−1(aj − bj)bj+1 · · · bd
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with aj = f̃(k + cdsj), bj = p(k + cdsj) for j < d, ad = f̃(k + ρ(t) −
∑d−1

i=1 cisi), bd =

p(k + ρ(t)−
∑d−1

i=1 cisi). Thus

φ(t)− φε(t) =
d∑
j=1

∫
Kd

a1 · · · aj−1(aj − bj)bj+1 · · · bd dk ds1 ds2 . . . dsd−1. (1.3)

The aj and bj are all uniformly bounded by 1, so the inequality ‖f̃ − p‖L2(m) < ε/d
and Cauchy-Schwarz lets us bound the inner integral in (1.3) by ε/d. We therefore have
|φ(t)−φε(t)| < ε for all t. Since ε > 0 was arbitrary and φε is a trigonometric polynomial,
this proves that φ is almost periodic.

To prove that φ(0) > 0, note that the function on Kd−1 defined by

(s1, . . . , sd−1) 7→
∫
f̃(k + s1) · · · f̃(k + sd−1)f̃

(
k −

d−1∑
i=1

cisi

)
dk

is continuous, and is equal to
∫
f̃(k)d dk when s1 = s2 = · · · = sd−1 = 0. The integrand

in the definition of φ is therefore positive for a neighborhood of values (s1, . . . , sd−1) near
0. Consequently, the integral defining φ does not vanish at t = 0.

Remark 1.9. The argument in the preceding paragraph is a key ingredient in ergodic
theoretic proofs of Roth’s theorem on three-term arithmetic progressions. In fact, Roth’s
theorem is a corollary of our proofs, although we do not discuss this implication here.
The proof of Theorem 6.1 in [8] (Theorem 1.2 above) uses Roth’s theorem in a key step.

2 Convolutions supported on sumsets

In this section we state Theorem 2.3, an ergodic theoretic version of Lemma 1.8, and
use it to prove the lemma. Theorem 2.3 will be proved in §3.7, after some preliminary
machinery is developed.

Throughout this section we fix an arbitrary countable abelian group G.

Definition 2.1. A sequence F = (Fn)n∈N of finite subsets of G is a Følner sequence if for

all g ∈ G, limn→∞
|Fn4(g+Fn)|

|Fn| = 0. If F is a Følner sequence and A ⊆ G the upper density

of A with respect to F is d̄F(A) : lim supn→∞
|A∩Fn|
|Fn| . The upper Banach density of A is

d∗(A) := sup{dF(A) : F is a Følner sequence}.

It is well known1 that every countable abelian group admits a Følner sequence.
Our first step in the proof of Lemma 1.8 is to find a kind of convolution supported

~c · A. For the sake of explanation, we first examine A+B in place of ~c · A.

1A standard proof is to enumerate G as (gn)n∈N and for each n, find a finite Fn in the subgroup
〈g1, . . . , gn〉 generated by g1, . . . , gn, so that |Fn4(Fn + gi)| < 1

n |Fn| for all i 6 n. Such Fn can be found
by writing the finitely generated group 〈g1, . . . gn〉 as Zd × K, where K is a finite group, and taking
Fn = [0,Mn]d ×K for sufficiently large Mn.
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Given A,B ⊆ G, consider their characteristic functions 1A and 1B. Note that a fixed
g lies in A+ B if and only if there is an h ∈ G such that 1A(h)1B(g − h) > 0. Often the
existence of such an h is proved by averaging, i.e. proving that there is a Følner sequence
F with limN→∞

1
|Fn|
∑

h∈Fn
1A(h)1B(g − h) > 0. This limit is a kind of convolution of 1A

and 1B.
The next lemma shows exhibits a similar kind of convolution supported on ~c·A, written

in a form suited to the hypotheses of Theorem 1.3.

Lemma 2.2. Let ~c ∈ Zd satisfy hypothesis (3) of Theorem 1.3, let A ⊆ G, and write 1A
for its characteristic function. Define J : Gd+1 → [0, 1] and J0 ⊆ G by

J(h, g1, . . . , gd−1; t) := 1A(h+ cdg1)1A(h+ cdg2) · · · 1A(h+ cdgd−1)1A

(
h+ t−

d−1∑
i=1

cigi

)
J0 := {t ∈ G : ∃h, g1, . . . , gd−1 ∈ G with J(h, g1, . . . , gd−1; t) > 0, cigi mutually distinct},

we have
cdJ0 ⊆ ~c · A. (2.1)

Furthermore, setting

J̃(g1, . . . , gd−1; t) := d∗({h : J(h, g1, . . . , gt−1; t) > 0}),
J̃0 := {t ∈ G : ∃g1, . . . , gd−1 ∈ G with J̃(g1, . . . , gd−1; t) > 0, cigi mutually distinct},

we have cdJ̃0 ⊆ ~c · A.

Proof. We first prove the containment (2.1). Suppose h, gi, and t ∈ G are such that
J(h, g1, . . . , gd−1; t) > 0. Then each of ai := h+ cdgi, and ad := h+ t−

∑d−1
i=1 cigi lie in A,

and

c1a1 + · · ·+ cdad = (c1 + · · ·+ cd)h+ cd

(d−1∑
i=1

cigi

)
+ cd

(
t−

d−1∑
i=1

cigi

)
= cdt,

so cdt ∈ ~c · A.
The second assertion of the lemma follows by observing that if J̃(g1, . . . , gd−1; t) > 0,

then there are infinitely many h with J(h, g1, . . . , gd−1; t) > 0.

Lemma 1.8 will be deduced from the following ergodic theoretic version; see §3 for def-
initions. These statements are connected by Proposition 2.5, a standard correspondence
principle.

Theorem 2.3. Let (X,µ, T ) be an ergodic measure preserving G-system and let c1, . . . , cd
satisfy hypotheses (1)-(3) of Theorem 1.3. If f1, . . . , fd : X → [0, 1] are measurable
functions, L : Gd → [0, 1] is defined as

L(g1, . . . , gd−1; t) :=

∫
(Tt−∑

j<d
cjgjfd)

∏
j<d

Tcdgjfj dµ (2.2)
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and I(t) is defined as the iterated limit

I(t) := lim
n1→∞

. . . lim
nd−1→∞

1

|Fn1| · · · |Fnd−1
|

∑
g1∈Fn1...

gd−1∈Fnd−1

L(g1, . . . , gd−1; t) (2.3)

then there are

• a compact metrizable abelian group K with Haar probability measure m,

• a homomorphism ρ : G→ K having ρ(G) = K,

• functions f̃i : K → [0, 1] with
∫
f̃i dm =

∫
fi dµ for i 6 d

such that

I(t) =

∫
f̃d

(
k + ρ(t)−

∑
j<d

cjsj

)∏
j<d

f̃j(k + cdsj) dk ds1 . . . dsd−1. (2.4)

Furthermore, the f̃i depend only on the fi, so if f1 = · · · = fd, then f̃1 = · · · = f̃d.

We prove Theorem 2.3 in §3.7.

Remark 2.4. With L and I as in Theorem 2.3, let

L0 := {t ∈ G : ∃g1, . . . , gd−1 with L(g1, . . . , gd−1; t) > 0 and cigi mutually distinct}.
(2.5)

The containment {t ∈ G : I(t) > 0} ⊆ L0 follows easily from the definitions of L and I.

The connection between Theorem 2.3 and Lemma 1.8 is made through the following
variant of Furstenberg’s correspondence principle. It is a special case of Theorem 2.8 of
[5]; cf. the discussion following Proposition 2.3 of [3].

Proposition 2.5. Let A ⊆ G. There is an ergodic G-system (X,µ, T ) and a measurable
set Ã ⊆ X with µ(Ã) = d∗(A) such that for all g1, g2, . . . , gd ∈ G, we have

d∗
({
h : 1A(h+ g1)1A(h+ g2) . . . 1A(h+ gd) > 0

})
>
∫ d∏

i=1

1Ã(Tgix) dµ(x) (2.6)

To deduce our Proposition 2.5 from Theorem 2.8 of [5], note that our A is their E, our
Ã is their A, the expressions g−1i Ewi in equation (2.6) there can be written as Ewi−gi when
G is abelian, and the left hand side of (2.6) here can be written as d∗((A−g1)∩· · ·∩(A−gd)).

Setting gd = t−
∑

j<d cjgj in Proposition 2.5 immediately yields the following corollary.

Corollary 2.6. If A ⊆ G, ci ∈ Z, and J̃ is defined as in Lemma 2.2, then there is an
ergodic G-system (X,µ, T ) and f : X → [0, 1] such that

J̃(g1, . . . , gd−1; t) > L(g1, . . . , gd−1; t) for all gi, t ∈ G, (2.7)

where L is as defined in (2.2), with f1 = · · · = fd = f .
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Proof of Lemma 1.8. Let G be a countable abelian group, let c1, . . . , cd ∈ Z satisfy hy-
potheses (1)-(3) in Theorem 1.3, and let A ⊆ G have d∗(A) > 0. Let J̃ and J̃0 be as in
Lemma 2.2, so that cdJ̃0 ⊆ ~c·A. Apply Corollary 2.6 to find an ergodic G-system (X,µ, T )
and f : X → [0, 1] with

∫
f dµ = d∗(A) satisfying inequality (2.7). This inequality implies

L0 ⊆ J̃0, where L0 is defined in (2.5). By Theorem 2.3 and Remark 2.4, we have that
{t ∈ G : I(t) > 0} ⊆ L0. Combining the preceding containments, we have

cd{t ∈ G : I(t) > 0} ⊆ ~c · A.

The form of I(t) stated in the conclusion of Theorem 2.3 means we can take φ(t) := I(t)
to satisfy the conclusion of Lemma 1.8.

3 Ergodic theoretic machinery

3.1 Measure preserving systems

We use the standard ergodic theoretic setup for studying configurations in dense subsets
of abelian groups; see any of [15], [12], [26], [23] for background. Our analysis here closely
resembles that in §2 and §3 of [1].

We again fix a countable abelian group G throughout this section.
A triple (X,µ, T ) is a measure preserving G-system (or “G-system”) if (X,µ) is a

standard probability measure space (cf. §1.4 of [23]) and G acts on X by transformations
Tg which preserve µ. If f ∈ L2(µ) and g ∈ G, we write Tgf for f ◦ Tg. This defines an
action of G on L2(µ) by unitary operators Tg.

We write A ∼µ B if µ(A4B) = 0, and f ≡µ g if f, g : X → C agree µ-almost
everywhere. We say that

· f is T -invariant if f ≡µ Tgf all g ∈ G;

· B ⊆ X is T -invariant if B ∼µ TgB = 0 for every g ∈ G;

· (X,µ, T ) is ergodic if the only µ-measurable T -invariant sets B have µ(B) = 0 or
µ(B) = 1.

We will use the Mean Ergodic Theorem for unitary actions; see [23, Theorem 4.22] for
exposition.

Theorem 3.1 (Mean Ergodic Theorem). Let U be an action of G on a Hilbert space H
by unitary operators and let x ∈ H. If (Fn)n∈N is a Følner sequence, then

lim
n→∞

1

|Fn|
∑
g∈Fn

Ugx = PIx,

in the norm topology of H, where PIx is the orthogonal projection of x onto the closed
subspace of H consisting of U-invariant vectors.
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Specializing to the unitary action associated to a G-system yields the following.

Corollary 3.2. Let (X,µ, T ) be a G-system and f ∈ L2(µ). Then

lim
n→∞

1

|Fn|
∑
g∈Fn

Tgf = PIf,

where PI is the orthogonal projection onto the closed subspace of L2(µ) consisting of T -
invariant functions.

We say that (X,µ, T ) has finitely many ergodic components if the closed subspace of
L2(µ) consisting of T -invariant functions is finite dimensional.

Observation 3.3. If (X,µ, T ) has finitely many ergodic components, then X can be
partitioned into µ-measurable G-invariant sets X1, . . . , Xk such that for each f ∈ L2(µ),
the projection PIf can be written as

k∑
i=1

( 1

µ(Xi)

∫
f 1Xi

dµ
)

1Xi
. (3.1)

3.2 Eigenfunctions

We say that f ∈ L2(µ) is an eigenfunction of (X,µ, T ) (or “T -eigenfunction”) if there is

a character χ ∈ Ĝ such that Tgf ≡µ χ(g)f for every g ∈ G. Let AP denote the closure
of the span of the eigenfunctions of (X,µ, T ) in L2(µ), and write WM for its orthogonal
complement. Note that WM is a closed, T -invariant subspace of L2(µ).

Lemma 3.4. Let (X,µ, T ) be an ergodic G-system and H a finite index subgroup of G.
Write S for the action of H obtained by restricting Tg to g ∈ H. Then

(i) (X,µ, S) has finitely many ergodic components;

(ii) If f ∈ L2(µ) is an S-eigenfunction, then f is a finite linear combination of T -
eigenfunctions. Thus f ∈ AP.

Proof. (i) Let B ⊆ X be S-invariant, and let g1, . . . , gk be coset representatives of H.
Now

X ∼µ
⋃
g∈G

TgB ∼µ
k⋃
i=1

TgiB,

so µ(B) > 1
k
. Thus inf{µ(B) : B ⊆ X is S-invariant} > 0, and the algebra IS of µ-

measurable S-invariant sets is generated (up to µ-measure 0) by finitely many atoms
B1, . . . , Br. Now every S-invariant f ∈ L2(µ) is IS-measurable, so the 1Bi

span the space
of S-invariant elements of L2(µ), which is therefore finite dimensional.

(ii) Let f be an S-eigenfunction and let g1, . . . , gk be coset representatives of H as
above. Then V , the span of {Tgf : g ∈ G}, can be written as the span of {Tg1f, . . . , Tgkf}.
Thus V is a finite dimensional subspace of L2(µ), and T induces an action of the abelian
group G on V by unitary operators. Thus V possesses a basis of T -eigenfunctions, and f
is a linear combination of these basis elements.
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Given a function ψ : G → C, we say that ψ tends to 0 in density if for every Følner
sequence F, we have limn→∞

1
|Fn|
∑

g∈Fn
|ψ(g)| = 0. Equivalently, ψ tends to 0 in density

if for all ε > 0, the set Aε := {g ∈ G : |ψ(g)| > ε} has d∗(Aε) = 0.

Lemma 3.5. Let (X,µ, T ) be a G-system, f ∈ WM and h ∈ L2(µ).

(i) The correlation sequence ψ(g) :=
∫
f · Tgh dµ tends to 0 in density.

(ii) If T has finitely many ergodic components, then ψI(g) := ‖PI(f · Tgh)‖L2(µ) tends
to 0 in density.

Proof. Part (i) here follows from Corollary 1.5 of [7] (cf. Proposition 2.20 and Propsition
D.17 of [23]). Part (ii) follows from Part (i) and Observation 3.3.

3.3 Reducing averages to AP

The main step of the proof of Theorem 2.3 is to show that the value of I(t) defined in
(2.3) is unaffected when each fi is replaced by its projection onto AP . We first prove
this for i = d and i = d − 1, using Lemma 3.8 below. We then apply Corollary 3.7 to
handle the remaining fi. The asymmetry in the proof is due to the asymmetry of the
hypotheses: condition (2) in Theorem 1.3 only applies to cd and cd−1, and this prevents
us from applying Lemma 3.8 to handle the fi for i < d− 1.

We state Lemma 3.6 and Corollary 3.7 first, as their hypotheses are weaker than those
of Lemma 3.8. We fix an ergodic G-system (X,µ, T ) for the remainder of this subsection.

Lemma 3.6. Let b ∈ Z. If χ ∈ Ĝ, f ∈ WM and bG has finite index in G, then for all
a ∈ Z

lim
n→∞

1

|Fn|
∑
g∈Fn

χ(ag)Tbgf = 0 in L2(µ). (3.2)

Proof. Let a ∈ Z. Note that g 7→ χ(ag) is a character of G, which we denote by χa.
Applying Theorem 3.1 to the unitary action U on L2(µ) defined by Ugf = χ(ag)Tbgf , we
get that the limit in (3.2) is the orthogonal projection of f onto the space of U -invariant
functions. The U -invariant functions are eigenfunctions for the action of T restricted to
bG, and Part (ii) of Lemma 3.4 says that these eigenfunctions are contained in AP . Since
f ⊥ AP , the limit in (3.2) is 0.

In the following corollary we abbreviate the expression
∑d

j=1 ajgj as ~a · ~g.

Corollary 3.7. Let ci ∈ Z, i = 1, . . . , d so that each ciG has finite index in G. Let
h1, h2 ∈ AP and let aj, bj ∈ Z, j = 1, . . . , d be arbitrary. Then for all fj ∈ L∞(µ), the
value of the iterated limit

Q := lim
n1→∞

. . . lim
nd→∞

1

|Fn1| · · · |Fnd
|
∑

g1∈Fn1···
gd∈Fnd

T~a·~gh1 · T~b·~gh2 ·
d∏
j=1

Tcjgjfj
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(in the L2(µ) norm) is unaffected when each fj is replaced by PAPfj, the orthogonal
projection of fj onto AP.

The existence of the limit Q follows from repeated application of Theorem 3.1.

Proof. We prove that the value of Q remains unaffected when fd is replaced by f̃d. Since
fd− f̃d ∈ WM, it suffices to prove that Q = 0 under the assumption fd ∈ WM. A nearly
identical argument will show that fd−1 may be replaced by f̃d−1, and so on.

Since hi ∈ AP for i = 1, 2, it suffices to prove the statement when each hi is an
eigenfunction for (X,µ, T ). Thus we may assume Tghi = χi(g)hi, where χi ∈ Ĝ. The
innermost limit in the definition of Q can be written as

lim
nd→∞

βh1h2

d∏
j=2

fj
1

|Fnd
|
∑

gd∈Fnd

χ1(adgd)χ2(bdgd)Tcdgdfd,

where β = χ1(
∑d−1

j=1 ajgj)χ2(
∑d−1

j=1 bjgj). The map gd 7→ χ1(adgd)χ2(bdgd) is a character
of G, so Lemma 3.6 implies Q = 0 when fd ∈ WM.

As usual for ergodic theoretic proofs of Roth’s theorem, we need a van der Corput
lemma. The version we use is [6, Theorem 2.12], specialized to countable discrete abelian
groups; cf. [4, Lemma 4.2].

Lemma 3.8 (van der Corput lemma). Let (xg)g∈G be a bounded collection of elements of
a Hilbert space H and F be a Følner sequence. If

lim
k→∞

1

|Fk|
∑
h∈Fk

lim
n→∞

1

|Fn|
∑
g∈Fn

〈xg+h, xg〉 = 0

then limn→∞
∥∥ 1
|Fn|
∑

g∈Fn
xg
∥∥
H = 0.

Lemma 3.9. If p ∈ L2(µ) and q ∈ WM, a, b ∈ Z, and both bG and (b− a)G have finite
index in G, then

lim
n→∞

1

|Fn|
∑
g∈Fn

Tagp Tbgq = 0 in L2(µ). (3.3)

Proof. We will apply Lemma 3.8 with xg = Tagp Tbgq. First we write 〈xg+h, xg〉L2(µ) as∫
Tag+ahp · Tbg+bhq · Tagp · Tbgq dµ =

∫
p̄Tahp · T(b−a)g(q̄Tbhq) dµ,

where we applied T−ag to the integrand to get the right hand side. Averaging over g ∈ Fn
and taking the limit, we get

lim
n→∞

1

|Fn|
∑
g∈Fn

〈xg+h, xg〉 =

∫
p̄ Tahp · lim

n→∞

1

|Fn|
∑
g∈Fn

T(b−a)g(q̄ Tbhq) dµ

=

∫
p̄ Tahp · PIb−a

(q̄ Tbhq) dµ

6 ‖p̄Tahp‖ ‖PIb−a
(q̄ Tbhq)‖,
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where PIb−a
is the orthogonal projection onto the space of functions invariant under the

action g 7→ T(b−a)g. Since T is ergodic and (b − a)G has finite index in G, Lemma 3.4
implies this action has finitely many ergodic components. By Lemma 3.5 we have that
ψ(h) := ‖PIb−a

(q̄ Tbhq)‖ tends to 0 in density, so

lim
k→∞

1

|Fk|
∑
h∈Fk

lim
n→∞

1

|Fn|
∑
g∈Fn

〈xg+h, xg〉 = 0,

and Lemma 3.8 implies equation (3.3) holds.

3.4 Discrete spectrum

An ergodic G-system (X,µ, T ) has discrete spectrum if its eigenfunctions span a dense
subspace of L2(µ). The Halmos-von Neumann theorem2 states that every such system
is isomorphic to an ergodic group rotation system (K,m,R), meaning K is a compact
abelian group with Haar probability measure m and R is given by a homomorphism
ρ : G→ K with dense image, so that Rg(k) = k + ρ(g).

Multiple ergodic averages for ergodic group rotation systems can be computed as
follows: if fi ∈ L∞(m), (Fn)n∈N is a Følner sequence and ci ∈ Z, then

lim
n→∞

1

|Fn|
∑
g∈Fn

d∏
i=1

fi(k + ciρ(g)) =

∫
K

d∏
i=1

fi(k + cis) ds (3.4)

in L2(m); cf. Section 3 of [16].

3.5 Factors

The only factor we need in this article is the Kronecker factor of an ergodic G-system,
but we mention the general theory to fix notation. See [12], [15], or [23] for a general
discussion of factors of dynamical systems.

A factor of a G-system (X,µ, T ) is a G-system (Y, ν, S) together with a measurable
map π : X → Y satisfying

µ(π−1B) = ν(B) for all ν-measurable B (3.5)

and π(Tgx) = Sg(π(x)) for µ-almost every x. Note that (3.5) is equivalent to∫
f dν =

∫
f ◦ π dµ for all f ∈ L2(ν). (3.6)

To define the Kronecker factor, we need a standard result such as [23, Theorem 1.7], which
we paraphrase as follows.

Theorem 3.10. Let (X,µ, T ) be an ergodic G-system. To every T -invariant σ-algebra A
of µ-measurable sets, there is a factor (Y, ν, S) with π : X → Y such that A ∈ A if and
only if there is a ν-measurable B ⊆ Y with µ(A4π−1B) = 0. In other words, the elements
of A are, up to µ-measure 0, the µ-measurable sets of the form π−1B for ν-measurable B.

2See [21] for the case where G = Z, [25] for general groups.
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3.6 The Kronecker factor

Every ergodic G-system (X,µ, T ) has a factor (K,m,R) with factor map π : X → K
satisfying the following two properties:

(i) (K,m,R) is an ergodic group rotation G-system.

(ii) Every bounded f ∈ AP is equal µ-almost everywhere to a function of the form f̃ ◦π,
where f̃ ∈ L∞(m).

With the identification in (ii), we have

f(Tgx) = f̃(π(x) + ρ(g)) for µ-a.e. x, for all g ∈ G. (3.7)

This factor can be obtained as the factor associated by Theorem 3.10 to the smallest σ-
algebra of µ-measurable sets with respect to which every T -eigenfunction is measurable.

See [16], [15], or [12] for discussion of the Kronecker factor. In [9] the Kronecker factor
is discussed as the “Kronecker-Mackey factor.”

We will need two standard properties of the projection map PAP : L2(µ)→ AP .

• (Positivity) if f > 0 µ-almost everywhere then PAPf > 0 µ-almost everywhere, and
if f : X → [0, 1], then PAPf(x) ∈ [0, 1] for µ-almost every x.

• (Integrals are preserved)
∫
PAPf dµ =

∫
f dµ for all f ∈ L2(µ).

These both follow from the fact that AP is a norm-closed algebra of functions in L2(µ)
containing the constant functions.

3.7 Proof of Theorem 2.3

We recall the statement of Theorem 2.3: let (X,µ, T ) be an ergodic measure preserving
G-system and let (c1, . . . , cd) ∈ Zd be coefficients satisfying hypotheses (1)-(3) of Theorem
1.3. If f1, . . . , fd : X → [0, 1] are measurable functions, L : Gd → [0, 1] is defined as

L(g1, . . . , gd−1; t) :=

∫
(Tt−∑

j<d
cjgjfd)

∏
j<d

Tcdgjfj dµ (3.8)

and I(t) is defined as the iterated limit

I(t) := lim
n1→∞

. . . lim
nd−1→∞

1

|Fn1| · · · |Fnd−1
|
∑
gj∈Fnj

L(g1, . . . , gd−1; t) (3.9)

then there are

• a compact metrizable abelian group K with Haar measure m,

• a homomorphism ρ : G→ K having ρ(G) = K,
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• functions f̃i : K → [0, 1] with
∫
f̃i dm =

∫
fi dµ for i 6 d

such that

I(t) =

∫
f̃d

(
k + ρ(t)−

∑
j<d

cjsj

)∏
j<d

f̃j(k + cdsj) dk ds1 . . . dsd−1. (3.10)

Furthermore, if f1 = · · · = fd then f̃1 = · · · = f̃d.

Proof. Let (K,m,Rρ) be the Kronecker factor of (X,µ, T ) with factor map π : X → K.
As above, let AP denote the closure of the span of the eigenfunctions of (X,µ, T ), so that
every bounded f ∈ AP can be written as f̃ ◦ π, where f̃ ∈ L∞(m).

The main step of the proof is to show that the innermost limit in the definition of
I(t) is unaffected when fd is replaced by PAPfd. To prove this it suffices to prove that
the innermost limit is 0 when PAPfd = 0, i.e. when fd ∈ WM. Assuming fd ∈ WM, we
write the innermost average in (3.9) as

1

|Fn|
∑

gd−1∈Fn

∫
Tt−∑

j<d
cjgjfd · Tcdgd−1

fd−1 ·
∏
j<d−1

Tcdgjfj dµ.

We rewrite the first factor Tt−∑j<d cjgj
fd as T−cd−1gd−1

f ′d, where f ′d := Tt−
∑

j<d−1 cjgj
fd. Now

f ′d ∈ WM, since fd ∈ WM and WM is a T -invariant subspace of L2(µ). The above
expression can now be written as∫ ( 1

|Fn|
∑

gd−1∈Fn

T−cd−1gd−1
f ′d · Tcdgd−1

fd−1

) ∏
j<d−1

Tcdgjfj dµ. (3.11)

Noting that (cd − (−cd−1))G has finite index in G by hypothesis (2) of Theorem 1.3,
we may apply Lemma 3.9 to the average in parentheses in (3.11) and conclude that it
converges to 0 in L2(µ) as n→∞.

The same argument shows that fd−1 in (3.9) can be replaced by PAPfd−1 without
affecting the innermost limit. Thus we may assume fj ∈ AP for j = d and d− 1. Under
this assumption, Corollary 3.7 allows us to replace the remaining fj, 1 6 j < d− 1 with
PAPfj without affecting the limit in (3.9). Having replaced each fj, we write PAPfj as
f̃j ◦ π, and note that equation (3.7) means ThPAPfj(x) = f̃j(π(x) + ρ(h)) for µ-almost
every x. We evaluate the innermost limit in (3.9) using (3.6) and (3.4) to get

lim
nd−1→∞

1

|Fnd−1
|

∑
gd−1∈Fnd−1

∫
f̃d(k + ρ(g −

∑
j<d

cjgj))
∏
j<d

f̃j(k + ρ(cdgj)) dk

=

∫
f̃(k + ρ(g −

∑
j<d−1

cjgj−1) + cd−1sd−1)
∏
j<d−1

f̃j(k + ρ(cdgj)) f̃d−1(k + cdsd−1) dk dsd−1.

The same evaluation for the averages over gj ∈ Fnj
, j = d− 2, j = d− 3, . . . , j = 1, will

simplify the remaining limits in (3.9) to obtain (3.10).
To justify the last sentence of Theorem 2.3, note that our definition of f̃i implies

f̃i = f̃j whenever fi = fj.
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4 Problems

Theorems 1.2 and 1.3 suggest the following problems.

Problem 4.1. Under the hypotheses of Theorem 1.3, provide quantitative bounds on the
rank and radius of a basic Bohr neighborhood contained in ~c · A in terms of d∗(A) and
the indices of the subgroups ciG in G.

Question 4.2. Can hypothesis (2) in Theorem 1.3 be omitted without affecting the
conclusion?

Here is a specific instance where hypotheses (1) and (3) hold but hypothesis (2) fails.

Problem 4.3. Prove or disprove: if A ⊆ Fω3 × Fω5 has d∗(A) > 0 and ~c = (1, 2, 4,−7),
then ~c · A is a Bohr neighborhood of 0.

Our proof of Theorem 1.3 uses hypothesis (2) to evaluate the limit in (3.11) above.
This step invokes Lemma 3.9, which is a specialization of [4, Theorem 4.3] (see also [1,
Theorem 3.1] and especially [2, Proposition 3.5]). Without hypothesis (2), we cannot
guarantee that the subgroup (b − a)G in Lemma 3.9 has finite index in G. One could
invoke the more general Theorem 4.3 from [4] in place of Lemma 3.9, but this would
require a more intricate analysis of the limit in (3.11), due to phenomena discussed in
Remark 3.2 of [2].

Remark 4.4. Our Theorem 1.3 does not recover Følner’s and Bogoliouboff’s theorems for
groups where 2G has infinite index in G, such as Zω and Fω2 , since ~c = (1,−1, 1,−1) does
not satisfy hypothesis (2) in this case. However, in these two groups, the only nontrivial
instances of coefficients c1, . . . , cd where each ciG has finite index in G and the exponent
of G divides

∑
ci are those where d is even and every ci is 1 or −1. That ~c · A is a Bohr

neighborhood of 0 in this case is already a consequence of Følner’s theorem, as such ~c ·A
will include a subset of the form ~b · A + ~d · A, where ~b = (1,−1, 1,−1) and the entries

of ~d sum to 0. The situation may be more complicated in other groups where 2G has
infinite index in G, and we hope that a positive resolution of Question 4.2 will result in a
proof that recovers Theorem 1.3 and all instances of Følner’s theorem for abelian groups
simultaneously.

Our Theorem 1.3 does recover the special cases of Følner’s and Bogoliouboff’s theorems
where 2G has finite index in G, such as finitely generated abelian groups and vector spaces
over fields of odd characteristic or characteristic 0.
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