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Abstract

We establish a new simple explicit description of the Young diagram at each
step of the combinatorial wall-crossing algorithm for the rational Cherednik algebra
applied to the trivial representation. In this way we provide a short and explicit
proof of a key theorem of P. Dimakis and G. Yue. We also present a conjecture on
combinatorial wall-crossing which was found using computer experiments.

Mathematics Subject Classifications: 05E10

1 Introduction

We study an algorithm for combinatorial wall-crossing for the rational Cherednik algebra.

More precisely, given two positive integers a 6 b let 0 <
a′1
b′1
< · · · < a′k

b′k
< a/b be all the

rational numbers with denominator at most n between 0 and a/b, which we call ”walls,”
i.e. the terms of the n-th Farey sequence which are smaller than a/b. For a positive integer
d let Md be the generalized Mullineux involution which is a certain extension of the usual
d-Mullineux involution from the set of d-regular partitions to all partitions, see Section 2.
Let M t

d stand for the operation of composition of the transposition of partitions with Md.

We will study the properties of the permutation M̃a/b = M t
b′k
◦ · · · ◦M t

b′1
on partitions of

n. We think of the involution M t
b′i

as combinatorial wall-crossing across the wall
a′i
b′i

and

call M̃a/b the combinatorial wall-crossing transformation to the left of the wall a/b.
The study of wall-crossing functors for representations of complex semisimple Lie al-

gebras was initiated by Beilinson and Ginzburg ([BG]). Wall-crossing functors for quan-
tized symplectic resolutions were recently used as a crucial ingredient in the work of
Bezrukavnikov and Losev ([BL]). Wall-crossing functors are perverse equivalences, which
induce bijections between irreducible objects of the corresponding category O, called
combinatorial wall-crossing. Losev proved in [L] that combinatorial wall-crossing for the
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rational Cherednik algebra of type A is given by the Mullineux involution in large positive
characteristic. Wall-crossing was also recently studied by Gorsky and Negut ([GN]) and
Su, Zhao, and Zhong ([SZZ]).

The motivation for considering the permutation M̃a/b comes from Bezrukavnikov’s
combinatorial conjecture (see Section 2) which stems from relations between wall-crossing
functors and monodromy of the quantum connection for the Hilbert scheme of points in
the plane (cf. [BO]). More precisely, Bezrukavnikov conjectured that certain invariants
(corresponding to dimensions of supports of simple representations of the rational Chered-
nik algebra) of the composition of the above involutions are equal to similar invariants
for a composition of involutions which are much simpler, in particular do not involve the
Mullineux involution in their definition (see Section 2 for details).

We note that a similar study to the present one has been undertaken in [DY]. The
goal of the present paper is to streamline, clarify, and add new information to the results
obtained in [DY]. Our method of proof is different from the method of proof in [DY],
although we make use of similar general constructions. Our methods have the advantage
that they provide more explicit information about the intermediate steps of the algorithm
and they lead to the sought conclusion faster.

Now we will state the main theorem of this note.
We will talk about coordinates of any box in any Young diagram in the following way.

We will place the Young diagram in the fourth quadrant (i.e. the quadrant with x > 0 and
y 6 0) so that the horizontal and vertical boundaries of the Young diagram are aligned
with the corresponding coordinate axes (see Figure 1). The coordinates of a box in the
Young diagram will be the Cartesian coordinates of its top left corner in this placement.
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Figure 1: The Young diagram for the partition (4, 3, 1)
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Definition 1. Let a 6 b be fixed positive integers. We define an order on pairs of integers
(x, y) where x > 0, y 6 0 by (x1, y1) >a,b (x2, y2) if ax1 − (b − a)y1 > ax2 − (b − a)y2 or
ax1 − (b− a)y1 = ax2 − (b− a)y2 and y1 > y2.

Note that the order defined above is clearly total and the smallest element with respect
to this order is (0, 0).

Definition 2. Let Dn
a,b be the union of the first n boxes with respect to the order >a,b

defined above.

Example 3. Let a = 3, b = 5 and n = 6. Here in the fourth quadrant we fill each box
with coordinates (x, y) of its top left corner with the number ax− (b− a)y and mark the
Young diagram Dn

a,b which is the union of the first n boxes with respect to the order >a,b:

0 3 6 9 12 · · ·
2 5 8 11 14 · · ·
4 7 10 13 16 · · ·
6 9 12 15 18 · · ·
8 11 14 17 20 · · ·
...

...
...

...
...

In the following we identify Young diagrams of content n with partitions of n and with
the irreducible representations of the symmetric group Sn, in particular (n) will denote
the Young diagram with one row of length n corresponding to the partition with one part
of size n. In this note we will prove the following

Theorem 4. The result of the combinatorial wall-crossing transformation to the left of
the wall a/b applied to the partition (n) is Dn

a,b i.e. M̃a/b((n)) = Dn
a,b.

The note is organized as follows. In Section 2 we state the preliminaries, in particular
describe Bezrukavnikov’s conjecture. In Section 3 we find a new description of partitions
obtained by applying the above algorithm to the trivial representation, and using this
description we prove a statement equivalent to the main theorem of [DY]. In Section 4
we conjecture the effect of the algorithm on the sign representation for a prime value of
the size of the partition.

2 Preliminaries

For positive integers a < b we define the operation of generalized column regularization
colrega,b (which first appeared in [DY]) on partitions. By a ladder we will mean the
collection of points in Z>0×Z60 on a line of the form ax− (b− a)y = c with c an integer.
The operation of generalized column regularization on a given partition consists of sliding
all boxes in the partition on any ladder as far Southwest as possible. Note that the result
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of the action of generalized column regularization of a partition may not be a partition.
Here is an example of the action of colreg3,5 on the partition (3, 2, 1):

colreg3,5−−−−→

A box outside of a partition is called addable if the set union of this box and the
partition is still a partition. A box in a partition is called removable if the set difference
of the partition and this box is still a partition. Fix a positive integer b. Recall that the
residue of a box with coordinates (x, y) ∈ Z>0 × Z60 is the number (x + y) mod b in Zb.
For a given residue i ∈ Zb we define the sequence of addable and removable boxes with
residue i written from the Southwest to the Northeast, writing A or R for each box if
it is addable or removable respectively. Then we cross out every word of the form RA
from the sequence inductively. The first R from the left after all crossing-out is completed
corresponds to a b-good box of residue i in the partition with which we started (the notion
of a good box is due to Kleshchev, cf. [K]).

To state Bezrukavnikov’s conjecture, we need to define a new operation M̃ ′
a/b on par-

titions of n for a given term a/b of the n-th Farey sequence. First we define the operation
of concatenation ∪ of two partitions as follows: the sequence of rows of the new partition
is the multiset union of the two sequences of rows of the old partitions. Next we write
our partition as a concatenation µ = ν ∪ dρ where each row of ν is not divisible by d and
each row of dρ is divisible by d, and is in fact equal to d times the corresponding row
of the partition ρ. For example, for d = 2 and µ = (4, 3, 2, 1) we have ν = (3, 1) and
ρ = (2, 1). Note that there is a unique way to write a partition in this way. Finally we

define M ′
d(µ) = ν ∪ dρt and M̃ ′

a/b = M ′
b′k
◦ · · · ◦M ′

b′1
, where 0 <

a′1
b′1
< · · · < a′k

b′k
< a/b are all

the rational numbers with denominator at most n between 0 and a/b.
A partition is called d-regular if none of its parts is repeated at least d times. In

the statement of Bezrukavnikov’s conjecture the following extension of the Mullineux
involution Md (where we also denote the extension by the same letter Md and call it
the generalized Mullineux involution) from the set of d-regular partitions to the set of all
partitions is used. For a partition ρ denote by d∗ρ the partition in which each part of ρ is
repeated d times. Writing µ = ν ∪ d ∗ ρ with ν regular, we define Md(µ) = Md(ν)∪ d ∗ ρt.
Now we are ready to state (see the definition of M̃a/b in the introduction):

Conjecture 5. (R. Bezrukavnikov, cf. Conjecture A.2 in [DY]) For every positive integer
n, every partition λ of n, and every term of the Farey sequence a/b, the total number of

boxes in all rows divisible by b in the two partitions M̃a/b(λ) and M̃ ′
a/b(λ

t) is the same.

Remark 6. Examples confirming this conjecture for n 6 5 can be found in the appendix
to [DY].

the electronic journal of combinatorics 29(1) (2022), #P1.36 4



3 Trivial representation

Recall that we place Young diagrams in the fourth quadrant so that their horizontal and
vertical boundaries are aligned with coordinate axes.

Lemma 7. For two neighboring fractions a
b
< a′

b′
6 1 in the n-th Farey sequence and two

boxes (xi, yi), i = 1, 2, in a Young diagram with n boxes we cannot simultaneously have
a′x1 − (b′ − a′)y1 < a′x2 − (b′ − a′)y2 and ax1 − (b− a)y1 > ax2 − (b− a)y2.

Proof. The two inequalities ax1 − (b − a)y1 > ax2 − (b − a)y2 and a′x2 − (b′ − a′)y2 >
a′x1 − (b′ − a′)y1 which hold simultaneously lead to (b − a)(y2 − y1) > a(x2 − x1) and
(b′ − a′)(y1 − y2) > a′(x1 − x2). This in turn implies that x1−x2

y1−y2 is between b−a
a

and b′−a′
a′

.

This means that x1−x2+y1−y2
y1−y2 is between b

a
and b′

a′
. From this we conclude that |y1−y2|

|x1+y1−x2−y2|

is between a
b

and a′

b′
. We have |x1 +y1−x2−y2| 6 |x1−x2|+ |y1−y2| 6 n because (x1, y1)

and (x2, y2) lie within a Young diagram with n boxes total. This in turn contradicts the
fact that a

b
and a′

b′
are neighboring terms of the Farey sequence.

The proof of Theorem 4 follows directly from the combination of the following two
lemmas.

Lemma 8. Let a
b
< a′

b′
be the two neighboring terms in the n-th Farey sequence. Then

Dn
a′,b′ = colrega,b(D

n
a,b).

Proof. Suppose that the conclusion of the lemma is false. This means that there exist
boxes (x, y) in colrega,b(D

n
a,b) and (x̃, ỹ) not in colrega,b(D

n
a,b) such that (x̃, ỹ) <a′,b′ (x, y).

Case 1. Assume that a′x̃ − (b′ − a′)ỹ < a′x − (b′ − a′)y. By Lemma 7 we have
ax̃−(b−a)ỹ 6 ax−(b−a)y. If ax̃−(b−a)ỹ < ax−(b−a)y then since (x, y) in colrega,b(D

n
a,b)

we have that (x̃, ỹ) ∈ Da,b, which is a contradiction. So ax̃ − (b − a)ỹ = ax − (b − a)y.
Therefore (x, y) and (x̃, ỹ) lie on the same line of slope b−a

a
. Since (x, y) is in colrega,b(D

n
a,b)

and (x̃, ỹ) is not in colrega,b(D
n
a,b), we have that (x̃, ỹ) lies above (x, y) i.e. ỹ > y.

Therefore we obtain a′x̃− (b′ − a′)ỹ < a′x− (b′ − a′)y, ax̃− (b− a)ỹ = ax− (b− a)y,
and ỹ > y. From the equality we get ỹ − y = a

b−a(x̃ − x), hence x̃ > x. Substituting

this into the inequality, we get a′(x̃ − x) < (b′ − a′) a
b−a(x̃ − x). This contradicts a

b
< a′

b′
.

Therefore we obtained a contradiction in Case 1.
Case 2. Assume that a′x̃ − (b′ − a′)ỹ = a′x − (b′ − a′)y and ỹ > y. Since (x̃, ỹ) is

outside of colrega,b(D
n
a,b), we have that ax̃− (b− a)ỹ = ax− (b− a)y. Therefore we have

that a′(x̃− x) = (b′− a′)(ỹ− y) and a(x̃− x) > (b− a)(ỹ− y). From these two equalities
we obtain b′−a′

a′
(ỹ − y) > b−a

a
(ỹ − y) which contradicts a

b
< a′

b′
. Therefore we obtained a

contradiction in Case 2.

Lemma 9. We have M t
b(D

n
a,b) = colrega,b(D

n
a,b).

Proof. We define an order on pairs (n, a
b
) where a

b
is a term of the n-th Farey sequence by

(n1,
a1
b1

) > (n2,
a2
b2

) if n1 > n2 or n1 = n2 and a1
b1
> a2

b2
. We prove this lemma by increasing

induction on the pair (n, a
b
).
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Consider the box P = Dn
a,b \Dn−1

a,b . We claim that this box is b-good by definition of
a b-good box (see Section 2). We check the definition of a b-good box for P as follows:
we claim that all addable and removable boxes with the same residue as P lie on the line
through P with slope b−a

a
above P and from left to right all addable boxes go before all

removable boxes, with the first removable box from the left in the sequence being the box
P .

Let P lie on the line ax − (b − a)y = c in the diagram. Let us show that there are
no addable or removable boxes in Da,b with the same b-residue as P such that they lie
above the line ax− (b− a)y = c. Suppose there is an addable or a removable box (x1, y1)
in Da,b with the same b-residue as P above the line ax − (b − a)y = c. Then we have
ax1−(b−a)y1 = c−kb for some positive integer k. Then a(x1+1)−(b−a)y1 = c−kb+a < c
therefore the box (x1+1, y1) lies in Dn

a,b and so (x1, y1) cannot be an addable or a removable
box. Contradiction.

Now let us show that every box on the line ax− (b− a)y = c is either addable if it is
to the left of P or removable if it is to the right of P or if it is P itself. Let Q be a box
with coordinates (x2, y2) on the line ax− (b−a)y = c. Then a(x2 + 1)− (b−a)y2 > c and
ax2− (b− a)(y2− 1) > c hence the boxes immediately to the right of Q and immediately
below Q are not in the diagram Dn

a,b. Hence Q is addable if Q is not in Dn
a,b and removable

if it is in Dn
a,b. Since all boxes on the line ax− (b− a)y = c to the left of P are not in Dn

a,b

and all boxes on the line ax− (b− a)y = c to the right of P and P itself are in Dn
a,b, we

obtain our conclusion.
Similarly we find that the box Y = colrega,b(D

n
a,b) \ colrega,b(D

n−1
a,b ) is good in the

partition which is the transpose of the partition colrega,b(D
n
a,b) and has the opposite residue

to the residue of X in the partition Dn
a,b.

In Corollary 4.12 of [BeO] (cf. p. 268 in [FK]) it is shown that the result of the
action of Mullineux on the difference of a partition and its good box with residue i is the
difference of Mullineux of the partition and its good box with residue −i.

Since we showed above that Y is the only addable box of residue −i in the partition
which is the transpose of colrega,b(D

n−1
a,b ), by the above property of the action of Mullineux

on a partition with a good box, Mb(D
n
a,b) = Mb(D

n
a,b ∪ X) = (colrega,b(D

n−1
a,b ) ∪ Y )t =

(colrega,b(D
n
a,b))

t.

Remark 10. As we increase n, to the left of the wall a/b new boxes add to the Young
diagram increasingly with respect to the order >a,b.

Corollary 11. We deduce Theorem 3.5(2) in [DY] which states that Mullineux transposed
gives us generalized column regularization at each step of wall-crossing for the trivial
representation.

Corollary 12. Bezrukavnikov’s conjecture for the trivial representation follows.

Proof. It is easy to see that under both algorithms the partition stays regular all the time
(under the algorithm of Section 2 the column partition never changes).
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4 Sign representation

Let n be a prime number and let sgnn be the partition of n corresponding to the sign
representation of the symmetric group Sn, i.e. its Young diagram is a column of height
n. Let r be a term in the n-th Farey sequence. Given positive integers f1 < · · · < fm and
g1, . . . , gm, we will write f g1

1 f
g2
2 . . . f gm

m for the partition of the integer f1g1 + · · · + fmgm
with gi parts equal to fi.

Conjecture 13. There is an increasing sequence of fractions ai
bi

in the Farey sequence

such that for ai
bi
< r < ai+1

bi+1
the partition M̃r(sgnn) of n is of the form ztxy where x, y, z, t

satisfy

(a) z + y = bi,

(b) y + t+ z − x = bi+1.

Example 14. We illustrate the above conjecture with the example of what happens to the
column partition of content 5 under the sequence of combinatorial wall-crossings across
the walls in the 5-th Farey sequence. It is easy to see that all occurring partitions have at
most two possible lengths of rows and the equations in Conjecture 13 hold in this case:

(1, 1, 1, 1, 1)
1
5−→ (5)

1
4−→ (3, 2)

1
3−→ (1, 1, 1, 1, 1)

2
5−→ (5)

1
2−→ (1, 1, 1, 1, 1)

3
5−→ (5)

2
3−→ (2, 2, 1)

3
4−→

(1, 1, 1, 1, 1)
4
5−→ (5).

Remark 15. Together with the equation xy + zt = n, the above two equations form a
system of three equations with four unknowns to be solved over the integers, which is
equivalent to one linear Diophantine equation xbi − y(bi+1 − bi) + bi(bi+1 − bi) = n with
two unknowns.

Remark 16. Below we state some properties of the partitions occurring in Conjecture 13
which may aid in proving it. Recall that Mullineux’s original definition of the b-Mullineux
involution uses the notion of b-rim of a partition. The partitions in Conjecture 13 have
the property that the bi+1-rim of the partition M̃r(sgnn) is obtained from the usual rim of

M̃r(sgnn) by removing the top row, and the bi-rim of the transposed partition M̃r(sgnn)t

is obtained from the usual rim of M̃r(sgnn)t by removing the top row. Furthermore, after
removing the first bi+1-rim (resp. bi-rim) in these partitions, the Young diagram still has
at most two possible lengths of rows.
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