Andrews-Beck type congruences for overpartitions

Eunmi Kim*

Institute of Mathematical Sciences
Ewha Womans University
Seoul, Republic of Korea

eunmi.kim67@gmail.com

Submitted: May 26, 2021; Accepted: Feb 11, 2022; Published: Feb 25, 2022
(©) The author. Released under the CC BY-ND license (International 4.0).

Abstract

We prove Andrews-Beck type congruences for overpartitions concerning the D-
rank and Ms-rank. To prove congruences, we establish the generating function for
weighted D-rank (respectively, My-rank) moment of overpartitions and find a con-
nection with the second D-rank (respectively, Ms-rank) moment for overpartitions.

Mathematics Subject Classifications: 11P81, 05A17

1 Introduction

Ramanujan’s congruences for the partition function p(n) are one of remarkable results in
the theory of partitions:

p(bn+4) =0 (mod 5),
p(Tn+5)=0 (mod 7),
p(1ln+6) =0 (mod 11),

Dyson [8] defined the rank of a partition, which is defined as the largest part minus the
number of parts, conjectured combinatorial explanations for the Ramanujan congruences
modulo 5 and 7, and conjectured the existence of a crank function for partitions that
could provide a combinatorial proof of Ramanujan’s congruences modulo 11. Atkin and
Swinnerton-Dyer [3] proved Dyson’s conjecture on the rank. Andrews and Garvan [2]
found the crank function and proved that the crank explains all Ramanujan congruences
modulo 5, 7 and 11.

*Supported by the Basic Science Research Program through the National Research Foundation of Ko-
rea funded by the Ministry of Education (NRF-2020R111A1A01065877, NRF—2019R1A6A1A11051177).
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Let NT'(b, k,n) be the total number of parts in the partitions of n with rank congruent
to b modulo k. Beck conjectured surprising congruences for the certain linear combinations
among NT'(b,k,b). Andrews [1] has confirmed Beck’s conjectures: for all non-negative
integers n,

NT(1,5,5n +1) +2NT'(2,5,5n + 1)
—2NT(3,5,5n+1i) — NT(4,5,5n+1i) =0 (mod 5)

fori =1 or 4, and

NT(1,7,7n+14) + 2NT(2,7, T +1i)+ 3NT(3,7,7Tn + 1)
—3NT(4,Tmn+1i) —2NT(5,7,7n+1i) — NT(6,7,7n+1i) =0 (mod 7)

for i = 1 or i = 5. A crank version of Beck’s conjecture is confirmed by Chern [6]. For
example, if M, (b, k,n) counts the total number of ones in the partitions of n with crank
congruent to b modulo k, we have, for all integers n > 0,

M,,(1,5,5n +4) + 2M,,(2,5,5n +4) — 2M,,(3,5,5n +4) — M,,(4,5,5n+4) =0 (mod 5).

In the recent article [7], Chern also provided a list of over 70 Andrews-Beck type congru-
ences involving0 NT'(b, k,b) and M, (b, k,n).

Now, we will consider overpartition analogue to Andrew-Beck type congruences. Recall
that an overpartition is a partition in which the first occurrence of a number may be
overlined. For example, the 14 overpartitions of 4 are

4,4,3+1,3+1,3+1,3+1,24+2,2+2,
24+1+1,2+1+1,24+1+1,24+1+1,1+1+1+1,1+1+1+1.

For an overpartition A of n, the D-rank of A [11] is defined as Dyson’s rank for ordinary
partition,
D-rank(X\) = €(X) — #(N),

and the Ms-rank of A [12] is defined by

()

My-rank()) = [ :

[ = #00 + #00) = x0v.

where £(\) is the largest part of A, #()\) is the number of parts in A, #()\,) is the number of
odd non-overlined parts of A, and x(A) = 1 if the largest part of A is odd and non-overlined
and x(\) = 0 otherwise.

Let NT(b,k,n) denote the total number of parts in the overpartitions of n with D-
rank congruent to b modulo k& and NT2(b, k,n) denote the total number of parts in the
overpartitions of n with Ms-rank congruent to b modulo k. Then the following congruences
are proved by Chan-Mao-Osburn [5]: for all n € N,

NT2(1,5,5n+2)+2NT2(2,5,5n+2)—2NT2(3,5,5n+2)—NT2(4,5,5n+2) =0 (mod 5)
(1.1)
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and
NT(1,3,3n+4)—NT(2,3,3n+i) = NT2(1,3,3n+i) — NT2(2,3,3n+i) (mod 3) (1.2)

fori =0 or 1.
In this paper, we prove Andrews-Beck type congruence on NT'(b, k,n) and NT2(b, k,n)
modulo 4 and 8 as follows.

Theorem 1. For all integers n = 0,
NT(1,4,2n + 1) +2NT(2,4,2n + 1) + 3NT(3,4,2n +1) =0 (mod 4).
Theorem 2. For all integers n > 0,

NT2(1,4,4n + 1) + 2NT2(2,4,4n + 1) + 3NT2(3,4,4n + 1) =0 (mod 4),
NT2(1,4,4n + 2) + 2NT2(2,4,4n + 2) + 3NT2(3,4,4n +2) =0 (mod 4),

and

NT2(1,8,4n + 2) + 2NT2(2,8,4n + 2) + 3NT2(3,8,4n + 2)
FANT2(4,8,4n + 2) + 5NT2(5,8,4n + 2) + 6NT2(6,8, 4n + 2)
+7NT2(7,8,4n+2) =0 (mod 8).

Lastly, we also prove a congruence between NT (b, k,n) and NT2(b, k,n).

Theorem 3. For all integers n > 0, we have

7 7
> JNT(j,8,4n+1)=> jNT2(j,8,4n+1) (mod 8).

Jj=1 Jj=1

The rest of the paper is organized as follows. In Section 2, we establish the generating
function for weighted D-rank moment of overpartitions and find a relation with the second
D-rank moment for overpartitions, from which we can prove Theorem 1. Also, we discover
more congruences on NT'(b, k,n). In Section 3, the generating function for weighted M,-
rank moment of overpartitions and a proof of Theorem 2 will be presented. Employing
generalized Lambert series identities, we prove the congruence between NT'(b, k,n) and
NT2(b, k,n) in Section 4.

2 Weighted D-rank moments of overpartitions
Using standard combinatorial arguments in partition theory as [11, Proposition 1.1], we
find that

(_1)nann(n+1)/2

Caaa/n 21)

{L‘ P q Z Z x#()\ Drank()\)q Z

n20 \cP,, n=0
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where P,, is the set of overpartitions of n.
Here and throughout the rest of the paper, we use the standard g-series notation,

n

(a)n = (a;0)n = [J(1 = ad"™),

k=1
(ala cee >am)n = (ah cee aam;Q)n = (al)n' e (am)n7
and
[ab ce 7am]n = [Cll, ce aam;Q]n = (ala(J/ab ce 7am>q/am)m

for n € Ny U {oo}.

We will give two proofs for Theorem 1. For the first proof of Theorem 1, we will
establish the generating function for the weighted D-rank moment of overpartitions and
compare it with the ordinary and symmetrized D-rank moments. Here, the ordinary and
symmetrized D-rank moments are defined by

where N(m,n) denotes the number of overpartitions of n with D-rank m.

Theorem 4. We have
(_1) qn(n+1)/2 n q"

2 2 #HNDrank(Ng" ==, 7@)2 Zl (1—qm)?

n=0 \cP,, n=1

which tmplies

> #(A)D-rank()) 5 N2(n) = —75(n)
\eP,
It follows that
Z (_1)nqn(n+1)/2 n q" B oo Z n+1 n(n+1)
n=1 (q>% m=1 (1 o qm) n>1

Proof. Applying [0/0x],—1 to the generating function R(z,z,q) (2.1), we have

an o (_1 WL n(n+1)/2
ZZ# 5 D- k:(A) agj[z )JnZ"q ]_1

n(n+1)/2 o "
-2 oo )|
= (zq, :cq/z) Ox (xq/2)n ) |,y
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nn+1)/2 n n m
e XD e
~  (20.q |

m=1
(_ 1) qn(n+1)/2

> (X )

Then if we differentiate it by z and evaluate it at z = 1, we get

1) gt/
ZZ# )D-rank(\)q" %[Z( Dn <+Zz—q )]

n>0 \eP, = (a.a/2)n

n (n+1

)2 q"
_ Z m; oo (2.2)

which proves the first part.

If we apply [Z(z2)].—1 to R(1,zq), then we have the generating function for the
second D-rank moment as follows.

Zﬁg(n)q” = Z Z D-rank()\)*q

n=0 n=0 AP,

—= _— Z—
=0z \ 0z (2q,9/2)n 1

_ Q(—l)nzq““*””z”: ¢ a
102 (2¢,q/2)n o \1—2q™  2q" —2°

n=0 z=1
n(n+1)/2 n m
q
—9 7
> S

by comparing with (2.2), which implies that Y, 5 #(X)D-rank(\) = —3N(n). Also,
from the following relation between the ordinary and symmetrized D-rank moments

k

N%(n) = Z(Qj)!s*(k,j)ﬁ%(nL

J=1

where the sequence S*(n, k) is defined recursively by S*(n+1,k) = S*(n, k—1)+k*S*(n, k)
and S*(1,1) =1, S*(n, k) = O for k < 0 or k > n, we can see that $ N»(n) = 7,(n). Finally,
the generating function of 77,(n) [10, Theorem 2.1] gives

Z (_1)nqn(n+1)/2 i qm oo Z n+1 n(n+1) -
= (@7 (=g ~ 1 —q)?

Using the generating function for the weighted D-rank moment of overpartitions in
Theorem 4, we can give a proof of Theorem 1.
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Proof of Theorem 1. By Theorem 4, we have

Z (NT(1,4,n) + 2NT(2,4,n) + 3NT(3,4,n)) ¢"

n=0
n+1 n(n+l)
=— Joo Z (mod 4).
n>1
USing (_Q)oo/(Q)oo =1 (mOd 2)7
@) —1)" n(n+1) —1)" n(n+1)
si L ol L P o A (mod 4)
(@)oo & (1—¢q") = (1—q)
_22 n nn+1)zmqn(m 1)
n>1 m>=1
n?—2n+(2m— n— n+2m—
_ 22 Z(2m o 1)q4 2 +(2 2)(2 1) (q4 +2 2 1)
n=l m>1
+9 Z Z 4n2—2n+ 2m—1)(2n—1) (q4n+2m—1 . 1)
n=1 m>=1
=9 Z Z q4n272n+(2m72)(2n71) (q4n+2m72 N 1) (mod 4)’
n=1 m>1

Since the last sum involves only terms where the power of ¢ is even, the result follows. [
From Theorem 1, we can have the following congruence for the second D-rank moment.
Corollary 5. For all integers n > 0,

Ny(2n+1)=0 (mod 2).

In fact, we prove more detailed results on congruences of N7'(b, k, n), which also deduce
the congruence in Theorem 1.

Theorem 6. For all non-negative integers n,

NT(0,4,4n+i) =0 (mod 4) for i=0,2,3,
NT(2,4,n) =0 (mod 4),
NT(2,4,4n+i) =0 (mod8) for i=1,2,3,
NT(1,4,2n+1)=0 (mod 4),
NT(3,4,2n+1)=0 (mod 4).

Proof. Applying Proposition 2.2 in [5] (a generalization [1, Theorem 3]) with setting d = 1
and e — 0, we can rewrite (2.1) as follows.

_ -1 nann(n+1)/2
Rlo. 20 = Y4

~  (2q,7q/2)n
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—2q) oo xq, —1 n n(nil) ( 1 x/z )
=1- —)"q + :
(7)o ; (=) (1 —2¢") 1—zq"/z

n—1

By expanding the terms involving z in a geometric series as in the proof of [1, Corollary4],
we have the generating function of NT'(b, k,n), for 0 < b < k,

ZW((), k,n)q

n=0
o el (=1, (b—1)n k—b . (k—1-b)n
Ox (2¢") 0 (q)n-1 1 — gk 1 — zhghn

n>1

r=1

n+1 _ n(n+1)+(b—1)n — g™ttt
=—[Z(( 20 oo D it 2 10s (1 >W>]

n>1 an—H)oo(Q)n—l 11— qlm 8x (an+1>oo o=1

_ ntl - k—b (k—1-b)n _peontl n+k—b
—[Z( 20" oo =Dty 0 1og(<< ") @ )]

n>1 (an+1)oo(Q)n71 1-— xkq’m ox g;-qnﬂ)oo 1— a:qun
(_q)oo 1 1— q" q( n + q(k 1—b)n
(Q>oo ; 14qn 1 —ghn n; 1—¢?m

oo 1 — " (k—1-b)n k
- yrgrnrn - — 9 4 —b). (2.3)
n>1 1+ qn 1 — qkn 1 — qkn

Setting k = 4 and using (1 —z)/(1 +2) =1 (mod 2) yield

r=1

(b—1)(2n—1) (3—b)(2n—1)
ZNTbélnq 22(]2"2”1(] 4

_ 44(2n—1
n=0 n>1 1 q ( )
) (3 b)n
n n n+

For the case b = 0, we have

> NT(0,4,n)¢" =2 ¢V (mod 4),

n>0 n=1

which has only terms with the powers of ¢ congruent 1 modulo 4. Hence, NT(0, 4, 4n+i) =
0 (mod 4) for i =0,2,3 and all integers n > 0. For the case b =1 and 3, we find that

n 2n(2n—1) ~H@En-1) 2n(2n+1) g0
ZNTblln _QZQ 1— fen1) —I—ZZq q1_ 5

an
n>=0 n>1 n>1

(mod 4)

has only even powers of ¢, which implies that NT(1,4,2n + 1) = NT(3,4,2n + 1) = 0
(mod 4) for all integers n > 0. Similarly, for the case b = 2, from (2.3),

2n

D NT(2.4m)q" =4 ¢ — 2n1+4z ”"”“_q—n (mod 8)

q4n
n=0 n>1 n>1
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2n

E— n n q
— 42‘]2 (2 H)W (mod 8),

n=1

which includes terms only with the powers of ¢ congruent 0 modulo 4. This proves that
NT(2,4,n) =0 (mod 4) and NT(2,4,4n + i) =0 (mod 8) for i = 1,2, 3 for all integers
n greater than 0. O]

3 Weighted M>-rank moments of overpartitions

As in Section 2, we find the generating function for the weighted Ms-rank moments of
overpartitions and compare it with the ordinary and symmetrized Ms-rank moments. We
have the ordinary and symmetrized M,-rank moments defined by

N2,(n kaNQm n),

meZ

=3 (") w2,

meZ

where N2(m,n) denotes the number of overpartitions of n with My-rank m. The gener-
ating function [12, Theorem 1.2] is

x 2,q) Z Z T Mz—?“ank()\)qn _ Z (_172_(1;612)7.1(2(])”'

2
n=>0 \eP, n>0 (Zq » L4 /Zaq )n

Theorem 7. We have

> 3 #Mrank (e =~ Y 1‘qq " Z

n=0 \eP,, n>1

which implies
1

> #NMyrank(X) = =5 N2y(n) = —i2,(n).
\eP,
It follows that
( —q:q nq B oo n+1 n (n+2)
; (C] C] Zl_QQm ; 1_q2n

Proof of Theorem 7. If we differentiate R2(x, z,q) by = and evaluate it at x = 1, we get

1 2 n
$3 () Mrank aa;c Z( 1,2 qvq%f(:ng)

2
n=0 \cP,, n>0 (Zq ) /qu )n
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M

{ —1,—q;¢°)n (wq)”alog( x" )]
e (2¢%,2q%/2,¢%),, Oz (2¢*/26*)n ) | 4ms

N L
(e q2/zq <+Zz—q2m>'

Then applying [0/0z].-1 gives

n_ 0 —1,—q¢;¢*)nq" q
ZZ# ) Ma-rank(\)g" 8_[21 (2¢% 42/ %, @)n ( +Zz_q2m)] .

n20 \cP,, _

_ ( —4q; nq
a (4% ¢%) Z 1—q2m (31)

n=1

which is the first part. Next, to compare with the My-rank moments, when we apply
[2(22)].=1 to R2(1, z,q), we find that

ng(n)q” = Z Z My-rank(\)?q

n=0 nz20 \cP,,

_QZ qq )nd" Z (3.2)

n>1

Then the second part follows from comparing (3.1) with (3.2) and the following relation
between the ordinary and symmetrized M,-rank moments

k

N2yp(n) = Z(Qj)!S*(k’aj)W%(")'

J=1

Lastly, we have the last identity by considering the generating function for 72,(n) [10,
Theorem 2.1]. O

From the generating function for weighted Ms-rank moment of overpartitions, we can
prove Theorem 2.

Proof of Theorem 2. By Theorem 7, we notice that

(_ 1)n+1qn(n+2)

> (NT2(1,4,n) + 2NT2(2,4,n) + 3NT2(3,4,n)) ¢" = e L_

(mod 4).

By applying (—¢)oo/(¢)oo = 1 (mod 2),
n (n+2) (_1>nqn(n+2)

OOZ EQZW (mod 4)

n>1 n=1
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_22 nn(n+2)zmqnm 1)

n=1 m>1
nn n{m— TL2_ n— m—
— QZZ <q4 (n+1)+8n(m—1) _  dn?=1+4(2n—1)( 1)) (mod 4),
n=1m>1

which contributes the term with powers congruent to 0 or 3 modulo 4. Then we have
NT2(1,4,4n + 1) + 2NT2(2,4,4n + 1) + 3NT2(3,4,4n +1) =0 (mod 4)
NT2(1,4,4n +2) + 2NT2(2,4,4n +2) + 3NT2(3,4,4n +2) =0 (mod 4).
Also, by Theorem 7, we find that

! —_— oo n+1 n(n+2)
ZZ]NTQ(%&H)CJ” = - Z (mod 8).
n>0 j=1 n>1
Using
o e nod g = 3 (-1,
(Q)oo (_Q)oo oo
we have
oo Z n n (n+2)
= 1 _ q2n
—1)7gn(nt2)
=21 | D ey
k>1 n>1 <1 —q )
=2(14+2 Z k k2 Z(_l)nqn(n+2) Z mq2n(m71)
k>1 n>1 m>1
=2(1+2 Z Vg Z Z(zm —1) <q4n(n+1)+8n(m—1) _ q4n271+4(2n71)(m71)>
k>1 n=z1l m>1
49 Z Z(Qm) <q4n(n+1)+4n(2m—l) _ q4n2_1+2(2n—1)(2m—1)> (mod 8). (3.3)
n=1 m>1
Here,

1+2) (-1)F 7"

k>1
only contributes to terms with powers of ¢ congruent to 0 or 1 modulo 4, while the factor

Z Z(Qm —1) <q4n(n+1)+8n(mfl) _ q4n271+4(2n71)(m71)>
n=>1 m>1

involves terms with powers of ¢ congruent to 0 or 3 modulo 4. Therefore, the first term
in (3.3) dose not have terms with powers of ¢ congruent to 2 modulo 4. The second term
in (3.3) has only terms with powers of ¢ congruent to 0 or 1 modulo 4. Hence, we obtain

NT2(1,8,4n + 2) + 2NT2(2,8,4n + 2) + 3NT2(3,8, 4n + 2)
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+ANT2(4,8,4n + 2) + 5NT2(5,8,4n + 2)
+6NT2(6,8,4n +2) + TNT2(7,8,4n+2) =0 (mod 8). [

From Theorem 2 and (1.1), we can have congruences for the second Ms-rank moments
as follows.

Corollary 8. For all integers n > 0,
N2;(4n+1)=0 (mod 2),
N2;(4n +2)=0 (mod 4),
N2,(5n+2) =0 (mod 5).

4 Proof of Theorem 3

Let

= io: ¢ and ¥(g) =) """

n=—oo n=>0

Then, by Jacobi’s triple product identity and simple g-series manipulations, we have

(9)%, (@%¢*)%

(B N .
o) =~ P(=9) ) nd 9(q) = (O

(@)% (g% a*)2

and

0’ (q) = ¢*(¢*) + 4% (¢"), e(@)e(—q) = ¢*(=¢%), and ¢*(q) = e(Q)v(¢®).  (4.1)

We will also use the following identities [4, Theorem 6.1, and 7.1].

4 q
—q)=1+8 , 4.2
¢ (—q) ; (1+ q)? (4.2)
40 (2n 1422 — (20 4 1)gtt?) g
n=0

We prove Theorem 3 using generalized Lambert series identities with above theta
function identities.

Proof of Theorem 3. Let

By Theorem 4 and 7, we have

n+1 n n+1) n—l—l n (n+2)

Z a(n)q" = — Jes Z Joo Z (mod 8)

n=0 n=1 n=1
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oo Z |: n nn+1) (_1)nqn(n+2)

. 4.4
P e e G 44)
n#0
We consider the 4-dissection for ((753: 9],
(Do _ (6%4%) . (¢% 4%
@ (g% qY)(q10; g16)5 (g% ¢)12(g15; q16)2.
P AT D et 0 S C T WP USRS (4.5)
(a*¢*)88 (a* ¢*)% '
For the summation part in (4.4),
oL (L=g)? (1—¢*)?
n#0
_ o N (D" 4 g 4 3¢ + )
B n_zoo (1—g')?
n#0
=2 ) T2 (mod 8) (4.6)
U0
using the fact

Z (_1)nqn(n+1)qmn i (_1)nqn(n+1)q(6—m)n

Rt (1 — ¢*)? Rt (1 — ¢*n)2
n#£0 n#£0
By letting
0o (_1)nqn(n+a)
F, = —— =1,2,3, and 4,
»(q) n:z—oo 1+ q7)? or a an
n#0

n=b (mod 4)

we can have 4-dissection of (4.6). Invoking (4.5) and the dissection of (4.6) into (4.4) and
collecting only terms where the power of ¢ is congruent to 1 modulo 4 yield

Z a(4n + 1)g*
n=0
_, (6% q®)L2 (6% 4®)8,

(g% q*)22(q"%; 493 | (¢% %)% (¢ ¢'9) % (Fia(@) + Fis(a))

+2q (F10(q) + F13(q) + F20(q) + F22(q)

+3F370(q) + 3F3,1 (q) + F4,0(q) + F472(q)) (mod 8)
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Noting that

> 16n2+4n
q

Fio(q) + F30(q) =

oo q16n2+28n+12
and  Fi3(q) + F31(q) = —

S 1 + q16n = 1 + q16n+12 )
n#0
it turns out to be
Z a(4n +1)q"
n=0
(q2' q2)13 (q2' q2)6 qn2+3n+1 00 q4n2+n
=2 1= /%0 - 1= /%0 2
(@R(¢5 9% | (@i(aha)% nzzoo O L
n#0
q4n2+7n+3 o0 qn2+n o0 qn2+2n
— —— 42 —— 42 mod 8
= 1+ q4n+3 nz_ (]_ + q2n) nz_oo (1 + q2n)2 ( )
n#0 n#0

Replacing ¢ by ¢* and setting b, = —1 and by = —¢3 (r = 0, s = 2) in [4, Theorem 2.1],

we obtain that

(q4; q4)go _ 1 > q4n2+n N 1 o q4n2+7n
1, =% " (0% = 1+ a™ (7% ¢Y e = 1+ g T
which implies
oo q4n2+n B q4n2+7n+3 _ <q)2 (q4.q4>5 B 1 _ 1@(_(1)@((]2) 1 (4 7)
ol A Tt 2(e% )R (% %) 2 2
n#0

Similarly, replacing ¢ by ¢* and setting a; = 1, by = —1, and by = —

[4, Theorem 2.2], we find that

n2+3n+1

(q 4 ) q i qn2+2n 1 ; 1
4 Jo T gt 1 I s
(9)%(a* q%)% n_zoo (14 ¢2n+1)2 + HZ_OO (14 ¢2n)? QSO(Q)SO (—q) 5 (4.8)
- n#£0
Lastly, we also have that
S ——. (]. + q2n> 2n
n#0 n;éO
B 00 (_1 n n +n q 2n+1 2n+1)
= _z_: 1+q2n _2: 1+ ¢2 1 20nt1)
nn#go n=Tee
. 1 2 2 1 q(2”+1)2+(2n+1)
=39 ) = 34 T (4.9)

n=0
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where we have the last equality by using the following identity, which is the case r = 0
and s = 1 of [4, Theorem 2.1],

(@)3% _ i (=g

[a] o £ 1 —agq"
By (4.7), (4.8), and (4.9), we now need to prove that

0(0)9° (=) + 20(~0)p(¢*) + ¢*(—¢*) =4 =0 (mod 8).
The identities (4.1), (4.2), and (4.3) will give us

()¢’ (—a) = &* (=) (¢* (%) — 4qv*(¢"))
= (p(=))e(d?)” — 4q (p(—a*)(qh)”
q

= ¢'(—q") - 4q¢4( )
8n+4 4n +4n
=1-—4q Z 4n+2) (mod 8)
n=0
=1-4) q<2"+1> (mod 8). (4.10)
n=0

From the definition of ¢(q) and (4.1), we obtain that

20(—q)(q®) + ©*(—¢°)
= o(—q) (2¢(¢*) + »(q))

= <1 + 22(—1)”q”2) (3 + 42(12”2 + QZ qn2>

n=>1 n=>1 n=>1

=3+4) @ 4a) +4(Z )(Zq ) (mod 8)
n>1 n>1 nz1 n>1

=34+ 42(](271—1)2 + 42 (1+(=1)") q2n2 44 Z (=1)" + (=1)™) qn2+m2
n>1 n>1 n>m>=1

=3+4 Z g (mod 8). (4.11)
n>1

The last two congruences (4.10) and (4.11) imply the desired result. O

Also, we have the following congruences between D-rank and Ms-rank moments by
Theorem 3 and (1.2).

Corollary 9. For all integers n > 0,

No(B3n+1i) = N2,(3n+14) (mod 3), for i=1,2,
Ny(4n +1) = N2;(4n +1) (mod 4).
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