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Abstract

We prove Andrews-Beck type congruences for overpartitions concerning the D-
rank and M2-rank. To prove congruences, we establish the generating function for
weighted D-rank (respectively, M2-rank) moment of overpartitions and find a con-
nection with the second D-rank (respectively, M2-rank) moment for overpartitions.

Mathematics Subject Classifications: 11P81, 05A17

1 Introduction

Ramanujan’s congruences for the partition function p(n) are one of remarkable results in
the theory of partitions:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

Dyson [8] defined the rank of a partition, which is defined as the largest part minus the
number of parts, conjectured combinatorial explanations for the Ramanujan congruences
modulo 5 and 7, and conjectured the existence of a crank function for partitions that
could provide a combinatorial proof of Ramanujan’s congruences modulo 11. Atkin and
Swinnerton-Dyer [3] proved Dyson’s conjecture on the rank. Andrews and Garvan [2]
found the crank function and proved that the crank explains all Ramanujan congruences
modulo 5, 7 and 11.
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Let NT (b, k, n) be the total number of parts in the partitions of n with rank congruent
to bmodulo k. Beck conjectured surprising congruences for the certain linear combinations
among NT (b, k, b). Andrews [1] has confirmed Beck’s conjectures: for all non-negative
integers n,

NT (1, 5, 5n+ i) + 2NT (2, 5, 5n+ i)

−2NT (3, 5, 5n+ i)−NT (4, 5, 5n+ i) ≡ 0 (mod 5)

for i = 1 or 4, and

NT (1, 7, 7n+ i) + 2NT (2, 7, 7n+ i) + 3NT (3, 7, 7n+ i)

−3NT (4, 7n+ i)− 2NT (5, 7, 7n+ i)−NT (6, 7, 7n+ i) ≡ 0 (mod 7)

for i = 1 or i = 5. A crank version of Beck’s conjecture is confirmed by Chern [6]. For
example, if Mω(b, k, n) counts the total number of ones in the partitions of n with crank
congruent to b modulo k, we have, for all integers n > 0,

Mω(1, 5, 5n+ 4) + 2Mω(2, 5, 5n+ 4)− 2Mω(3, 5, 5n+ 4)−Mω(4, 5, 5n+ 4) ≡ 0 (mod 5).

In the recent article [7], Chern also provided a list of over 70 Andrews-Beck type congru-
ences involving0 NT (b, k, b) and Mω(b, k, n).

Now, we will consider overpartition analogue to Andrew-Beck type congruences. Recall
that an overpartition is a partition in which the first occurrence of a number may be
overlined. For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2,

2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

For an overpartition λ of n, the D-rank of λ [11] is defined as Dyson’s rank for ordinary
partition,

D-rank(λ) = `(λ)−#(λ),

and the M2-rank of λ [12] is defined by

M2-rank(λ) =

⌈
`(λ)

2

⌉
−#(λ) + #(λo)− χ(λ),

where `(λ) is the largest part of λ, #(λ) is the number of parts in λ, #(λo) is the number of
odd non-overlined parts of λ, and χ(λ) = 1 if the largest part of λ is odd and non-overlined
and χ(λ) = 0 otherwise.

Let NT (b, k, n) denote the total number of parts in the overpartitions of n with D-
rank congruent to b modulo k and NT2(b, k, n) denote the total number of parts in the
overpartitions of n with M2-rank congruent to b modulo k. Then the following congruences
are proved by Chan-Mao-Osburn [5]: for all n ∈ N,

NT2(1, 5, 5n+2)+2NT2(2, 5, 5n+2)−2NT2(3, 5, 5n+2)−NT2(4, 5, 5n+2) ≡ 0 (mod 5)
(1.1)
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and

NT (1, 3, 3n+i)−NT (2, 3, 3n+i) ≡ NT2(1, 3, 3n+i)−NT2(2, 3, 3n+i) (mod 3) (1.2)

for i = 0 or 1.
In this paper, we prove Andrews-Beck type congruence onNT (b, k, n) andNT2(b, k, n)

modulo 4 and 8 as follows.

Theorem 1. For all integers n > 0,

NT (1, 4, 2n+ 1) + 2NT (2, 4, 2n+ 1) + 3NT (3, 4, 2n+ 1) ≡ 0 (mod 4).

Theorem 2. For all integers n > 0,

NT2(1, 4, 4n+ 1) + 2NT2(2, 4, 4n+ 1) + 3NT2(3, 4, 4n+ 1) ≡ 0 (mod 4),

NT2(1, 4, 4n+ 2) + 2NT2(2, 4, 4n+ 2) + 3NT2(3, 4, 4n+ 2) ≡ 0 (mod 4),

and

NT2(1, 8, 4n+ 2) + 2NT2(2, 8, 4n+ 2) + 3NT2(3, 8, 4n+ 2)

+4NT2(4, 8, 4n+ 2) + 5NT2(5, 8, 4n+ 2) + 6NT2(6, 8, 4n+ 2)

+7NT2(7, 8, 4n+ 2) ≡ 0 (mod 8).

Lastly, we also prove a congruence between NT (b, k, n) and NT2(b, k, n).

Theorem 3. For all integers n > 0, we have

7∑
j=1

jNT (j, 8, 4n+ 1) ≡
7∑
j=1

jNT2(j, 8, 4n+ 1) (mod 8).

The rest of the paper is organized as follows. In Section 2, we establish the generating
function for weighted D-rank moment of overpartitions and find a relation with the second
D-rank moment for overpartitions, from which we can prove Theorem 1. Also, we discover
more congruences on NT (b, k, n). In Section 3, the generating function for weighted M2-
rank moment of overpartitions and a proof of Theorem 2 will be presented. Employing
generalized Lambert series identities, we prove the congruence between NT (b, k, n) and
NT2(b, k, n) in Section 4.

2 Weighted D-rank moments of overpartitions

Using standard combinatorial arguments in partition theory as [11, Proposition 1.1], we
find that

R(x, z, q) :=
∑
n>0

∑
λ∈Pn

x#(λ)zD-rank(λ)qn =
∑
n>0

(−1)nx
nqn(n+1)/2

(zq, xq/z)n
, (2.1)
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where P n is the set of overpartitions of n.
Here and throughout the rest of the paper, we use the standard q-series notation,

(a)n = (a; q)n :=
n∏
k=1

(1− aqk−1),

(a1, . . . , am)n = (a1, . . . , am; q)n := (a1)n · · · (am)n,

and

[a1, . . . , am]n = [a1, . . . , am; q]n = (a1, q/a1, . . . , am, q/am)n,

for n ∈ N0 ∪ {∞}.
We will give two proofs for Theorem 1. For the first proof of Theorem 1, we will

establish the generating function for the weighted D-rank moment of overpartitions and
compare it with the ordinary and symmetrized D-rank moments. Here, the ordinary and
symmetrized D-rank moments are defined by

Nk(n) =
∑
m∈Z

mkN(m,n),

ηk(n) =
∑
m∈Z

(
m− bk−1

2
c

k

)
N(m,n),

where N(m,n) denotes the number of overpartitions of n with D-rank m.

Theorem 4. We have∑
n>0

∑
λ∈Pn

#(λ)D-rank(λ)qn = −
∑
n>1

(−1)nq
n(n+1)/2

(q)2n

n∑
m=1

qm

(1− qm)2
,

which implies ∑
λ∈Pn

#(λ)D-rank(λ) = −1

2
N2(n) = −η2(n).

It follows that∑
n>1

(−1)nq
n(n+1)/2

(q)2n

n∑
m=1

qm

(1− qm)2
= 2

(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+1)

(1− qn)2
.

Proof. Applying [∂/∂x]x=1 to the generating function R(x, z, q) (2.1), we have

∑
n>0

∑
λ∈Pn

#(λ)zD-rank(λ)qn =
∂

∂x

[∑
n>0

(−1)nx
nqn(n+1)/2

(zq, xq/z)n

]
x=1

=
∑
n>0

[
(−1)nx

nqn(n+1)/2

(zq, xq/z)n

∂

∂x
log

(
xn

(xq/z)n

)]
x=1
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=
∑
n>0

(−1)nq
n(n+1)/2

(zq, q/z)n

[
n

x
+

n∑
m=1

qm

z − xqm

]
x=1

=
∑
n>1

(−1)nq
n(n+1)/2

(zq, q/z)n

(
n+

n∑
m=1

qm

z − qm

)
.

Then if we differentiate it by z and evaluate it at z = 1, we get

∑
n>0

∑
λ∈Pn

#(λ)D-rank(λ)qn =
∂

∂z

[∑
n>1

(−1)nq
n(n+1)/2

(zq, q/z)n

(
n+

n∑
m=1

qm

z − qm

)]
z=1

= −
∑
n>1

(−1)nq
n(n+1)/2

(q)2n

n∑
m=1

qm

(1− qm)2
, (2.2)

which proves the first part.
If we apply [ ∂

∂z
(z ∂

∂z
)]z=1 to R(1, z, q), then we have the generating function for the

second D-rank moment as follows.∑
n>0

N2(n)qn =
∑
n>0

∑
λ∈Pn

D-rank(λ)2qn

=
∑
n>0

[
∂

∂z

(
z
∂

∂z

(−1)nq
n(n+1)/2

(zq, q/z)n

)]
z=1

=
∑
n>0

[
∂

∂z

(−1)nzq
n(n+1)/2

(zq, q/z)n

n∑
m=1

(
qm

1− zqm
+

qm

zqm − z2

)]
z=1

= 2
∑
n>1

(−1)nq
n(n+1)/2

(q)2n

n∑
m=1

qm

(1− qm)2
,

by comparing with (2.2), which implies that
∑

λ∈Pn
#(λ)D-rank(λ) = −1

2
N2(n). Also,

from the following relation between the ordinary and symmetrized D-rank moments

N2k(n) =
k∑
j=1

(2j)!S∗(k, j)η2j(n),

where the sequence S∗(n, k) is defined recursively by S∗(n+1, k) = S∗(n, k−1)+k2S∗(n, k)
and S∗(1, 1) = 1, S∗(n, k) = 0 for k 6 0 or k > n, we can see that 1

2
N2(n) = η2(n). Finally,

the generating function of η2(n) [10, Theorem 2.1] gives

∑
n>1

(−1)nq
n(n+1)/2

(q)2n

n∑
m=1

qm

(1− qm)2
= 2

(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+1)

(1− qn)2
.

Using the generating function for the weighted D-rank moment of overpartitions in
Theorem 4, we can give a proof of Theorem 1.
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Proof of Theorem 1. By Theorem 4, we have∑
n>0

(
NT (1, 4, n) + 2NT (2, 4, n) + 3NT (3, 4, n)

)
qn

≡ −2
(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+1)

(1− qn)2
(mod 4).

Using (−q)∞/(q)∞ ≡ 1 (mod 2),

2
(−q)∞
(q)∞

∑
n>1

(−1)nqn(n+1)

(1− qn)2
≡ 2

∑
n>1

(−1)nqn(n+1)

(1− qn)2
(mod 4)

= 2
∑
n>1

(−1)nqn(n+1)
∑
m>1

mqn(m−1)

= 2
∑
n>1

∑
m>1

(2m− 1)q4n
2−2n+(2m−2)(2n−1) (q4n+2m−2 − 1

)
+ 2

∑
n>1

∑
m>1

(2m)q4n
2−2n+(2m−1)(2n−1) (q4n+2m−1 − 1

)
≡ 2

∑
n>1

∑
m>1

q4n
2−2n+(2m−2)(2n−1) (q4n+2m−2 − 1

)
(mod 4),

Since the last sum involves only terms where the power of q is even, the result follows.

From Theorem 1, we can have the following congruence for the second D-rank moment.

Corollary 5. For all integers n > 0,

N2(2n+ 1) ≡ 0 (mod 2).

In fact, we prove more detailed results on congruences ofNT (b, k, n), which also deduce
the congruence in Theorem 1.

Theorem 6. For all non-negative integers n,

NT (0, 4, 4n+ i) ≡ 0 (mod 4) for i = 0, 2, 3,

NT (2, 4, n) ≡ 0 (mod 4),

NT (2, 4, 4n+ i) ≡ 0 (mod 8) for i = 1, 2, 3,

NT (1, 4, 2n+ 1) ≡ 0 (mod 4),

NT (3, 4, 2n+ 1) ≡ 0 (mod 4).

Proof. Applying Proposition 2.2 in [5] (a generalization [1, Theorem 3]) with setting d = 1
and e→ 0, we can rewrite (2.1) as follows.

R(x, z, q) =
∑
n>0

(−1)nx
nqn(n+1)/2

(zq, xq/z)n
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= 1− (−xq)∞
(xq)∞

∑
n>1

(xq,−1)n
(−xq)n(q)n−1

(−x)nqn(n+1)

(
1

qn(1− zqn)
+

x/z

1− xqn/z

)
.

By expanding the terms involving z in a geometric series as in the proof of [1, Corollary4],
we have the generating function of NT (b, k, n), for 0 6 b 6 k,∑
n>0

NT (b, k, n)qn

= − ∂

∂x

[∑
n>1

(−xqn+1)∞(−1)n
(xqn+1)∞(q)n−1

(−x)nqn(n+1)

(
q(b−1)n

1− qkn
+
xk−bq(k−1−b)n

1− xkqkn

)]
x=1

= −

[∑
n>1

(−xqn+1)∞(−1)n
(xqn+1)∞(q)n−1

(−x)nqn(n+1) q
n(n+1)+(b−1)n

1− qkn
∂

∂x
log

(
(−xqn+1)∞
(xqn+1)∞

xn
)]

x=1

−

[∑
n>1

(−xqn+1)∞(−1)n
(xqn+1)∞(q)n−1

(−x)nqn(n+1)x
k−bq(k−1−b)n

1− xkqkn
∂

∂x
log

(
(−xqn+1)∞
(xqn+1)∞

xn+k−b

1− xkqkn

)]
x=1

= −2
(−q)∞
(q)∞

∑
n>1

(−1)nqn(n+1)1− qn

1 + qn
q(b−1)n + q(k−1−b)n

1− qkn

(
n+ 2

∑
m>n

qm

1− q2m

)

− 2
(−q)∞
(q)∞

∑
n>1

(−1)nqn(n+1)1− qn

1 + qn
q(k−1−b)n

1− qkn

(
k

1− qkn
− b
)
. (2.3)

Setting k = 4 and using (1− x)/(1 + x) ≡ 1 (mod 2) yield∑
n>0

NT (b, 4, n)qn ≡ 2
∑
n>1

q2n(2n−1)
q(b−1)(2n−1) + q(3−b)(2n−1)

1− q4(2n−1)

+ 2b
∑
n>1

(−1)nqn(n+1) q
(3−b)n

1− q4n
(mod 4).

For the case b = 0, we have∑
n>0

NT (0, 4, n)qn ≡ 2
∑
n>1

q(2n−1)
2

(mod 4),

which has only terms with the powers of q congruent 1 modulo 4. Hence, NT (0, 4, 4n+i) ≡
0 (mod 4) for i = 0, 2, 3 and all integers n > 0. For the case b = 1 and 3, we find that∑

n>0

NT (b, 4, n)qn ≡ 2
∑
n>1

q2n(2n−1)
q(b−1)(2n−1)

1− q4(2n−1)
+ 2

∑
n>1

q2n(2n+1) q
(3−b)(2n)

1− q8n
(mod 4)

has only even powers of q, which implies that NT (1, 4, 2n + 1) ≡ NT (3, 4, 2n + 1) ≡ 0
(mod 4) for all integers n > 0. Similarly, for the case b = 2, from (2.3),∑

n>0

NT (2, 4, n)qn ≡ 4
∑
n>1

q2n(2n−1)
q2n−1

1− q4(2n−1)
+ 4

∑
n>1

(−1)nqn(n+1) qn

1− q4n
(mod 8)
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≡ 4
∑
n>1

q2n(2n+1) q2n

1− q8n
(mod 8),

which includes terms only with the powers of q congruent 0 modulo 4. This proves that
NT (2, 4, n) ≡ 0 (mod 4) and NT (2, 4, 4n + i) ≡ 0 (mod 8) for i = 1, 2, 3 for all integers
n greater than 0.

3 Weighted M2-rank moments of overpartitions

As in Section 2, we find the generating function for the weighted M2-rank moments of
overpartitions and compare it with the ordinary and symmetrized M2-rank moments. We
have the ordinary and symmetrized M2-rank moments defined by

N2k(n) =
∑
m∈Z

mkN2(m,n),

η2k(n) =
∑
m∈Z

(
m− bk−1

2
c

k

)
N2(m,n),

where N2(m,n) denotes the number of overpartitions of n with M2-rank m. The gener-
ating function [12, Theorem 1.2] is

R2(x, z, q) :=
∑
n>0

∑
λ∈Pn

x#(λ)zM2-rank(λ)qn =
∑
n>0

(−1,−q; q2)n(xq)n

(zq2, xq2/z; q2)n
.

Theorem 7. We have∑
n>0

∑
λ∈Pn

#(λ)M2-rank(λ)qn = −
∑
n>1

(−1,−q; q2)nqn

(q2; q2)2n

n∑
m=1

q2m

(1− q2m)2
,

which implies ∑
λ∈Pn

#(λ)M2-rank(λ) = −1

2
N22(n) = −η22(n).

It follows that

∑
n>1

(−1,−q; q2)nqn

(q2; q2)2n

n∑
m=1

q2m

(1− q2m)2
= 2

(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+2)

(1− q2n)2
.

Proof of Theorem 7. If we differentiate R2(x, z, q) by x and evaluate it at x = 1, we get

∑
n>0

∑
λ∈Pn

#(λ)zM2-rank(λ)qn =
∂

∂x

[∑
n>0

(−1,−q; q2)n(xq)n

(zq2, xq2/z; q2)n

]
x=1
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=
∑
n>0

[
(−1,−q; q2)n(xq)n

(zq2, xq2/z; q2)n

∂

∂x
log

(
xn

(xq2/z; q2)n

)]
x=1

=
∑
n>1

(−1,−q; q2)nqn

(zq2, q2/z; q2)n

(
n+

n∑
m=1

q2m

z − q2m

)
.

Then applying [∂/∂z]z=1 gives

∑
n>0

∑
λ∈Pn

#(λ)M2-rank(λ)qn =
∂

∂z

[∑
n>1

(−1,−q; q2)nqn

(zq2, q2/z; q2)n

(
n+

n∑
m=1

q2m

z − q2m

)]
z=1

= −
∑
n>1

(−1,−q; q2)nqn

(q2; q2)2n

n∑
m=1

q2m

(1− q2m)2
, (3.1)

which is the first part. Next, to compare with the M2-rank moments, when we apply
[ ∂
∂z

(z ∂
∂z

)]z=1 to R2(1, z, q), we find that∑
n>0

N22(n)qn =
∑
n>0

∑
λ∈Pn

M2-rank(λ)2qn

= 2
∑
n>1

(−1,−q; q2)nqn

(q2; q2)2n

n∑
m=1

q2m

(1− q2m)2
. (3.2)

Then the second part follows from comparing (3.1) with (3.2) and the following relation
between the ordinary and symmetrized M2-rank moments

N22k(n) =
k∑
j=1

(2j)!S∗(k, j)η22j(n).

Lastly, we have the last identity by considering the generating function for η22(n) [10,
Theorem 2.1].

From the generating function for weighted M2-rank moment of overpartitions, we can
prove Theorem 2.

Proof of Theorem 2. By Theorem 7, we notice that∑
n>0

(
NT2(1, 4, n) + 2NT2(2, 4, n) + 3NT2(3, 4, n)

)
qn ≡ −2

(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+2)

(1− q2n)2

(mod 4).

By applying (−q)∞/(q)∞ ≡ 1 (mod 2),

2
(−q)∞
(q)∞

∑
n>1

(−1)nqn(n+2)

(1− q2n)2
≡ 2

∑
n>1

(−1)nqn(n+2)

(1− qn)2
(mod 4)
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= 2
∑
n>1

(−1)nqn(n+2)
∑
m>1

mq2n(m−1)

≡ 2
∑
n>1

∑
m>1

(
q4n(n+1)+8n(m−1) − q4n2−1+4(2n−1)(m−1)

)
(mod 4),

which contributes the term with powers congruent to 0 or 3 modulo 4. Then we have

NT2(1, 4, 4n+ 1) + 2NT2(2, 4, 4n+ 1) + 3NT2(3, 4, 4n+ 1) ≡ 0 (mod 4)

NT2(1, 4, 4n+ 2) + 2NT2(2, 4, 4n+ 2) + 3NT2(3, 4, 4n+ 2) ≡ 0 (mod 4).

Also, by Theorem 7, we find that∑
n>0

7∑
j=1

jNT2(j, 8, n)qn ≡ −2
(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+2)

(1− q2n)2
(mod 8).

Using
(−q)∞
(q)∞

≡ (q)∞
(−q)∞

(mod 4) =
∞∑

k=−∞

(−1)kqk
2

,

we have

2
(−q)∞
(q)∞

∑
n>1

(−1)nqn(n+2)

(1− q2n)2

≡ 2

(
1 + 2

∑
k>1

(−1)kqk
2

)∑
n>1

(−1)nqn(n+2)

(1− q2n)2
(mod 8)

= 2

(
1 + 2

∑
k>1

(−1)kqk
2

)∑
n>1

(−1)nqn(n+2)
∑
m>1

mq2n(m−1)

≡ 2

(
1 + 2

∑
k>1

(−1)kqk
2

)∑
n>1

∑
m>1

(2m− 1)
(
q4n(n+1)+8n(m−1) − q4n2−1+4(2n−1)(m−1)

)
+ 2

∑
n>1

∑
m>1

(2m)
(
q4n(n+1)+4n(2m−1) − q4n2−1+2(2n−1)(2m−1)

)
(mod 8). (3.3)

Here,

1 + 2
∑
k>1

(−1)kqk
2

only contributes to terms with powers of q congruent to 0 or 1 modulo 4, while the factor∑
n>1

∑
m>1

(2m− 1)
(
q4n(n+1)+8n(m−1) − q4n2−1+4(2n−1)(m−1)

)
involves terms with powers of q congruent to 0 or 3 modulo 4. Therefore, the first term
in (3.3) dose not have terms with powers of q congruent to 2 modulo 4. The second term
in (3.3) has only terms with powers of q congruent to 0 or 1 modulo 4. Hence, we obtain

NT2(1, 8, 4n+ 2) + 2NT2(2, 8, 4n+ 2) + 3NT2(3, 8, 4n+ 2)
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+4NT2(4, 8, 4n+ 2) + 5NT2(5, 8, 4n+ 2)

+6NT2(6, 8, 4n+ 2) + 7NT2(7, 8, 4n+ 2) ≡ 0 (mod 8).

From Theorem 2 and (1.1), we can have congruences for the second M2-rank moments
as follows.

Corollary 8. For all integers n > 0,

N22(4n+ 1) ≡ 0 (mod 2),

N22(4n+ 2) ≡ 0 (mod 4),

N22(5n+ 2) ≡ 0 (mod 5).

4 Proof of Theorem 3

Let

ϕ(q) :=
∞∑

n=−∞

qn
2

and ψ(q) :=
∑
n>0

qn(n+1)/2.

Then, by Jacobi’s triple product identity and simple q-series manipulations, we have

ϕ(q) =
(q2; q2)5∞

(q)2∞(q4; q4)2∞
, ϕ(−q) =

(q)2∞
(q2; q2)∞

, and ψ(q) =
(q2; q2)2∞

(q)∞

and

ϕ2(q) = ϕ2(q2) + 4qψ2(q4), ϕ(q)ϕ(−q) = ϕ2(−q2), and ψ2(q) = ϕ(q)ψ(q2). (4.1)

We will also use the following identities [4, Theorem 6.1, and 7.1].

ϕ4(−q) = 1 + 8
∑
n>1

nqn(n+2) + qn(n+1) − nqn

(1 + qn)2
, (4.2)

ψ4(q) =
∑
n>0

(2n+ 1 + 2q2n+1 − (2n+ 1)q4n+2) q2n
2+2n

(1− q2n+1)2
. (4.3)

We prove Theorem 3 using generalized Lambert series identities with above theta
function identities.

Proof of Theorem 3. Let

a(n) =
7∑
j=1

jNT (j, 8, n)−
7∑
j=1

jNT2(j, 8, n).

By Theorem 4 and 7, we have∑
n>0

a(n)qn ≡ −2
(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+1)

(1− qn)2
+ 2

(−q)∞
(q)∞

∑
n>1

(−1)n+1qn(n+2)

(1− q2n)2
(mod 8)
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=
(−q)∞
(q)∞

∞∑
n=−∞
n6=0

[
(−1)nqn(n+1)

(1− qn)2
− (−1)nqn(n+2)

(1− q2n)2

]
. (4.4)

We consider the 4-dissection for (−q)∞
(q)∞

[9],

(−q)∞
(q)∞

=
(q8; q8)19∞

(q4; q4)14∞(q16; q16)6∞
+ 2q

(q8; q8)13∞
(q4; q4)12∞(q16; q16)2∞

+ 4q2
(q8; q8)7∞(q16; q16)2∞

(q4; q4)10∞
+ 8q3

(q8; q8)∞(q16; q16)6∞
(q4; q4)8∞

. (4.5)

For the summation part in (4.4),

∞∑
n=−∞
n6=0

[
(−1)nqn(n+1)

(1− qn)2
− (−1)nqn(n+2)

(1− q2n)2

]

= 2
∞∑

n=−∞
n 6=0

(−1)nqn(n+1)(1 + qn + 3q2n + q3n)

(1− q4n)2

≡ 2
∞∑

n=−∞
n6=0

(−1)nqn(n+1)(1 + qn + 3q2n + q3n)

(1 + q4n)2
(mod 8) (4.6)

using the fact
∞∑

n=−∞
n 6=0

(−1)nqn(n+1)qmn

(1− q4n)2
=

∞∑
n=−∞
n6=0

(−1)nqn(n+1)q(6−m)n

(1− q4n)2
.

By letting

Fa,b(q) :=
∞∑

n=−∞
n6=0

n≡b (mod 4)

(−1)nqn(n+a)

(1 + q4n)2
for a = 1, 2, 3, and 4,

we can have 4-dissection of (4.6). Invoking (4.5) and the dissection of (4.6) into (4.4) and
collecting only terms where the power of q is congruent to 1 modulo 4 yield∑

n>0

a(4n+ 1)q4n+1

≡ 2
(q8; q8)13∞

(q4; q4)12∞(q16; q16)2∞

[
(q8; q8)6∞

(q4; q4)2∞(q16; q16)4∞
(F4,1(q) + F4,3(q))

+ 2q (F1,0(q) + F1,3(q) + F2,0(q) + F2,2(q)

+3F3,0(q) + 3F3,1(q) + F4,0(q) + F4,2(q))

]
(mod 8).
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Noting that

F1,0(q) + F3,0(q) =
∞∑

n=−∞
n 6=0

q16n
2+4n

1 + q16n
and F1,3(q) + F3,1(q) = −

∞∑
n=−∞

q16n
2+28n+12

1 + q16n+12
,

it turns out to be∑
n>0

a(4n+ 1)qn

≡ 2
(q2; q2)13∞

(q)12∞(q4; q4)2∞

[
− (q2; q2)6∞

(q)2∞(q4; q4)4∞

∞∑
n=−∞

qn
2+3n+1

(1 + q2n+1)2
+ 2

∞∑
n=−∞
n6=0

q4n
2+n

1 + q4n

− 2
∞∑

n=−∞

q4n
2+7n+3

1 + q4n+3
+ 2

∞∑
n=−∞
n6=0

qn
2+n

(1 + q2n)2
+ 2

∞∑
n=−∞
n6=0

qn
2+2n

(1 + q2n)2

]
(mod 8).

Replacing q by q4 and setting b1 = −1 and b2 = −q3 (r = 0, s = 2) in [4, Theorem 2.1],
we obtain that

(q4; q4)2∞
[−1,−q3; q4]∞

=
1

[q3; q4]∞

∞∑
n=−∞

q4n
2+n

1 + q4n
+

1

[q−3; q4]∞

∞∑
n=−∞

q4n
2+7n

1 + q4n+3
,

which implies

∞∑
n=−∞
n6=0

q4n
2+n

1 + q4n
−

∞∑
n=−∞

q4n
2+7n+3

1 + q4n+3
=

(q)2∞(q4; q4)5∞
2(q2; q2)3∞(q8; q8)2∞

− 1

2
=

1

2
ϕ(−q)ϕ(q2)− 1

2
. (4.7)

Similarly, replacing q by q2 and setting a1 = 1, b1 = −1, and b2 = −q (r = 1, s = 2) in
[4, Theorem 2.2], we find that

− (q2; q2)6∞
(q)2∞(q4; q4)4∞

∞∑
n=−∞

qn
2+3n+1

(1 + q2n+1)2
+ 2

∞∑
n=−∞
n6=0

qn
2+2n

(1 + q2n)2
=

1

2
ϕ(q)ϕ3(−q)− 1

2
. (4.8)

Lastly, we also have that

2
∞∑

n=−∞
n6=0

qn
2+n

(1 + q2n)2
=

∞∑
n=−∞
n6=0

qn
2+n

1 + q2n

=
∞∑

n=−∞
n6=0

(−1)nqn
2+n

1 + q2n
+ 2

∞∑
n=−∞

q(2n+1)2+(2n+1)

1 + q2(2n+1)

=
1

2
ϕ2(−q2)− 1

2
+ 4

∑
n>0

q(2n+1)2+(2n+1)

1 + q2(2n+1)
, (4.9)
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where we have the last equality by using the following identity, which is the case r = 0
and s = 1 of [4, Theorem 2.1],

(q)2∞
[a]∞

=
∞∑

n=−∞

(−1)nqn(n+1)/2

1− aqn
.

By (4.7), (4.8), and (4.9), we now need to prove that

ϕ(q)ϕ3(−q) + 2ϕ(−q)ϕ(q2) + ϕ2(−q2)− 4 ≡ 0 (mod 8).

The identities (4.1), (4.2), and (4.3) will give us

ϕ(q)ϕ3(−q) = ϕ2(−q2)
(
ϕ2(q2)− 4qψ2(q4)

)
=
(
ϕ(−q2)ϕ(q2)

)2 − 4q
(
ϕ(−q2)ψ(q4)

)2
= ϕ4(−q4)− 4qψ4(−q2)

≡ 1− 4q
∑
n>0

(1− q8n+4)q4n
2+4n

(1− q4n+2)2
(mod 8)

≡ 1− 4
∑
n>0

q(2n+1)2 (mod 8). (4.10)

From the definition of ϕ(q) and (4.1), we obtain that

2ϕ(−q)ϕ(q2) + ϕ2(−q2)
= ϕ(−q)

(
2ϕ(q2) + ϕ(q)

)
=

(
1 + 2

∑
n>1

(−1)nqn
2

)(
3 + 4

∑
n>1

q2n
2

+ 2
∑
n>1

qn
2

)

≡ 3 + 4
∑
n>1

q(2n−1)
2

+ 4
∑
n>1

q2n
2

+ 4

(∑
n>1

(−1)nqn
2

)(∑
n>1

qn
2

)
(mod 8)

= 3 + 4
∑
n>1

q(2n−1)
2

+ 4
∑
n>1

(1 + (−1)n) q2n
2

+ 4
∑

n>m>1

((−1)n + (−1)m) qn
2+m2

≡ 3 + 4
∑
n>1

q(2n−1)
2

(mod 8). (4.11)

The last two congruences (4.10) and (4.11) imply the desired result.

Also, we have the following congruences between D-rank and M2-rank moments by
Theorem 3 and (1.2).

Corollary 9. For all integers n > 0,

N2(3n+ i) ≡ N22(3n+ i) (mod 3), for i = 1, 2,

N2(4n+ 1) ≡ N22(4n+ 1) (mod 4).
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