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Abstract

Any finite simple graph G = (V,E) can be represented by a collection C of sub-
sets of V such that uv ∈ E if and only if u and v appear together in an odd number
of sets in C . Let c2(G) denote the minimum cardinality of such a collection. This
invariant is equivalent to the minimum dimension of a faithful orthogonal represen-
tation of G over F2 and is closely connected to the minimum rank of G. We show
that c2(G) = mr(G,F2) when mr(G,F2) is odd, or when G is a forest. Otherwise,
mr(G,F2) 6 c2(G) 6 mr(G,F2) + 1. Furthermore, we show that the following are
equivalent for any graph G with at least one edge: i. c2(G) = mr(G,F2) + 1; ii. the
adjacency matrix of G is the unique matrix of rank mr(G,F2) which fits G over F2;
iii. there is a minimum collection C as described in which every vertex appears an
even number of times; and iv. for every component G′ of G, c2(G

′) = mr(G′,F2)+1.
We also show that, for these graphs, mr(G,F2) is twice the minimum number of
tricliques whose symmetric difference of edge sets is E. Additionally, we provide a
set of upper bounds on c2(G) in terms of the order, size, and vertex cover number
of G. Finally, we show that the class of graphs with c2(G) 6 k is hereditary and
finitely defined. For odd k, the sets of minimal forbidden induced subgraphs are the
same as those for the property mr(G,F2) 6 k, and we exhibit this set for c2(G) 6 2.

Mathematics Subject Classifications: 05C62, 05C75, 05C50
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1 Introduction

Given any two finite simple graphs G and H on a set V of n vertices, one can obtain G
from H by a sequence of subgraph complementations, the operation of complementing the
edge set of an induced subgraph. That is, there exist graphs H0, H1, . . . , Hk such that
H0 = H, Hk = G, and Hi is obtainable from Hi−1 by a subgraph complementation for
each i = 1, 2, . . . , k. Trivially, one can complement each edge of G which is not an edge
of H and each non-edge of G which is an edge of H. It is natural to ask for the minimum
number of subgraph complementations needed to obtain G from H, which we call the
subgraph complementation distance between G and H. This problem is equivalent to that
of finding the subgraph complementation distance between the empty graph, Kn, and the
symmetric difference of G and H, the graph on V whose edges appear in exactly one of
G or H. Thus, we are particularly interested in the subgraph complementation distance
between G and Kn, which we call the subgraph complementation number of G and denote
by c2(G).

The operation of subgraph complementation was defined by Kamiński, Lozin, and Mi-
lanič [15] in the study of graphs with bounded clique-width. Variations of the operation
appeared earlier, such as complementation of the subgraph induced by the open neigh-
borhood of a vertex, called local complementation [4]. For a graph class G and graph G,
the problem of determining whether some subgraph complementation of G results in a
graph in G is studied in [9].

We call a collection C of subsets of V with respect to which successive subgraph com-
plementations of Kn result in G a subgraph complementation system for G. Equivalently,
C is a subgraph complementation system for G if each pair of adjacent vertices in G is
contained in an odd number of sets in C and each pair of non-adjacent vertices in an even
number. Multiple problems have been posed which are equivalent to finding subgraph
complementation systems or to finding c2(G). Vatter asked for ways to express the edge
set of G as a sum modulo 2 of edge sets of cliques [13]; a subgraph complementation
system for G may be interpreted as a collection of complete graphs on subsets of V whose
symmetric difference of edge sets is E(G), and c2(G) is the minimum cardinality of such
a collection. An orthogonal representation of G over a field F is an assignment of vectors
from Fd to the vertices of G such that nonadjacent vertices are represented by orthogo-
nal vectors. Lovász introduced orthogonal representations over R to bound the Shannon
capacity of a graph [17]. Alekseev and Lozin examined the minimum dimension of an
orthogonal representation in which adjacent vertices are represented by vectors whose dot
product is 1 [1].1 When the field in question is F2, the field of order 2, this is equivalent
to the problem of finding c2(G).

An orthogonal representation of G over F is called faithful if adjacent vertices are
represented by nonorthogonal vectors. When F = F2, these are the representations studied
in [1]. A faithful orthogonal representation of G over F2 of dimension d induces a subgraph
complementation system C = {C1, C2, . . . , Cd} of G by including a vertex v in Ci if and
only if the ith entry of the vector associated to v is 1. Similarly, given a subgraph

1This is sometimes called an exact dot product representation [21, 19].
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complementation system C for G, we may assign to each v ∈ V a vector from Fd2 with
entry i equal to 1 if v ∈ Ci, and 0 otherwise. The problem of minimizing the dimension
of a faithful orthogonal representation over R is addressed in [18]. These representations
have been generalized in many ways, one of which we have seen in the previous paragraph.
In the most general case, we have vector representations of G, introduced by Parsons and
Pisanski in [20].

Given a graph G and a faithful orthogonal representation of G over F2, consider the
n× k matrix M with rows given by the vectors in the representation (when it is helpful
to specify the corresponding subgraph complementation system, we write M = M(C ) or
say M is associated to C ). An off-diagonal entry of the n×n matrix A = MMT (mod 2)
is 0 if and only if the corresponding vertices are nonadjacent. That is, the off-diagonal
zeros of A are precisely those of the adjacency matrix of G. A matrix with this property
is said to fit G. It is a well-studied problem to determine the minimum rank of a matrix
which fits G over a given field F. In particular, the minimum rank of G over R has
been of interest for its equivalence to the determination of the maximum multiplicity of
an eigenvalue among the family of matrices which fit G [7]. We denote by mr(G,F) the
minimum rank of a symmetric matrix over F which fits G.

It is not hard to see that the rank of a matrix M over a field F is at least the rank of
MMT . Thus, we see that the dimension of a faithful orthogonal representation of G over
F bounds mr(G,F) above. In turn, we obtain the bound

mr(G,F2) 6 c2(G). (1)

In Corollary 12, we shall see that, while this bound is not always achieved, c2(G) and
mr(G,F2) differ by no more than 1. Furthermore, we will characterize the graphs G with
c2(G) = mr(G,F2) + 1 as those whose adjacency matrix is the unique matrix of minimum
rank over F2 which fits G.

It is well known that mr(G,R) is bounded above by the clique covering number of G,
cc(G), or the minimum cardinality of a collection of cliques in G such that every edge of
G is in at least one clique [7]. Moreover, if every pairwise intersection in a minimal clique
covering of G contains at most one vertex, then mr(G,F) 6 cc(G) for any field F [2]. On
the other hand, c2(G) does not provide a bound for mr(G,R), significantly differentiating
subgraph complementation systems from clique coverings.

The rest of this paper is outlined as follows. In Section 2, we establish some basic defi-
nitions and notation that we will use throughout the paper. In Section 3, we elaborate on
orthogonal representations of graphs and exhibit a set of upper bounds on c2(G) for general
graphs in terms of their order, size, and vertex cover numbers. In Section 4, we explore
the relationships between c2(G), mr(G,F2), mr(G,R), and a new operation: tripartite
subgraph complementation. In Section 5, we show that the graph property c2(G) 6 k is
hereditary and finitely defined, similarly to mr(G,F) when F is finite. When k is odd, we
show that the sets of forbidden induced subgraphs for c2(G) 6 k and mr(G,F2) 6 k are
the same. We find the minimal forbidden induced subgraphs for the property c2(G) 6 2.
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2 Definitions and notation

All graphs considered in this paper are finite and simple. The vertex set of a graph G is
denoted by V (G) and the edge set by E(G), or by V and E respectively when G is evident
from context. We denote the number of vertices of G by |G| and the number of edges
by ||G||, or by n and m respectively when G is evident from context. Complete graphs
are denoted by Kn, paths are denoted by Pn, cycles by Cn, and wheel graphs by Wn,
where n indicates the number of vertices in each case. The empty graph Kn is the graph
complement of Kn, and G is called nonempty if it has at least one edge. The disjoint
union of graphs G and H is denoted by G+H, and the disjoint union of k copies of G is
denoted by kG. If G and H are graphs on the same vertex set V , the symmetric difference
of G and H is the graph G4H = (V,E(G)4E(H)), i.e. whose edges appear in exactly
one of E(G) or E(H). We generalize this definition by considering symmetric differences
of graphs G and H on subsets of V , defined in the same way. We denote by N(v) the
open neighborhood of a vertex v, that is, N(v) = {u | uv ∈ E}, and by N [v] the closed
neighborhood of v, that is, N(v)∪{v}. The degree of v is |N(v)|, denoted by d(v). When it
is helpful to specify the graph in question, we use the notations NG(v), NG[v], and dG(v),
respectively. The induced subgraph of G on the subset of vertices V \ S is denoted by
G−S, and the graph obtained by deleting a vertex v or an edge e is denoted by G− v or
G− e respectively. A class of graphs is a set of graphs closed under isomorphism. A class
that is closed under deleting vertices is said to be hereditary. It is easy to see that a class
X is hereditary if and only if there is a set of graphs M such that no graph in X has an
induced subgraph in M ; that is, X may be characterized by its set of minimal forbidden
induced subgraphs.

3 Orthogonal representations and upper bounds

Alekseev and Lozin studied the minimum dimension of an orthogonal representation of
a graph G over a field F in which the dot product of two vectors representing adjacent
vertices is 1 [1]. In the case that F = F2, this is a faithful orthogonal representation of
G. In keeping with their notation, we let d(G,F) denote the minimum dimension of an
orthogonal representation of G over F such that, for i 6= j, xi ·xj = 1 if and only if ij ∈ E.
We note that c2(G) = d(G,F2).

We present several upper bounds on the number c2(G), one in terms of the number of
vertices |G| = n, one in terms of the number of edges ||G|| = m, and one in terms of the
size of a minimum vertex cover τ(G). Those in terms of n are quoted from [1].

Theorem 1. [1] For any field F and any graph G with n vertices,

d(G,F) 6 n− 1.

Theorem 2. [1] For any field F of characteristic 2 and any n-vertex graph G (n > 2)
other than Pn,

d(G,F) 6 n− 2.
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Furthermore, d(Pn,F) = n− 1.

It follows that c2(G) 6 n − 1 for all graphs G, and that equality holds only in the
case that G is a path on n vertices. Similarly, as we will see in Proposition 20, if G is a
linear forest, or a graph for which every component is a path, then c2(G) = m; otherwise,
c2(G) 6 m− 1.

Theorem 3. For any graph G with m edges which is not a linear forest,

c2(G) 6 m− 1.

Proof. Suppose that a graph G which is not a linear forest has a vertex v of degree d(v) >
2. The collection {N(v), N [v]} is a subgraph complementation system for the induced
subgraph G[N [v]]. The remaining m− d(v) edges of G may then be added one at a time
to obtain a subgraph complementation system for G of cardinality m− d(v) + 2 6 m− 1.

Otherwise, G has maximum degree 2. Then G consists of disjoint cycles and paths.
Since G is not a linear forest by assumption, it must contain a cycle. Theorem 2 completes
the proof.

Example 4. From Theorem 2 we can deduce the exact subgraph complementation num-
ber for cycles. If we were to have c2(Cn) 6 n − 3, then we would have c2(Pn) 6 n − 2,
since Cn and Pn differ in exactly one edge. Therefore, c2(Cn) = n− 2.

We can also see that c2(Cn) 6 n − 2 by induction. Suppose that n > 3, and let
v ∈ V (Cn). A subgraph complementation of Cn with respect to N [v] results in an (n−1)-
cycle and an isolated vertex, which has subgraph complementation number at most n− 3
by the inductive hypothesis. If C is a minimum subgraph complementation system for
Cn−1, then C ∪ {N [v]} is a subgraph complementation system for Cn of cardinality at
most n− 2.

We let τ(G) denote the minimum cardinality of a vertex cover of G, or a set of vertices
such that every edge of G is incident to at least one vertex in the set.

Theorem 5. For any graph G,
c2(G) 6 2τ(G).

Proof. Let U = {u1, . . . , uτ} ⊂ V be a minimum vertex cover of G. Successive subgraph
complementations of Kn on the sets N(u1) and N [u1] yeild each edge incident to u1 in
G. Some of the edges incident to u1 may also be incident to u2. Thus, in order to obtain
the remaining edges incident to u2, we subgraph complement with respect to the sets
N(u2)\{u1} and N [u2]\{u1}. For each ui ∈ U , we subgraph complement with respect to
N [ui] \ {u1, . . . , ui−1} and N(ui) \ {u1, . . . , ui−1} to obtain the edges incident to ui which
have not already been built. Since every edge of G is incident to some vertex in U by
definition of a vertex cover, and since at most two sets were needed to obtain the edges
incident to each vertex in the cover, we have c2(G) 6 2τ(G).

We remark that c2(G) < 2τ(G) if any of the sets N(ui) \ {u1, . . . , ui−1} (1 6 i 6 τ) in
the proof of Theorem 5 are singletons. By reordering, we see that the inequality is strict
if there is a minimum vertex cover U of G containing a vertex with only one neighbor
outside of U .
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4 Minimum rank

The problem of finding the minimum cardinality of a subgraph complementation system
of a graph relates closely to the minimum rank problem over F2, and in some cases to
the minimum rank problem over R and other fields. This section explores the nature of
these relationships. Unless otherwise specified, when we discuss the rank of a matrix in
this section, we mean the rank over F2.

4.1 General graphs

We begin by examining the relationship between c2(G) and mr(G,F2) for general graphs.
In Corollary 12, we show that mr(G,F2) 6 c2(G) 6 mr(G,F2) + 1. In Theorem 17, we
provide a characterization of the graphs for which c2(G) = mr(G,F2) + 1.

Example 6. Recall, from inequality (1) of the introduction, that the subgraph comple-
mentation number of a graph G is at least its minimum rank over F2. This inequality is
sharp; we will see in Theorem 21 that equality holds for forests. On the other hand, there
are graphs which do not attain equality in (1). Consider K3,3, the complete bipartite
graph with partite sets of order 3. The adjacency matrix of K3,3 has only two distinct
rows, which are linearly independent over any field, implying that mr(K3,3,F2) = 2. How-
ever, c2(K3,3) > 2, as we will show in Theorem 26; if A and B are the partite sets of K3,3,
then C = {A,B,A ∪B} is a subgraph complementation system of minimum cardinality.

It is natural to ask how much larger the subgraph complementation number of a
graph might be than its minimum rank over F2. We will show that, in general, c2(G) 6
mr(G,F2)+1 and detail the cases in which c2(G) = mr(G,F2)+1. The following example,
along with Lemmas 8 and 9, will be useful. It will also be of use to consider the number
of sets in a subgraph complementation system C of G which contain a given vertex v,
which we refer to as the number of times that v appears in C .

Example 7. It is well known that the minimum rank of a graph G over a field F is additive
in the sense that, if G has components G1, G2, . . . , Gt, then mr(G,F) =

∑t
1 mr(Gi,F) [7].

Perhaps surprisingly, the subgraph complementation number behaves differently. The
smallest counterexample is given by the graph G = W5 + K2. Trivially, c2(K2) = 1, and
Figure 1 depicts a subgraph complementation system C for W5 of cardinality 3, which is
optimal by Theorem 26. Since the class of graphs with subgraph complementation number
at most k is hereditary, we have c2(G) > 3, and one might expect that c2(G) = 3 + 1 = 4,
which is achieved by taking the union of the subgraph complementation systems for the
components of G. However, since every vertex of W5 appears an even number of times
in C , we can add the endpoints of the isolated edge in G to each set in C to obtain a
subgraph complementation system for G of cardinality 3. That is, c2(G) = 3.

Lemma 8. Let G be a graph, and let v ∈ V . If C is a subgraph complementation
system for G in which every vertex in V \ {v} appears an even number of times, then the
collection Cv, which consists of the symmetric differences of {v} with each set in C , is
also a subgraph complementation system for G.
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Figure 1: A subgraph complementation system for W5.

Proof. Let G be a graph, let v ∈ V , and let C be a subgraph complementation system for
G in which every vertex in V \{v} appears an even number of times in C . Let Cv denote the
collection of symmetric differences of {v} with each set in C , i.e., Cv = {C4{v} : C ∈ C }.
For any u ∈ V \ {v}, if u and v are contained in an odd number of sets together in C ,
then u is contained in an odd number of sets without v in C , so u and v appear together
an odd number of times in Cv. Similarly, if u and v appear together an even number of
times in C , then u appears an even number of times without v in C , and thus an even
number of times with v in Cv. Also, any two vertices which are distinct from v appear
together the same number of times in Cv as in C . In other words, Cv is also a subgraph
complementation system for G, as desired.

In a particular case of Lemma 8, if every vertex of G appears an even number of times
in a subgraph complementation system C , then for any v ∈ V , the collection Cv is also a
subgraph complementation system for G.

Lemma 9. [11] Let A be an n× n symmetric matrix over F2 of rank k. Then either

i. A = XXT , where X is an n× k matrix over F2 of rank k; or

ii. A = X(⊕l1H2)X
T , where X is as in i., H2 = ( 0 1

1 0 ), and k = 2l, so that the rank of
A is even.

Each of these cases can be interpreted combinatorially. LetG be the graph whichA fits.
Case i. of Lemma 9 will be helpful in establishing a close relationship between c2(G) and
mr(G,F2) (see Corollary 12). Case ii., while not related to subgraph complementation, can
be interpreted in graph theoretic terms by a collection of l complete tripartite graphs, or
tricliques, on subsets of V whose symmetric difference of edge sets is E. In Theorem 19, we
show that mr(G,F2) is either c2(G) or twice the minimum cardinality of such a collection
of tricliques.

Lemma 9 is a special case of Theorem 2.6 in [10]. It follows from the proof of this
theorem that an n × n symmetric matrix A decomposes as in case i. if some diagonal
entry is nonzero, and as in case ii. if every diagonal entry is zero. There is a converse to
this statement which will be of use to us.

Proposition 10. An n × n symmetric matrix A = (ai,j) over F2 of rank k decomposes
as in case i. of Lemma 9 if and only if ai,i = 0 for all i ∈ [n], and as in case ii. if and
only if ai,i = 1 for some i ∈ [n].
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Proof. Let A be as described, and suppose that A = X
(
⊕l1 ( 0 1

1 0 )
)
XT for some n × 2l

matrix X = (xi,j). Then, for each i ∈ [n], ai,i = 2xi,1xi,2 + 2xi,3xi,4 + · · ·+ 2xi,2l−1xi,2l ≡ 0
(mod 2). That is, every diagonal entry of A is zero. On the other hand, suppose that
A = XXT . A diagonal entry ai,i is 0 if and only if the ith row of X has an even number
of 1’s. Thus, if every ai,i = 0, the columns of X are linearly dependent over F2, so that
rank(X), which is at least k since rank(X) > rank(XXT ), is strictly less than the number
of columns of X. Thus, A decomposes as in case i. of Lemma 9 if and only if some
diagonal entry of A is nonzero.

Let A be a symmetric n×n matrix, and let G be the graph which A fits. If A = XXT ,
with X as in case i. of Lemma 9, then the rows of X constitute a faithful orthogonal
representation of G over F2. As we saw in the introduction, we can interpret the rows of
X as incidence vectors for a subgraph complementation system {C1, C2, . . . , Ck} for G;
for i = 1, 2, . . . , k, include a vertex v in Ci if and only if the ith entry of the row associated
to v in X is 1.

Theorem 11. Let A be an n× n symmetric matrix over F2 of rank k. Then either

i. A = XXT , where X is an n× k matrix over F2 of rank k; or

ii. A = XXT , where X is an n× (k + 1) matrix over F2 of rank k, and k is even.

Proof. Let A be as described, and let G be the graph which A fits. Suppose that we are
in case ii. of Lemma 9. Then k is even, and, by Proposition 10, every diagonal entry of A
is 0. Let B be the matrix obtained by changing a single diagonal entry of A from 0 to 1.
Then B also fits G. It is not hard to see that the ranks of A and B differ by no more than
1. Furthermore, since B has a nonzero diagonal entry, B = Y Y T for some n × rank(B)
matrix Y by Proposition 10. Let C be the subgraph complementation system associated
to Y .

Suppose that rank(B) = k + 1. Let v be the vertex corresponding to the row in
which B has a nonzero diagonal entry. By Lemma 8, the collection Cv consisting of the
symmetric differences of {v} with every set in C is a subgraph complementation system
for G. Since |C | is odd, every vertex of G appears an even number of times in Cv. Thus,
if Z is the matrix associated to Cv, then Z is an n× (k + 1) matrix such that ZZT = A.
Each row of Z contains an even number of 1’s, so the columns of Z are linearly dependent,
and rank(Z) 6 k. Equality follows, as rank(Z) > rank(A) = k. Otherwise, rank(B) 6 k.
In this case, the collection C ∪ {{v}} is a subgraph complementation system for G of
cardinality at most k + 1 in which every vertex appears an even number of times. If M
is the matrix associated to C ∪ {{v}}, then MMT = A. Since rank(M) > rank(A), and
since the columns of M are linearly dependent, M must have k + 1 columns and rank k.
This completes the proof.

Suppose that A is a matrix which fits a graph G of rank k = mr(G,F2). Then the
subgraph complementation system associated to the matrix X obtained in Theorem 11
has cardinality either k or k+ 1, depending on whether we are in case i. or case ii.. This
implies a close relationship between mr(G,F2) and c2(G).
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Corollary 12. Let G be a graph. Then either

i. c2(G) = mr(G,F2), or

ii. c2(G) = mr(G,F2) + 1, in which case mr(G,F2) is even.

There is a simpler proof of Corollary 12 which compares the additivity of the minimum
rank function over F2 to the subadditivity of the subgraph complementation number. Let
k = mr(G,F2), and suppose that c2(G) 6= k, so that mr(G,F2) < c2(G). Then k is even
by Lemma 9, otherwise there would exist an n × k matrix X over F2 such that XXT

has rank k and fits G, and the associated subgraph complementation system for G would
have cardinality k. Consider G+K2. By the additivity of the minimum rank of a graph,
mr(G+K2,F2) = mr(G,F2) + 1, which is odd. Thus,

c2(G) 6 c2(G+K2) = mr(G+K2,F2) = mr(G,F2) + 1,

as desired.
We proceed to characterize the graphs for which c2(G) = mr(G,F2) + 1. A character-

ization of the adjacency matrices of such graphs follows directly from Theorem 11.

Theorem 13. Let G be a nonempty graph of minimum rank k over F2. Then c2(G) 6= k
if and only if the adjacency matrix of G has rank k, and every other matrix which fits G
over F2 has rank strictly larger than k.

Proof. Let G be a nonempty graph of minimum rank k over F2, and let A be a matrix
which fits G over F2 of rank k. By Theorem 11, A = XXT for some n × k or n × (k +
1) matrix X. By Proposition 10, there exists such an n × k matrix X if and only if
some diagonal entry of A is nonzero. Every such matrix X corresponds to a subgraph
complementation system for G whose cardinality is the number of columns of X, from
which we obtain the desired result.

We will now characterize the subgraph complementation systems of graphs for which
c2(G) = mr(G,F2) + 1. We start with the following lemma.

Lemma 14. Let G be a graph with c2(G) even, and let C be a minimum subgraph com-
plementation system for G. Then there exists a vertex v ∈ V such that v appears in C
an odd number of times.

Proof. Let G and C be as described. Suppose, for the sake of contradiction, that every
vertex of G appears an even number of times in C . Let C = {u1, . . . , us} be a set
in C . Then Cu1 is a minimum subgraph complementation system for G, by Lemma 8.
Furthermore, Cu1 maintains the property that every vertex appears an even number of
times. We can continue this process to find that Cu1,u2 = (Cu1)u2 also maintains that
property, and so on. Then Cu1,...,us is a minimum subgraph complementation system for
G, but it contains the empty set C. This implies that Cu1,...,us \ {C} is also a subgraph
complementation system for G, which contradicts the minimality of C .
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If C is a subgraph complementation system of odd cardinatlity in which every vertex
appears an even number of times, then the vertex v appears an odd number of times in
the subgraph complementation system Cv from Lemma 8. Together with Lemma 14, we
see that, for any graph G, there exists a minimum subgraph complementation system in
which some vertex appears an odd number of times. We will show that this is the case
for every minimum subgraph complementation system if and only if c2(G) = mr(G,F2).

Theorem 15. Let G be a nonempty graph. Then c2(G) 6= mr(G,F2) if and only if there
exists a minimum subgraph complementation system C for G in which every vertex of G
appears an even number of times.

Proof. Let G be a graph with at least one edge, and let k = mr(G,F2) > 0. We begin
by proving sufficiency. Supppose that there exists a minimum subgraph complementation
system C of G in which every vertex appears an even number of times. Let X be the
matrix associated to C . Each row of X contains an even number of 1’s, so the columns
of X are linearly dependent. Thus,

k 6 rank(XXT ) 6 rank(X) < c2(G).

Concerning the necessary condition, suppose that c2(G) 6= k. Then c2(G) = k + 1 by
Corollary 12. By Theorem 13, the adjacency matrix of G, A = A(G), is the unique matrix
which fits G of minimum rank over F2. By Proposition 10 and Theorem 11, A = XXT for
some n× (k + 1) matrix X of rank k over F2. Then every row of X has an even number
of 1’s. Taking the rows of X as incidence vectors, we obtain a subgraph complementation
system for G in which every vertex appears an even number of times, as desired.

Theorem 16. Let G be a nonempty graph with components G1, . . . , Gt. Then c2(G) 6=
mr(G,F2) if and only if c2(Gi) 6= mr(Gi,F2) for all i ∈ [t].

Proof. Let G = G1+ · · ·+Gt. If mr(G,F2) 6= c2(G), by Theorem 13, the adjacency matrix
A = A(G) is the unique matrix which fits G of minimum rank over F2. Suppose, for the
sake of contradiction, that there exists a component Gk of G for which mr(Gk,F2) =
c2(Gk). Notice that every matrix which fits G is a block-diagonal matrix; let A = ⊕t1Ai.
Furthermore, the rank of a block-diagonal matrix is minimized by minimizing the ranks
of its blocks, so that rank(Ai) = mr(Gi,F2) for each i ∈ [t]. By Theorem 15, there exists
a minimum subgraph complementation system C for Gk in which some vertex appears an
odd number of times. Let M = M(C ) be the matrix associated to C . Then MMT fits
Gk, is of rank mr(Gk,F2), and has some nonzero diagonal entry. We may thus replace Ak
by MMT to obtain a matrix fitting G of minimum rank over F2 with a nonzero diagonal
entry, a contradiction.

On the other hand, if mr(Gi,F2) 6= c2(Gi) for every i ∈ [t], then, for each i, the
adjacency matrix Ai = A(Gi) is the unique matrix of minimum rank over F2 which fits
Gi. Thus, there is a unique matrix fitting G over F2 of minimum rank, and it consists of
the blocks Ai for i ∈ [t]. By Theorem 13, we have c2(G) 6= mr(G,F2), as desired.

We summarize our characterization of the graphs for which c2(G) 6= mr(G,F2) in the
following theorem.
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Theorem 17. Let G be a nonempty graph. The following are equivalent.

i. c2(G) 6= mr(G,F2);

ii. c2(G) = mr(G,F2) + 1;

iii. there is a unique matrix A of minimum rank over F2 which fits G, and every diagonal
entry of A is 0;

iv. there is a minimum subgraph complementation system for G in which every vertex
appears an even number of times;

v. for every component G′ of G, c2(G
′) = mr(G′,F2) + 1.

4.2 Tripartite subgraph complementation

In addition to subgraph complementation, the authors of [15] also defined bipartite sub-
graph complementation, the operation of complementing the edges between disjoint sub-
sets A and B of vertices of a graph G. Equivalently, it is the operation of taking the
symmetric difference of the edge set of G and that of the complete bipartite graph with
partite sets A and B. In this section, we provide an alternative characterization of the
graphs for which c2(G) = mr(G,F2) + 1 by extending the notion of bipartite subgraph
complementation. We define tripartite subgraph complementation to be the operation
of complementing the edges between three (possibly empty) disjoint subsets of vertices
of G. The addition or removal of an edge of G is a special case of tripartite subgraph
complementation, as it is for both subgraph complementation and bipartite subgraph
complementation. This leads us to define a parameter t2(G) similarly to c2(G); t2(G) is
the minimum number of tripartite subgraph complementations needed to obtain G from
Kn. Equivalently, t2(G) is the minimum number of complete tripartite graphs on subsets
of V such that each pair of vertices are adjacent in an odd number of complete tripartite
graphs if and only if they are adjacent in G, or, whose symmetric difference of edge sets
is E.

In Theorem 19, we show that for all graphs with c2(G) = mr(G,F2) + 1, we have
mr(G,F2) = 2t2(G). In general, we will see that mr(G,F2) 6 2t2(G). In order to under-
stand this relationship, we need a different interpretation of the second case of Lemma 9.
For the remainder of this section, we define

H2 =

(
0 1
1 0

)
.

Example 18. In Example 6, we saw that c2(K3,3) = mr(K3,3,F2)+1. The same is true of
the wheel graph W5, depicted in Figure 1, which is the smallest graph with this property.
Let v1 denote the center vertex of the wheel, and v2, . . . , v5 denote the vertices around
the rim, labeled cyclically. By Theorem 13, the adjacency matrix A = A(W5) is the only
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matrix of rank mr(W5,F2) = 2 which fits W5. While there does not exist a 5× 2 matrix
X such that A = XXT , the matrix

X =


1 1
1 0
0 1
1 0
0 1


is such that A = XH2X

T , in accordance with Lemma 9. Notice that W5 is actually a
complete tripartite graph, and that, if we label the partite sets by the vectors (1, 1), (1, 0),
and (0, 1), X may be seen as an incidence matrix for the partite sets of W5. In fact, to
any complete tripartite graph G on n vertices we can associate such an incidence matrix
M with MH2M

T = A(G) (including K3,3, which is a triclique with an empty partite set).
We will extend this notion to obtain Theorem 19.

Let G be a graph with vertex set V = {v1, . . . , vn} and with adjacency matrix A =
A(G) of rank k over F2. By Proposition 10, there exists an n×k matrix X of rank k such
that X(⊕l1H2)X

T = A, where k = 2l. We group the columns of X into pairs and denote
the entries by

X =


x11 y11 · · · x1l y1l
x21 y21 · · · x2l y2l
...

...
. . .

...
...

xn1 yn2 · · · xnl ynl

 .

The (i, j)th entry of A = X(⊕l1H2)X
T is

aij =
l∑

m=1

(ximyjm + xjmyim) (mod 2),

of which the mth summand ximyjm + xjmyim is 1 if and only if ximyjm 6= xjmyim.
Consider the collection T = {T1, . . . , Tl} of complete tripartite graphs on subsets of

V , with partite sets (Xm, Ym, Zm) for each m ∈ [l], such that

vi ∈


Xm : if xim = 1 and yim = 0;

Ym : if xim = 0 and yim = 1;

Zm : if xim = yim = 1;

and vi 6∈ Tm if xim = yim = 0. Then vivj ∈ E(Tm) if and only if ximyjm 6= xjmyim. Since
A = X(⊕l1H2)X

T , we see that a pair of vertices are adjacent in G if and only if they are
adjacent in an odd number of tricliques in T . Conversely, given a collection of l tricliques
on subsets of V in which each pair vi, vj ∈ V is adjacent in an odd number of tricliques
if and only if vivj ∈ E(G), we can construct an n × 2l matrix X in the same fashion so
that A = X(⊕l1H2)X

T .
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Theorem 19. For any graph G, we have

mr(G,F2) = min{c2(G), 2t2(G)}.

Proof. Let G be a graph with adjacency matrix A = A(G), and let mr(G,F2) = k.
Suppose that c2(G) 6= k. By Theorem 13, A is the only matrix of rank k over F2 which
fits G. By Lemma 9, there exists an n × k matrix X of rank k over F2 such that A =
X(⊕l1H2)X

T , where k = 2l and H2 = ( 0 1
1 0 ). Let T be the collection of l tricliques induced

by X. Then each pair of vertices are adjacent in G if and only if they are adjacent in an
odd number of tricliques in T . Thus, t2(G) 6 |T | = k/2. On the other hand, the rank
of a matrix M such that A = M(⊕l1H2)M

T is at least the rank of A, since any vector in
the span of A is also in the span of M . Thus, 2t2(G) > k, which completes the proof.

4.3 Forests

The fact that the subgraph complementation number of a graph is at least its minimum
rank over F2 may help us to determine the subgraph complementation number of a graph
whose minimum rank over F2 is known. For example, the minimum rank problem over
R is solved for trees, in the sense that the problem has been reduced from finding the
minimum rank of a matrix from an infinite class to finding the optimal value of some
graph parameter on a finite number of vertices (see [12] for a survey). The problem is
also solved for forests by the additivity of mr(G,R). Furthermore, the authors of [5] have
shown that the minimum rank of a tree is independent of the field, which can similarly
be generalized to forests. Throughout this section, when G is a forest, we will thus refer
to mr(G) without confusion. In Theorem 21, we prove equality of the minimum rank of
a forest and its subgraph complementation number. We begin by showing this equality
for linear forests.

Proposition 20. If L is a linear forest with k components, then c2(L) = n− k.

Proof. Let L be a linear forest with components P (1), . . . , P (k). It is clear that C =
{{u, v} | uv ∈ E(L)} of cardinality ‖L‖ = n − k is a subgraph complementation system
for L, so c2(L) 6 n − k. It follows from Fiedler’s Tridiagonal Matrix Theorem [8] that,
for any tree T , mr(T ) = n − 1 if and only if T ∼ Pn. By the additivity of the minimum
rank function, mr(L) =

∑k
1 mr(P (i)) = n− k. We have seen in Section 4.1, equation (1),

that mr(L) 6 c2(L), from which the result follows.

In general, there is no straightforward relationship between mr(G,F2) and mr(G,R).
The smallest example is the full house graph, depicted in Figure 2, which has minimum
rank 3 over F2, but minimum rank 2 over any other field [3]. On the other hand, the
complete tripartite graph K3,3,3 is one of the minimal forbidden induced subgraphs for
the class {G | mr(G,R) 6 2}, but its adjacency matrix with zeros on the diagonal has
rank 2 over F2.

We can use these examples and the additive property of minimum rank to construct
examples of graphs G where mr(G,F2) and mr(G,R) are arbitrarily far apart in either
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direction. We now know that mr(G,F2) and c2(G) are not necessarily equal, but always
close. Their relationship with mr(G,R) is difficult to pin down for general graphs. How-
ever, when F is a forest, mr(F,F2), mr(F,R) and c2(F ) coincide. We conclude this section
by connecting the subgraph complementation number of a forest to its path cover number
p(G), or the minimum cardinality of a collection of vertex-disjoint induced paths which
cover all of the vertices of G. Such a collection is called a path cover of G. It is known
that, when T is a tree, mr(T,F) = |T | − p(T ) for any field F [5]. The case F = R was
proven in [14].

Theorem 21. For any forest F and field F, we have

c2(F ) = mr(F,F) = |F | − p(F ).

Proof. We prove the result for trees, and obtain the result for forests by the addivity of
the minimum rank of a graph. Let T be a tree. By equation (1), mr(T ) 6 c2(T ). We will
show that c2(T ) 6 |T | − p(T ) = mr(T ) by finding a minimum subgraph complementation
system from a minimum path cover of T . An algorithm for finding a minimum path cover
of a tree is presented in [7]. If P is a path cover of T produced by this algorithm, then
every path in P contains at most one high-degree vertex, a vertex of degree 3 or more in
T , and these vertices are never endpoints of the paths in which they lie. If P also covers
all of the edges of T , then T is a linear forest and Proposition 20 completes the proof.
Otherwise, any edges which are not in P are adjacent to high-degree vertices, which are
internal in their respective paths. Denote these high-degree vertices by v1, v2, . . . , vk, and
define U = {v ∈ V (T ) | dT (v) 6 2}. Let C be the collection consisting of the |E(P)| − 2k
sets of the form {u, v} where u, v ∈ U and uv ∈ E(P), along with the sets NT (vi) and
NT [vi] for 1 6 i 6 k. Then C is a subgraph complementation system for T of cardinality
|E(P)| = |T | − p(T ). Therefore, c2(T ) 6 |T | − p(T ) = mr(T ), which completes the
proof.

5 Forbidden induced subgraphs

The class of graphs with subgraph complementation number at most k is hereditary for
any nonnegative integer k. We have seen that mr(G,F2) 6 c2(G) in general, implying
that

{G | c2(G) 6 k} ⊆ {G | mr(G,F2) 6 k}. (2)

It is known that the class of graphs {G | mr(G,F) 6 k} is hereditary and finitely defined
when F is finite [6]. For odd k, it follows from Corollary 12 that if mr(G,F2) = k, then
c2(G) = k, and if mr(G,F2) < k, then c2(G) 6 k. Therefore, when k is odd, we also have
{G | c2(G) 6 k} ⊇ {G | mr(G,F2) 6 k}.

Proposition 22. For any odd k,

{G | c2(G) 6 k} = {G | mr(G,F2) 6 k}.
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In particular, the classes {G | c2(G) 6 k} and {G | mr(G,F2) 6 k} for odd k are
defined by the same finite set of minimal forbidden induced subgraphs. The two minimal
forbidden induced subgraphs for k = 1 are evident, as a graph with c2(G) 6 1 consists
of a single clique and/or isolated vertices. That is, the class of graphs {G | c2(G) 6 1}
is the class of {P3, 2K2}-free graphs. We obtain as a corollary to Proposition 22 that the
set of minimal forbidden induced subgraphs for the property c2(G) 6 3 is the same set
given in the following theorem and listed explicitly in [3].

Theorem 23. [3] The class of graphs

{G | mr(G,F2) 6 3}

is defined by forbidding a set of 62 minimal induced subgraphs, each of which has 8 or
fewer vertices.

On the other hand, when k is even, it does not follow from Proposition 22 that
{G | c2(G) 6 k} is finitely defined. We prove this in the following theorem.

Theorem 24. For any natural number k, the class of graphs

{G | c2(G) 6 k}

is defined by forbidding a finite set of induced subgraphs.

Proof. Let F be a minimal forbidden induced subgraph for the property c2(G) 6 k. First,
we claim that c2(F ) 6 k + 2. Suppose, for the sake of contradiction, that c2(F ) > k + 3.
Then, for any v ∈ V (F ) and subgraph complementation system C ′ for F − v, we have
that C = C ′ ∪ {N(v), N [v]} is a subgraph complementation system for F , which implies
that c2(F − v) > k + 1. This contradicts the minimality of F .

Now, there exists a subgraph complementation system C for F of cardinality k + 2.
We can associate to F a vector of length s = 2k+2, where each entry corresponds to an
element of the powerset 2C , such that each entry of the vector is a non-negative integer
that counts the number of vertices of F that are in a given subcollection of C . This vector
defines the graph F up to isomorphism. It is easy to verify that, if two graphs Fa and
Fb have vectors (a1, . . . , as) and (b1, . . . , bs) such that ai 6 bi for 1 6 i 6 s, then Fa is
an induced subgraph of Fb. We now see that the poset of forbidden induced subgraphs
for the property c2(G) 6 k ordered by the induced subgraph relation can be embedded in
the poset Ns, which is the direct product of the poset N ordered by 6. It is known that
a direct product of finitely many posets that are well-founded and that have no infinite
anti-chains is itself well-founded and has no infinite anti-chains [16]. Furthermore, any
restriction of such a poset has the same properties. This completes the proof to show
that the poset of forbidden induced subgraphs for the property c2(G) 6 k, ordered by the
induced subgraph relation, is well-founded with a finite number of minimal elements.

Theorem 24 only guarantees that the set of minimal forbidden induced subgraphs for
the property c2(G) 6 k is finite; it does not provide an explicit upper bound. Based on
the results concerning linear forests, we present the following conjecture.
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A B

P4

P3 + K2

3K2

full house

dart n

K3,3

W5

P3 ∨ P3

Figure 2: The sets of minimal forbidden induced subgraphs for the properties c2(G) 6 2
(A) and mr(G,F2) 6 2 (B).

Conjecture 25. A minimal forbidden induced subgraph for the property c2(G) 6 k has
at most 2k + 2 vertices.

By analyzing the structure of graphs with c2(G) 6 2, we can find the set of minimal
forbidden induced subgraphs for this property. This is the set given in Theorem 26 and
depicted in Figure 2 (A).

Theorem 26. The class of graphs

{G | c2(G) 6 2}

is the class of F-free graphs, where F is the set of graphs shown in Figure 2 (A).

Proof. Suppose, for the sake of contradiction, that there exists a graph G = (V,E) such
that c2(G) > 2, and G does not contain any element of F as an induced subgraph.
Furthermore, suppose that G is minimal with these qualities; that is, every proper induced
subgraph H of G has c2(G) 6 2. Then G has no isolated vertices. Furthermore, |G| > 5
by Theorems 1 and 2.

The rest of the proof is outlined as follows. We show that there exists a vertex x for
which c2(G − x) = 2. Letting C = {C1, C2} be a minimum subgraph complementation
system for G− x, depicted in Figure 3, we then show that C1 ∩C2 is nonempty, and that
G−x has no isolated vertices. Finally, we split into two cases: either one of the sets in C
contains the other, or not. Contradictions are derived by showing that either c2(G) 6 2,
or that G contains an induced subgraph in F .

Firstly, there exists a vertex x for which c2(G − x) = 2. We have c2(G − v) >
c2(G)− 2 > 1 for all v ∈ V , since we can add N(v) and N [v] to any minimum subgraph
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C1 ∩ C2

C1 \ C2 C2 \ C1

x

Figure 3: A subgraph complementation system for G− x

complementation system for G − v to obtain one for G. Furthermore, if c2(G − v) = 1
for all v ∈ V , then mr(G− v,F2) = 1 for all v ∈ V , so G is a minimal forbidden induced
subgraph for the property mr(G,F2) 6 1. These are the graphs P3 and 2K2, which both
have subgraph complementation systems of cardinality 2, so there exists a vertex x ∈ V
such that c2(G− x) = 2.

Let C = {C1, C2} be a minimum subgraph complementation system for G−x. Notice
that both |C1| > 2 and |C2| > 2. We begin by showing that C1∩C2 is nonempty. Suppose
C1 ∩C2 = ∅. The isolated vertices of G− x are a subset of NG(x). If every neighbor of x
is isolated in G− x, then G has an induced 3K2. Thus, x has a neighbor in at least one
of C1 and C2. Without loss of generality, say x has a neighbor in C1. Then x dominates
C1, otherwise G has an induced P3 + K2 (if x has no neighbor in C2), or an induced P4

(otherwise). If x has no neighbor in C2, then either c2(G) 6 2, or G has an induced
P3 +K2. In fact, x dominates C2, otherwise G has an induced P4. Then either c2(G) 6 2,
or G has an induced n, a contradiction. Therefore, C1 ∩ C2 is nonempty.

Suppose there exists an isolated vertex in G − x. Then, for each edge uv of G − x,
either both or neither of u and v are neighbors of x, otherwise G has an induced P4. If
there are at least two isolated vertices, then for each edge uv of G − x, exactly one of
u and v is a neighbor of x, otherwise G has an induced P3 + K2 or an induced n. We
conclude there is exactly one isolated vertex in G − x. If x has no other neighbor, then
G has an induced P3 + K2, since C1 and C2 are not disjoint. Without loss of generality,
say x has a neighbor in C1. In fact, we can conclude that x dominates C1, otherwise G
has an induced P4. Then x has a neighbor in C2, so x dominates C2 as well, and G has
an induced dart. Therefore, G− x has no isolated vertices.

Figure 3 represents a minimum subgraph complementation system C = {C1, C2} of
G − x. Without loss of generality, we assume that |C1| 6 |C2|. One may imagine G − x
as disjoint cliques C1 \ C2 and C2 \ C1, and an independent dominating set C1 ∩ C2. We
now split into cases: either C1 \ C2 and C2 \ C1 are both nonempty, or C1 ⊂ C2. The
former case is divided into subcases differentiating between the possible neighborhoods of
x in G.
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Case 1: Suppose that C1 \ C2 and C2 \ C1 are both nonempty. Throughout this section,
vertices in C1 \ C2 are be denoted by u = u0, u1, u2, . . ., vertices in C1 ∩ C2 by w =
w0, w1, w2, . . ., and vertices in C2 \ C1 by z = z0, z1, z2, . . ..

Suppose N(x) ⊆ C1 \ C2. Then G has an induced P4 on vertex set {x, u, w, z},
where u ∈ N(x), w ∈ C1 ∩ C2, and z ∈ C2 \ C1. A similar contradiction is derived if
N(x) ⊆ C2 \ C1.

Suppose N(x) ⊆ C1∩C2, and let w = w0 ∈ N(x). If |C2 \C1| > 2, say z0, z1 ∈ C2 \C1,
then G contains an induced n on vertex set {x, z0, z1, w, u}, where u ∈ C1\C2. Otherwise,
since |C2| > |C1| by assumption, |C1 \ C2| = |C2 \ C1| = 1. Let C1 \ C2 = {u}, and let
C2 \C1 = {z}. Since |G| > 5, we have |C1 ∩C2| > 2. If x has a non-neighbor in C1 ∩C2,
say w1, then G has an induced P4 on {x,w0, u, w1}. Otherwise, N(x) = C1 ∩ C2. If
C1∩C2 = {w0, w1}, then there is a subgraph complementation system of G of cardinality
2: {{x,w0, u, z}, {x,w1, u, z}}. Thus, there exist vertices w0, w1, w2 ∈ N(x) ∩ (C1 ∩ C2),
and G has an induced K3,3 on {x, u, z, w0, w1, w2}.

Suppose x has neighbors u = u0 ∈ C1 \ C2 and w = w0 ∈ C1 ∩ C2, but no neighbor in
C2 \C1. Let z ∈ C2 \C1. If x has a non-neighbor u1 ∈ C1 \C2, then G has an induced dart
on {x, u, u1, w, z}, and if x has a non-neighbor w1 ∈ C1 ∩ C2, then G has an induced P4

on {x, u, w1, z}. Thus, C1 \C2 ⊂ N(x), and C1 ∩C2 ⊂ N(x). Since G− x has no isolated
vertices, we have N(x) = C1. But then G has a subgraph complementation system of
cardinality 2: {C1 ∪ {x}, C2}. Thus, we arrive at a contradiction when x has neighbors
in C1 \ C2 and C1 ∩ C2 but not C2 \ C1. By similar arguments, we derive a contradiction
if x has neighbors in C2 \ C1 and C1 ∩ C2 but none in C1 \ C2.

Finally, suppose x has neighbors u = u0 ∈ C1 \ C2, w = w0 ∈ C1 ∩ C2, and z =
z0 ∈ C2 \ C1. Since |G| > 5 and |C1| 6 |C2|, either |C1 ∩ C2| > 2 or |C2 \ C1| > 2.
Suppose |C2 \ C1| > 2. If x has a non-neighbor z1 ∈ C2 \ C1, then G has an induced
P4 on {u, x, z0, z1}. Otherwise, x dominates C2 \ C1, and G has induced full house on
{u, x, w, z0, z1}. Thus, |C2 \ C1| = |C1 \ C2| = 1, and |C1 ∩ C2| > 2. If x has 2 or
more neighbors in C1 ∩ C2, say w0, w1 ∈ N(x) ∩ C1 ∩ C2, then G has an induced W5 on
{x, u, w0, w1, z}. Thus, x has a non-neighbor w1 in C1 ∩C2. Suppose C1 ∩C2 = {w0, w1}.
Since C1 \ C2 = {u} and C2 \ C1 = {z}, the two sets {x, u, w0, z} and {w1, u, z} form a
subgraph complementation system of G. Now suppose that |C1∩C2| > 3; say w0, w1, w2 ∈
C1 ∩C2. We have seen that w0 is the only neighbor of x in C1 ∩C2. Thus, G contains an
induced n on {x, u, w0, w1, w2}. We conclude that x must not have neighbors in each of
C1 \ C2, C1 ∩ C2, and C2 \ C1. This concludes Case 1.

Case 2: Suppose that C1 \ C2 is empty, i.e. C1 ⊂ C2.
Let u0, u1 ∈ C1 and z = z0 ∈ C2\C1. If N(x) ( C1, say u0 ∈ N(x) and u1 ∈ C1\N(x),

and if z ∈ C2 \ C1, then G has an induced P4 on {x, u0, z, u1}. If N(x) = C1, then G
has a subgraph complementation system of cardinality 2: {C2, C1 ∪ {x}}. Thus, x has
a neighbor z ∈ C2 \ C1. If u0 ∈ N(x) but u1, u2 ∈ C1 are not neighbors of x, then G
has an induced n on {x, u0, u1, u2, z}. If x has neighbors u0, u1 ∈ C1, and a non-neighbor
u2 ∈ C1, then G has an induced dart on {x, u0, u1, u2, z}. Thus, x dominates C1. If
x also dominates C2, then G has a subgraph complementation system of cardinality 2:
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{C1, C2 ∪ {x}}. Thus, x has a neighbor z0 and a non-neighbor z1 in C2 \ C1, and G has
an induced W5 on {x, u0, u1, z0, z1}. This completes the proof.
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