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Abstract

A graph G percolates in the Kr,s-bootstrap process if we can add all missing
edges of G in some order such that each edge creates a new copy of Kr,s, where
Kr,s is the complete bipartite graph. We study Kr,s-bootstrap percolation on the
Erdős-Rényi random graph, and determine the percolation threshold for balanced
Kr,s up to a logarithmic factor. This partially answers a question raised by Balogh,
Bollobás, and Morris. We also establish a general lower bound of the percolation
threshold for all Kr,s, with r > s > 3.

Mathematics Subject Classifications: 05C80, 82B43

1 Introduction

For a given graph H, the H-bootstrap process is defined as follows. Let G be a graph on
vertex set [n] := {1, 2, . . . , n} and Kn be the complete graph on the same set of vertices.
Set G0 = G and define, for each t > 0,

Gt+1 := Gt ∪
{
e ∈ E(Kn) : ∃H with e ∈ H ⊂ Gt ∪ {e}

}
.

Let 〈G〉H = ∪t>0Gt. Here 〈G〉H is the closure of G under the H-bootstrap process.
We say G percolates under the H-bootstrap process on Kn if 〈G〉H = Kn.

Recently this process was studied by Balogh, Bollobás, and Morris for G = Gn,p, where
Gn,p is the random graph on n vertices in which each edge is present independently with
probability p. In [2], they defined the critical threshold for H-bootstrap percolation on
Kn as follows:

pc(n,H) := inf{p : P (〈G〉H = Kn) > 1/2}
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In this short article we study upper and lower bounds of pc(n,H) for H = Kr,s, where
Kr,s is the complete bipartite graph with r vertices in one part and s in the other. Here
and throughout the paper we will assume r > s > 3 without loss of generality. Let

λ(r, s) :=
rs− 2

r + s− 2
.

The following theorem is the main result of this paper.

Theorem 1. Let r > 4, s > 3, and s 6 r 6 (s − 2)2 + s. Then there exist constants
c(r, s), C(r, s) > 0 such that for large enough n,

c(r, s)(log n)−1n−1/λ(r,s) 6 pc(n,Kr,s) 6 C(r, s)

(
log n

log log n

)2/λ(r,s)

n−1/λ(r,s). (1)

Remark 2. This partially answers a question by Balogh, Bollobás, and Morris; see Problem
5 in [2]. For the case K2,t some results have been recently obtained that we discuss in
the next section. In the next proposition we obtain a general lower bound on pc(n,Kr,s).
One can also obtain a general lower bound using Proposition 25 in [2], but for Kr,s the
following proposition provides a better lower bound.

Proposition 3. For any r, s > 3,

pc(n,Kr,s) > (e log n)−1λ((s− 2)2 + s, s)
2
n−1/λ((s−2)

2+s,s).

1.1 Related results

Graph bootstrap percolation is an example of cellular automata introduced by von Neu-
mann [12] (see also [6]). Bollobás [4] introduced H-bootstrap percolation, which is also
known as weak saturation. Extremal questions are well studied when H = Kr (see [1],
[7], and [9]).

More recently, graph bootstrap percolation has been studied on random graphs (see
[5] for an exposition on random graphs). In the context of the Erdős-Rényi random graph
Balogh, Bollobás, and Morris [2] obtained the following result regarding Kr bootstrap
percolation. It was shown that for r > 4, and n ∈ N, sufficiently large

n−1/λ(r)

2e log n
6 pc(n,Kr) 6 n−1/λ(r) log n,

where λ(r) =
(r
2)−2
r−2 . Recently, extremal results have been studied for H = Kr,s, where

Kr,s is the complete bipartite graph with one part containing r nodes, and s nodes in the
other. In [8], the authors considered a related process called saturation. A graph G is
called called H saturated if G does not contain a copy of H, and adding any missing edge
in G completes a new copy of H. In [8], it was shown that if Kn,n is Kr,s saturated then
it must have at least (r + s− 2)n− (r + s− 2)2 edges, confirming a conjecture in [11] up
to an additive constant. In [11] the authors studied the weak saturation of Kr,s in Kn,n,
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and showed that if it is Kr,s-weakly saturated in a bipartite graph, then it has at least
(2s − 2 + o(1))n edges, when s 6 r. Weak saturation of Kr,s in Kn has been studied in
[10]. In the context of random graph the authors in [2] proposed the problem (Problem 5
in [2] ) to determine pc(n,Kr,s), at least up to a poly-logarithmic factor, for all r, s ∈ N.
It was shown in [2] that

pc(n,K2,3) =
log n

n
+ Θ

(
1

n

)
.

Recently some progress has been made for bipartite graphs of the form K2,t. In [3], it was
shown that

pc(n,K2,4) = Θ

(
1

n10/13

)
.

A lower and upper bound for K2,t is also obtained in [3] for t > 4. Our result complements
the results in [3], and determines pc(n,Kr,s) up to poly-logarithmic factor when the graph
is balanced (see Definition 12). We also obtain a general lower bound for pc(n,Kr,s) when
r, s > 3.

1.2 Remarks on the proof

Our proof of the lower bound in Theorem 1 is based on the witness set algorithm in-
troduced in [2]. The main idea involves two steps. The first step is to show that if a
graph G percolates under the Kr,s-bootstrap process on Kn then there exists an witness
set (see Section 2 for the precise definition) satisfying certain extremal properties. The
second step is to show that if p is below a certain threshold then there is no such set with
high probability, that is, with probability going to one as the size of the graph goes to
infinity. Although we use the same algorithm to establish the extremal properties of the
witness set, the steps involved are different from those used in [2] to prove bounds on the
Kr-bootstrap process, and the analysis of the algorithm leads to a different optimization
problem than in the case of Kr. Interestingly the condition required to establish the lower
bound for Kr,s using the witness set algorithm is also necessary to show that Kr,s is bal-
anced. Our lower bound works for r, s > 3. The upper bound directly uses Proposition 3
from [2]. The assumptions in their proposition are valid when r > 4 and s > 3.

2 Lower bound for Kr,s percolation

A novel Witness-Set algorithm was introduced in [2] in the context of Kr-bootstrap per-
colation. We first fix some notations and then recall the algorithm for H-bootstrap
percolation, for any finite graph H. We start with a graph G, and run the H-bootstrap
process, that is we add the edges in 〈G〉H \ G one by one. The edges in 〈G〉H \ G are
called infected edges. First, let us fix an ordering of the edges (e1, e2, . . . , ek) in 〈G〉H \G.
More precisely, e1 is the first edge that was added (we also say ‘e1 is infected’) and H1

is the copy of H that was completed by adding e1 (if more than one is completed we
arbitrarily choose one), and continuing similarly for i = 2, 3, . . . , k, let ei be the i-th edge
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that was added (or infected), and H i be the copy of H that was completed by adding ei
(if more than one is completed we arbitrarily choose one). We are now ready to state the
Witness-Set algorithm.

Witness-Set Algorithm

Assign a graph F (e) ⊆ G, to each edge e ∈ 〈G〉H . The set of edges of F (e), denoted by
E(F (e)) is obtained as follows:

• If e ∈ G then set E(F (e)) = {e}.

• If e = ei for some i = 1, 2, . . . , k then

E(F (e)) :=
⋃

e′ 6=e∈E(Hi)

E(F (e′)). (2)

Now F (e) is the graph whose vertices are the endpoints of the edges in E(F (e)), and edge
set E(F (e)). The graph F (e) is called the Witness-Set of edge e. Note that in (2) the
union is taken only over the edges of H. In particular in the bootstrap process when a
copy of H is completed on the set of vertices, say, V (H), there might be additional edges
in the graph induced by V (H), and the union is not taken over such edges.

The Red Edge Algorithm

Let G be a graph, and e ∈ 〈G〉H \G.

• Run the Witness-Set Algorithm until the edge e is infected.

• Let (ea1 , ea2 , · · · , eam) be the infected edges which satisfy F (eaj) ⊆ F (e), where
eam = e and a1 < a2 < . . . < am.

• Call the set of edges Se := {ea1 , ea2 , . . . , eam} red edges, and note that eaj ∈ Haj \
(Ha1 ∪ . . . ∪Haj−1).

Therefore F (e) = (Ha1 ∪ . . . ∪Ham) \ {ea1 , ea2 , . . . , eam}.
For an edge e ∈ 〈G〉H\G run the Red-Edge Algorithm, and let Se = {ea1 , ea2 , . . . , eam}.

Then for t ∈ [m], define

Bt(e) := (Ha1 ∪ . . . ∪Hat) \ {ea1 , . . . , eat}.

Also, define a graph Gt(e), obtained using the Red Edge Algorithm whose vertices are the
graphs {Ha1 , Ha2 , . . . , Hat}, and in which two nodes Hai , and Haj are adjacent if they
share at least one common edge.

Let us now make few remarks about the Red Edge algorithm. First note that, if
e = ei for some i = 1, 2, . . . , k, then F (e) can be interpreted as the subset of G that
causes the infection of e. For each j = 1, 2, . . . ,m, the condition F (eaj) ⊆ F (e) implies
that Haj \ {ea1 , ea2 , . . . , eam} ⊆ F (f) for some f ∈ Ham . In words, at the j-th step in

the electronic journal of combinatorics 29(1) (2022), #P1.46 4



the Red Edge algorithm eaj is added and Haj is completed. The condition F (eaj) ⊆ F (e)
ensures the graph Gm is connected (this will be useful in our proof; see Lemma 4, Lemma
7 and Lemma 8 below for more details). In Lemma 7 below we obtain an upper bound on
the number of edges in Bt, which will be used to obtain the lower bound in Theorem 1.

We now provide an explicit example to illustrate the Witness-set algorithm and the
Red Edge algorithm in Figure 1. In this figure, the nodes of G are given by the set
{A,B,C,D,E, F,G,H}, and the edges of G are drawn in black. The edges of 〈G〉H \ G
are drawn in red, whereH is a triangle (complete graph on three vertices). We first ordered
the edges in 〈G〉H \ G and marked them by e1, e2, . . . , e7, and the triangle completed by
adding them are ABC,ACD,BCD,FGH,ADE,BAE, and CDE respectively. Now let
us run the Witness-set algorithm until the edge e = e5 gets infected, we get

F (e1) = {AB,BC}, F (e2) = {AB,BC,CD}, F (e3) = {BC,CD}, F (e4) = {GF,GH},
F (e5) = {DE,AB,BC,CD}.

Now in the Red Edge algorithm, for e = e5 we have Se = {e1, e2, e3, e5} and

B1(e5) = {AB,BC}, B2(e5) = {AB,BC,CD}, B3(e5) = {AB,BC,CD},
B4(e5) = {AB,BC,CD,DE}.

Figure 1: Example of the running of the Witness-set algorithm and the Red Edge algo-
rithm
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Here note, for example, that B3(e5) 6= F (e3), and B1(e3) = F (e3) = {BC,CD}. Also,
quantities such as B3(e3) does not make sense.

Let us now start with two basic results. For an edge e ∈ 〈G〉H \ G run the Red-
Edge Algorithm, and let Se = {ea1 , ea2 , . . . , eam}. Then consider the graph Gm(e), whose
vertices are the graphs {Ha1 , Ha2 , . . . , Ham}, and in which two nodes Hai , and Haj are
adjacent if E(Hai) ∩ E(Haj) is non-empty. With this notation, the first one (Lemma 4)
states that the graph Gm(e) is connected, and the second one (Lemma 6) ensures that all
witness sets can not be very large.

Lemma 4. Let F (e) be a Witness-Set for e on the graph G. Then Gm(e) is a connected
graph.

Proof of Lemma 4. Take f ∈ F (e). Then we claim that there is a path in Gm(e) from Ham

to Hat for some t ∈ [m], where f ∈ E(Hat). Indeed, since f ∈ F (e) either f ∈ E(Ham), in
which case we are done or there is an f1 ∈ E(Ham) such that f belongs to the Witness-Set
of f1. Let H(1) be the copy of H that was created by the Red-Edge algorithm by the
addition of f1 (note that H(1) and Ham must be two different copies of H). Clearly, Ham

and H(1) are adjacent in Gm(e). Then again either f ∈ E(H(1)), in which case we are
done or there is an f2 ∈ E(H(1)) such that f belongs to the Witness-Set of f2. Let H(2)

be the copy of H that was created by the Red-Edge algorithm by the addition of f2 (note
that H(2), H(1), and H(am) must be three different copies of H). Again, H(2) and H(1) are
adjacent in Gm(e). Continuing this similarly the claim is proved since there are only m
distinct copies of H that were created by the Red-Edge algorithm.

Now for j ∈ [m], F (eaj) ⊆ F (eam). Since the set F (eaj) is non-empty, there exists an
edge f ∈ F (eaj) ∩ F (e). Thus there is a t ∈ [m], such that there is a path in Gm from
Ham to Hat and f ∈ E(Hat). Also since f ∈ F (eaj), there is a path from Haj to Hat′

such that f ∈ E(Hat′ ). These give f ∈ E(Hat) ∩ E(Hat′ ). Therefore either t = t′ or Hat

and Hat′ are neighbors. Thus there is a path from Ham to Haj .

Remark 5. It is not difficult to see that Gt(e) is not necessarily a connected graph for all
t ∈ [m]. Nevertheless, we will only use the fact that Gm(e) is connected to deduce Lemma
8 from Lemma 7.

Lemma 6. Let F (e) be an Witness-Set for e on the graph G. Let L ∈ N. If e(F (e)) > L,
then there exists an edge f ∈ E (〈G〉H) with

L 6 e(F (f)) 6 e(H)L (3)

in the same realization of the Witness-Set algorithm.

Proof of Lemma 6. Firstly, if e(F (e)) 6 e(H)L then we can take f = e, and we are
done. Otherwise, consider an instance of the Witness-Set algorithm when e1, e2, . . . , el
are already infected, and after that f is next in line to be infected. Then by (2)

e(F (f)) 6 e(H) max
16i6l

e(F (ei)).

In other words e(F (f)) 6 e(H)e(F (ei)) for 1 6 i 6 l. Therefore if e(F (e)) > e(H)L one
witness set satisfying (3) must be created in the process with F (f) ⊂ F (e).
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The following lemma provides us the key estimate to establish the lower bound. Let
us fix some notations before stating the lemma. Let lt denote the number of components
of Gt(e). Also let ct(v) denote the number of components of Gt(e) containing the vertex
v ∈ V (G), and define

kt :=
∑

v∈V (Bt)

(ct(v)− 1).

We are now ready to state the lemma and the proof is deferred to the end of this section.

Lemma 7. For r > 3, s > 3, and r 6 (s− 2)2 + s we have

e(Bt(e)) >
rs− 2

r + s− 2
(v(Bt(e)) + kt − lt(r + s))) + lt(rs− 1).

Note that Lemma 4 gives Gm(e) is a connected graph, and hence lm = 1, and km = 0.
Now the following lemma is immediate from Lemma 7.

Lemma 8. Recall that λ(r, s) = rs−2
r+s−2 , under the conditions of Lemma 7 we have

e(F (e)) > λ(r, s) (v(F (e))− 2) + 1. (4)

Next we will show that the expected number of witness sets is asymptotically negligible
when p is smaller than certain threshold. For each m ∈ N and every e ∈ E(Kn), define

Ym(e) = |{F ⊂ Gn,p : e ⊂ V (F ), and e(F ) = m > λ(r, s) (v(F )− 2) + 1}|.

Here, Ym(e) counts the number of subgraphs F of Gn,p whose vertex set contains the
end points of edge e, and has m > λ(r, s) (v(F )− 2) + 1 edges.

Lemma 9. Let r, s > 3, epn1/λ(r,s)(log n)rs 6 λ(r, s)2. Then there exists a constant
C(r, s) such that for sufficiently large n,

E(Ym(e)) 6
C(r, s)

n1/λ(r,s)

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
,

for m 6 rs log n.

Proof of Lemma 9. Now for a fixedm, let l ∈ N be maximal such thatm > λ(r, s) (l − 2)+
1. Therefore v(F ) 6 l, and hence

E(Ym(e)) 6
l−2∑
j=0

(
n

j

)((j
2

)
m

)
pm 6

l−2∑
j=0

(
n

j

)(( l
2

)
m

)
pm

6
l−2∑
j=0

(
n

j

)(
l2/2

m

)
pm 6 2nl−2

(
epl2

2m

)m
.
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The first inequality is a crude upper bound of number of possible F that has at most
l vertices and exactly m edges. Note that the sum runs up to l− 2 since F must contain
the endpoints of the edge e. In the last inequality we used

l−2∑
j=0

(
n

j

)
6

l−2∑
j=0

nj 6 nl−2
(

1 +
1

n
+

1

n2
+ · · ·

)
6 2nl−2.

Since m 6 rs log n, for a sufficiently large constant C(r, s) we have l 6 m−1
λ(r,s)

+ 2 6

C(r, s) log n. Therefore pl2 = o(1), and consequently epl2

2m
= o(1). We also have m >

λ(r, s) (l − 2) + 1. Combining these and the last display we have

E(Ym(e)) 6 2nl−2
(
epl2

2m

)m
6 2

(
n1/λ(r,s) epl

2

2m

)λ(r,s)(l−2)(
epl2

2m

)
.

Let C(r, s) > 0 be large enough such thatm(m+C(r, s)) > (m+2λ(r, s))2 > (λ(r, s)l)2.
Then we will have

l2

m
6
m+ C(r, s)

λ(r, s)2
.

Hence using m 6 rs log n, we have (enlarging the constant C(r, s) if needed)

epl2

m
6

C(r, s)

n1/λ(r,s)

Using the last three displays we immediately have

E(Ym(e)) 6
C(r, s)

n1/λ(r,s)

(
n1/λ(r,s) ep(m+ C(r, s))

2λ(r, s)2

)λ(r,s)(l−2)
6

C(r, s)

n1/λ(r,s)

(
m+ C(r, s)

2rs log n

)λ(r,s)(l−2)
.

Finally using the facts m 6 rs log n, and the fact that λ(r, s) (l − 2) > m − λ(r, s) − 1
(since l is maximal such that m > λ(r, s) (l − 2) + 1) we have

E(Ym(e)) 6
C(r, s)

n1/λ(r,s)

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
.

Proposition 10. Let r, s > 3, and e ∈ E(Kn). If epn1/λ(r,s)(log n)rs 6 λ(r, s)2 then

P
(
e ∈ 〈Gn,p〉Kr,s

)
→ 0

as n→∞.
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Proof of Proposition 10. We shall prove that, for every e ∈ E(Kn),

P
(
e ∈ 〈Gn,p〉Kr,s

)
→ 0

as n→∞. For an edge e ∈ 〈Gn,p〉Kr,s
, consider the set F = F (e) ⊂ Gn,p, obtained using

the Witness-Set Algorithm. There can be two cases: in the first case e ∈ Gn,p, or in the
second case (when e /∈ Gn,p), we must have e ∈ 〈Gn,p〉Kr,s

\ Gn,p using Lemma 8 we will

get an Witness-Set F = F (e) such that

e(F ) > λ(r, s) (v(F )− 2) + 1.

Now let us assume e(F ) 6 log n for the time being. In the second case we must have
Ym(e) > 1 for some

λ(r, s) (r + s− 2) + 1 6 m 6 log n.

Using Markov’s inequality and Lemma 9 we have the probability that e ∈ 〈Gn,p〉Kr,s
is at

most

p+

logn∑
m=λ(r,s)(r+s−2)+1

E(Ym(e)) 6 p+
C(r, s)

n1/λ(r,s)

logn∑
m=λ(r,s)(r+s−2)+1

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
.

Since r+ s > 6 and λ(r, s) > 1 we have each term in the last sum going to zero as n→∞
and there are at most log n terms. Hence the factor n−1/λ(r,s) ensures the whole term in
the last display goes to zero as n→∞.

We are now left with the part e(F ) > log n. In this case Lemma 6, gives that there
must be an edge f in Kn such that log n 6 e(F (f)) 6 rs log n. Therefore Ym(f) > 1
for some log n 6 m 6 rs log n Now using Lemma 9, the union bound, and Markov’s
inequality the probability that such an edge exists is at most(

n

2

)
C(r, s)

n1/λ(r,s)

rs logn∑
m=logn

(
m+ C(r, s)

2rs log n

)m−λ(r,s)−1
6 n2 C(r, s)

n1/λ(r,s)

(
2

rs

)logn−λ(r,s)−1

.

Here we use the fact that the function
(
x+C(r,s)
2rs logn

)x
is decreasing in the interval

[log n, rs log n] for sufficiently large n and rs > 9. To complete the proof we again use
rs > 9, and ensure that the last display is converging to zero as n→∞.

Now we will prove Lemma 7, which will complete the proof of the lower bound.

Proof of Lemma 7. To simplify the notation, in this proof we will write Bt(e) = Bt, and
Gt(e) = Gt. We will do induction on t. If t = 1 then v(B1) = r+ s, e(B1) = rs− 1, l1 = 1,
and k1 = 0. Therefore

e(B1) = rs− 1 =
rs− 2

r + s− 2
(v(B1) + k1 − l1(r + s))) + l1(rs− 1).

Thus the lemma holds for t = 1. For t > 2 we break it down into three cases.
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Case I

lt = lt−1 + 1.
In this case all edges of Kt

r,s are new (an edge e ∈ Kt
r,s is called new when e /∈ Ki

r,s for
i = 1, 2, . . . , t− 1). Indeed, otherwise if it shares an edge with already existing edges then
it must belong to one of the components of Gt−1 but Gt has one more component than
Gt−1. Therefore

e(Bt) = e(Bt−1) + rs− 1.

Let b be the number of vertices of Kt
r,s that are not new. Hence v(Bt) = v(Bt−1) + r+

s − b and kt = kt−1 + b (these b vertices are in one more component in Gt than in Gt−1).
Let us now use these and the induction hypothesis for t− 1 to get

e(Bt) >

(
rs− 2

r + s− 2

)
(v(Bt−1) + kt−1 − lt−1(r + s))) + lt−1(rs− 1) + rs− 1

=

(
rs− 2

r + s− 2

)
(v(Bt)− r − s+ b+ kt − b− (lt − 1)(r + s))) + (lt−1 + 1)(rs− 1)

=

(
rs− 2

r + s− 2

)
(v(Bt) + kt − lt(r + s))) + lt(rs− 1).

Therefore the lemma is proved for lt = lt−1 + 1.

Case II

lt = lt−1.
In this case Kt

r,s shares at least one edge with some component C1 of Gt−1. Also all
other edges that are not shared with C1 must be new. Let b be the number of vertices of
Kt
r,s \ C1 which are not new and a be the number of vertices in Kr,s ∩ C1. We have the

following inequality now

e(Bt) > e(Bt−1) + rs− 1− |{edges shared with C1}|

Using the induction hypothesis

e(Bt) >

(
rs− 2

r + s− 2

)
(v(Bt−1) + kt−1 − lt−1(r + s))) + lt−1(rs− 1) + rs− 1

− |{edges shared with C1}|.

Here note that v(Bt) = v(Bt−1) + r + s− a− b, kt = kt−1 + b, Thus

e(Bt) >

(
rs− 2

r + s− 2

)
(v(Bt)− r − s+ a+ kt − lt(r + s))) + lt(rs− 1) + rs− 1

− |{edges shared with C1}|.
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Finally we have

e(Bt) >

(
rs− 2

r + s− 2

)
(v(Bt) + kt − lt(r + s))) + lt(rs− 1)

+ (a− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− |{edges shared with C1}|.

Therefore we will be done if we show that

(a− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− |{edges shared with C1}| > 0. (5)

Divide the vertices of Kr,s into an r-subset, and an s-subset, such that each vertices
one of these subset has an edge to every vertices of the other subset. Now we denote
|Kt

r,s ∩ C1| = a, and let Kt
r,s ∩ C1 consists of P vertices from the r-subset and Q vertices

from the s-subset. Therefore |{edges shared with C1}| = PQ. Since at least one edge is
shared 1 6 P 6 r, and 1 6 Q 6 s. Therefore showing (5) reduces to the problem to
showing

(P +Q− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− PQ > 0 (6)

subject to the conditions 1 6 P 6 r, and 1 6 Q 6 s. Let us prove this with the additional
constraint 1 6 P +Q 6 r+ s− 1. Note that if we want to show (6) for a fixed P , then it
is sufficient to check this for the endpoints i.e. Q = 1 and Q = s (since for a fixed P (6)
is linear in Q). Therefore we must check for each 1 6 P 6 r − 1 the following hold

(P − 1)

(
rs− 2

r + s− 2

)
+ 1− P > 0, and (P + s− 2)

(
rs− 2

r + s− 2

)
+ 1− sP > 0.

Again both these equations are linear in P and therefore we check these equations for
P = 1, r − 1. For P = 1 the first one trivially holds, and the second one is

(s− 1)

(
rs− 2

r + s− 2

)
+ 1− s = (s− 1)

(
rs− 2

r + s− 2
− 1

)
It is easy to show that rs−2

r+s−2 is non-decreasing both in r and s and therefore the last
expression is non-negative as long as r, s > 2. Similarly, for P = r − 1 the first one

(r − 2)

(
rs− 2

r + s− 2

)
+ 1− (r − 1) = (r − 2)

(
rs− 2

r + s− 2
− 1

)
> 0.

For P = r − 1 the second one boils down to the condition

(r + s− 3)

(
rs− 2

r + s− 2

)
+ 1− s(r − 1) =

(
(s− 2)2 + s− r

r + s− 2

)
> 0.

Therefore we have shown (6) for 1 6 P 6 r − 1, and 1 6 Q 6 s. Let us check this for
P = r and Q = s− 1. Indeed, since r > s, we have

(r + s− 1− r − s)
(

rs− 2

r + s− 2

)
+ rs− 1− r(s− 1) =

(r − 2)2 + r − s
r + s− 2

> 0.
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The proof of is complete as long as |Kt
r,s ∩ C1| 6 r + s− 1. Finally if |Kt

r,s ∩ C1| = r + s,
then no new vertices were added by addition of Kt

r,s and v(Bt) = v(Bt − 1). Therefore
e(Bt) > e(Bt−1). In this case we also have |Kt

r,s ∩Cc
1| = 0 and hence kt = kt−1. Hence the

proof is complete when lt = lt−1.

Case III

lt < lt−1.
Let m = lt−1 − lt + 1. Kt

r,s shares at least one edge with edge with the components
C1, C2, . . . , Cm, and it does not share any edge with the other components. Note that
m > 2. Therefore

e(Bt) > e(Bt−1) + rs− 1−
m∑
i=1

|{edges shared with Ci}|.

Let P(m) denote the set of all subsets of {1, 2, . . . ,m} and for S ∈P(m) define

aS = |{v ∈ Kt
r,s : v ∈ Cj ⇔ j ∈ S}|.

Here aS counts the number of nodes of Kt
r,s that are in Cj for j ∈ S, and are not in

any other component. Let a = |Kt
r,s ∩ {C1 ∪ . . . ∪ Cm}|, and b = number of vertices in

Kt
r,s \ {C1 ∪ . . . ∪ Cm} which are not new. Here v(Bt) = v(Bt−1) + r + s − a − b. Since

Kt
r,s merges the components {C1 ∪ . . . ∪ Cm} we have if S = {j ∈ [m] : v ∈ Cj} then

ct(v) = ct−1(v)− |S|+ 1. Therefore kt 6 kt−1 + b− c where c =
∑

S∈P(m) aS (|S| − 1).
Now we have

e(Bt) > e(Bt−1) + rs− 1−
m∑
i=1

|{edges shared with Ci}|

>

(
rs− 2

r + s− 2

)
(v(Bt−1) + kt−1 − lt−1(r + s))) + lt−1(rs− 1)

+ rs− 1−
m∑
i=1

|{edges shared with Ci}|

Plugging in the estimates we get

e(Bt) >

(
rs− 2

r + s− 2

)
(v(Bt) + kt − lt(r + s))) + lt(rs− 1)

+

(
rs− 2

r + s− 2

)
(a+ c− 2m) +m−

m∑
i=1

|{edges shared with Ci}|.

Therefore we will be done if we show(
rs− 2

r + s− 2

)
(a+ c− 2m) +m >

m∑
i=1

|{edges shared with Ci}|.

the electronic journal of combinatorics 29(1) (2022), #P1.46 12



Now let us note that a =
∑

S∈P(m) aS, and hence a + c =
∑

S∈P(m) aS|S|. Therefore we
will have to prove

m∑
i=1

|{edges shared with Ci}| 6
(

rs− 2

r + s− 2

) ∑
S∈P(m)

aS|S| − 2m

+m (7)

Note that |Kt
r,s ∩ Cj| =

∑
{S∈P(m):S3j} aS, and consequently we have the following

simple but important identity

m∑
j=1

|Kt
r,s ∩ Ci| =

m∑
i=1

∑
{S∈P(m):S3i}

aS =
∑

S∈P(m)

aS|S|.

Now the inequality (7) becomes equivalent to the following

m∑
i=1

|{edges shared with Ci}| 6
(

rs− 2

r + s− 2

)( m∑
i=1

|Kt
r,s ∩ Ci| − 2m

)
+m

Next step is to turn it into an optimization problem. Let Kt
r,s∩Ci consists of Pi vertices

from the r-subset and Qi vertices from the s-subset of Kt
r,s for i = 1, 2, . . . ,m. We will

be done if we prove the following for Pi > 1, Qi > 1, and
∑m

i=1 Pi 6 r,
∑m

i=1Qi 6 s.

m∑
i=1

PiQi 6

(
rs− 2

r + s− 2

)( m∑
i=1

(Pi +Qi)− 2m

)
+m,

Lemma 11 gives that this is true with an additional constraint
∑m

i=1(Pi +Qi) 6 r+ s− 1.
The only case remains when

∑m
i=1(Pi +Qi) = r + s. In this case left side of the equation

is at most rs−m To see this,
We have

∑m
i=1 Pi = r,

∑m
i=1Qi = s, and using Cauchy-Schwarz (

∑m
i=1 PiQi)

2 6∑m
i=1 P

2
i

∑m
i=1Q

2
i . Also

∑m
i=1 PiQi will be maximized if Pi = CQi and therefore C = r/s.

Hence the maximum value is

m∑
i=1

PiQi =
r

s

m∑
i=1

Q2
i =

r

s

(
(
m∑
i=1

Qi)
2 −

m∑
i=1

m∑
j=1,j 6=i

QiQj

)
6
r

s

(
s2 −

m∑
i=1

m∑
j=1,j 6=i

Qj

)

=
r

s

(
s2 −

m∑
i=1

(s−Qi)

)
=
r

s

(
s2 −ms+ s

)
= rs− rm+ r.

Now rs−rm+r 6 rs−m iff m > r/r − 1. Which is trivially true since m > 2. Therefore
the right side is(

rs− 2

r + s− 2

)
(r + s− 2m) +m = rs− 2 + (2− 2m)

(
rs− 2

r + s− 2

)
+m

> rs− 2 + (2− 2m) +m = rs−m,

and the proof therefore is complete.
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Let us prove the following technical Lemma that we have used in the proof of Lemma
9.

Lemma 11. Let m > 2 and 3 6 s 6 r, Pi > 1, Qi > 1, and
∑m

i=1 Pi 6 r,
∑m

i=1Qi 6 s,∑m
i=1(Pi +Qi) 6 r + s− 1, then

m∑
i=1

PiQi 6

(
rs− 2

r + s− 2

)( m∑
i=1

(Pi +Qi)− 2m

)
+m,

Proof of Lemma 11. We will use induction on m. For m = 2, we need to show

P1Q1 + P2Q2 6
rs− 2

r + s− 2
(P1 +Q1 + P2 +Q2 − 4) + 2.

If we fix any 3 of (P1, Q1, P2, Q2) then it becomes linear in the remaining variables.
Therefore it is sufficient to verify this for the endpoints: (1, 1, r − 1, 1), (1, 1, 1, s − 1),
(1, 1, 1, 1), (r − 1, 1, 1, s− 2), (r − 2, 1, 1, s− 1), (r − 1, s− 2, 1, 1), (r − 2, s− 1, 1, 1).

It trivially holds for (1, 1, 1, 1). For (1, 1, 1, s − 1), (1, 1, r − 1, 1), it is easy using the
fact that for r, s > 3, rs−2

r+s−2 > 1.For (1, 1, r − 1, s − 2), (using r, s > 3, and 2x2 − 7x is
increasing for x > 7/4 )(

rs− 2

r + s− 2

)
(r + s− 1− 4) + 2− 1− (r − 1)(s− 2) =

2r2 − 7r + s2 − 5s+ 12

r + s− 2

>
3(s− 2)2

(r + s− 2)
> 0.

For (r − 2, s− 1, 1, 1) we again use r, s > 3, and x2 − 5x is increasing for x > 5/2,(
rs− 2

r + s− 2

)
(r + s− 1− 4) + 2− 1− (r − 1)(s− 2) =

2s2 − 7s+ r2 − 5r + 12

r + s− 2

>
3(s− 2)2

(r + s− 2)
> 0.

Finally for both the cases (r − 1, 1, 1, s− 2), and (r − 2, 1, 1, s− 1) we need to verify the
same inequalities and since rs−2

r+s−2 > 1 we immediately have(
rs− 2

r + s− 2

)
(r + s− 1− 4) + 2− (r − 1 + s− 2) = (r + s− 5)

(
rs− 2

r + s− 2
− 1

)
> 0.

Hence the lemma is proved for m = 2. Now assume that the lemma holds for m− 1.
Then

m∑
i=1

PiQi 6

(
rs− 2

r + s− 2

)(m−1∑
i=1

(Pi +Qi)− 2(m− 1)

)
+m− 1 + PmQm

=

(
rs− 2

r + s− 2

)( m∑
i=1

(Pi +Qi)− 2m

)

+m+ (2− Pm −Qm)

(
rs− 2

r + s− 2

)
− 1 + PmQm.
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Since m > 2,
∑m

i=1 Pi 6 r, and Pi > 1, we have Pm 6 r−
∑m−1

i=1 Pi 6 r−m+1 6 r−1 and
similarly Qm 6 s−1. To finish the proof we will show for 1 6 Pm 6 r−1, 1 6 Qm 6 s−1,

(2− Pm −Qm)

(
rs− 2

r + s− 2

)
− 1 + PmQm 6 0.

Again it is sufficient to check for the endpoints (1, 1), (1, s − 1), (r − 1, 1), (r − 1, s − 1).
For (1, 1) it is trivial. For (1, s − 1), and (r − 1, 1), we only need rs−2

r+s−2 > 1. Finally for
(r − 1, s− 1)

(4− r − s)
(

rs− 2

r + s− 2

)
− 1 + (r − 1)(s− 1) =

−(r − 2)2 − (s− 2)2

r + s− 2
6 0,

completing the proof.

3 Upper bound for Kr,s percolation

For the upper bound we directly appeal to the Proposition 3 from [2]. Let us recall the
definition of balanced graph before we state the proposition.

Definition 12. A graph H is called balanced if e(H) > 2v(H)− 2, and

e(F )− 1

v(F )− 2
6 λ(H) :=

e(H)− 2

v(H)− 2
(8)

for every proper subgraph F ⊂ H with v(F ) > 3.

We are now ready to state the proposition that we are going to use to obtain an upper
bound.

Proposition 13. If H is a balanced graph then

pc(n,H) 6 C

(
log n

log log n

)2/λ(H)

n−1/λ(H) (9)

for some constant C = C(H) > 0.

The following Lemma establishes the upper bound by verifying that Kr,s is a balanced
graph as long as r is not much larger than s.

Lemma 14. For r > s, Kr,s is a balanced graph for r > 4, s > 3, and r 6 (s− 2)2 + s.

Proof of Lemma 14. The first task is to verify that rs > 2(r + s) − 2. To check this
observe that for r = 4, and s = 3 it holds, and rs − 2(r + s) + 2 is increasing in both r
and s as long as r, s > 2. Next we verify (8). It is easy to see that rs−1

r+s−1 and rs−1
r+s−2 are

increasing function of both r and s. Therefore to verify (8) it is enough to verify for the
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endpoints, that is rs−2
r+s−2 > r(s−1)−1

r+s−1−2 and rs−2
r+s−2 > (r−1)s−1

r−1+s−2 . The first one is true since r > s,
indeed

rs− 2

r + s− 2
>

(r − 1)s− 1

r − 1 + s− 2
⇔ (r − 2)2 + r − s > 0.

The second one is true by our assumption

rs− 2

r + s− 2
>

(r − 1)s− 1

r − 1 + s− 2
⇔ (s− 2)2 + s− r > 0.

4 Proof of the general lower bound (Proposition 3)

In this section we obtain a lower bound for pc(n,Kr,s) in the unbalanced case. To see
this note that for a graph G on n vertices if we have 〈G〉Kr,s

= Kn, then we also have

〈G〉Kr′,s′
= Kn for any r′ 6 r, and s′ 6 s. Therefore

P(〈Gp〉Kr′,s′
6= Kn) 6 P(〈Gp〉Kr,s

6= Kn)

Now pick r′(6 r) and s′(6 s) such that r′ 6 (s′ − 2)2 + s′. Then P(〈Gp〉Kr′,s′
6= Kn)→ 1

as n → ∞ if epn1/λ(r′,s′)(log n)r′s′ 6 λ(r′, s′)2 (by Lemma 10). Therefore pc(n,Kr,s) >
λ(r′, s′)2(e log n)−1n−1/λ(r

′,s′). Using this and taking the supremum over all such r′, s′ we
get the lower bound

(e log n)−1 sup
r′6r,s′6s,r′6(s′−2)2+s′

λ(r′, s′)
2
n−1/λ(r

′,s′).

Finally since x2n−1/x is increasing in x for x > 0, we obtain the following supremum is
equal to

(e log n)−1λ((s− 2)2 + s, s)
2
n−1/λ((s−2)

2+s,s),

completing the proof.
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