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Abstract

In this work we discuss a parameter σ on weighted k-element multisets of [n] =
{1, . . . , n}. The sums of weighted k-multisets are related to k-subsets, k-multisets,
as well as special instances of truncated interpolated multiple zeta values. We study
properties of this parameter using symbolic combinatorics. We (re)derive and extend
certain identities for ζtn({m}k). Moreover, we introduce random variables on the k-
element multisets and derive their distributions, as well as limit laws for k or n
tending to infinity.

Mathematics Subject Classifications: 60C05, 11M32

1 Introduction

The multiple zeta values are defined as

ζ(i1, . . . , ik) =
∑

`1>···>`k>1

1

`i11 · · · `
ik
k

,

with admissible indices (i1, . . . , ik) satisfying i1 > 2, ij > 1 for 2 6 j 6 k, see Hoffman [12]
or Zagier [39]. Their truncated counterpart, sometimes called multiple harmonic sum, is
given by

ζn(i1, . . . , ik) =
∑

n>`1>···>`k>1

1

`i11 · · · `
ik
k

.

We refer to i1 + · · ·+ ik as the weight of this multiple zeta value, and k as its depth. For
a comprehensive overview as well as a great many pointers to the literature we refer to
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the survey of Zudilin [40]. An important variant of the (truncated) multiple zeta values
are the so-called multiple zeta star values, where equality is allowed:

ζ?(i1, . . . , ik) =
∑

`1>···>`k>1

1

`i11 · · · `
ik
k

,

their truncated counterpart ζ?n(i1, . . . , ik) is defined analogous. On the combinatorial side,
it is well known that two special cases, namely the series ζn({1}k) and ζ?n({1}k) occur
in a multitude of different places. See for example [28] and the references therein for
different representation of the two series. The value ζn({1}k) is closely related to the
Stirling numbers of the first kind, and ζ?n({1}k) is related to alternating binomial sums.
Here and throughout this work {m}k means m repeated k times. For non-truncated series
ζ and ζ?, Yamamoto [38] introduced a generalization of both versions called interpolated
multiple zeta values. Noting that,

ζ?(i1, . . . , ik) =
∑

◦=“,”or “+”

ζ(i1 ◦ i2 · · · ◦ ik),

let the parameter σ denote the number of plus in the expression i1 ◦ i2 · · · ◦ ik. Yamamoto
defines

ζt(i1, . . . , ik) =
∑

◦=“,”or “+”

tσζ(i1 ◦ i2 · · · ◦ ik). (1)

Thus, the series ζt(i1, . . . , ik) interpolates between multiple zeta values, case t = 0, and
multiple zeta star values, case t = 1. It turned out that the interpolated series satisfies
many identities generalizing or unifying earlier result for multiple zeta and zeta star
values, see for example Yamamoto [38], Hoffman and Ihara [16] or Hoffman [13, 15]. In
particular, a so-called quasi-shuffle product [13, 15, 16, 38], sometimes also called stuffle
product or harmonic shuffle product, can be defined for the interpolated zeta values.
Hoffman and Ihara used an algebra framework, which leads amongst others to expressions
for interpolated multiple zeta values ζt({m}k) in terms of Bell polynomials and ordinary
single argument zeta values, m > 1. We discuss and (re)derive in this work the results for
ζtn({m}k) and ζt({m}k) using symbolic combinatorics. Moreover, we relate and extend
certain multiple harmonic sums identities [33, 34] to ζtn({m}k).

We study in particular the interpolated truncated multiple zeta values: we are inter-
ested in the truncated series

ζtn({1}k) =
∑

◦=“,”or “+”

tσζn(1 ◦ 1 ◦ · · · ◦ 1︸ ︷︷ ︸
k

) (2)

and their properties. Note that ζtn({1}k) interpolates between ζn({1}k) and ζ?n({1}k),
t = 0 and t = 1, respectively.

On the other hand, classical combinatorial problems are the enumeration of k-element
multisets, short k-multisets, of [n] = {1, . . . , n}, leading to the multiset coefficients,(
n+k−1

k

)
and the enumeration of k-element sets, short k-subsets, of [n] = {1, . . . , n} leading

to the binomial coefficients,
(
n
k

)
.
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The goal of this work is to unify these two topics, namely interpolated (truncated) mul-
tiple zeta values and the enumeration of k-subsets and k-multisets. We study k-multisets
of [n] and introduce a weighted enumeration of k-multisets of [n] in terms of a given weight
sequence a = (aj)j∈N. Our weighted enumeration also takes into account an additional
parameter σ = σn,k. It is defined similarly to Yamamoto [38]: σ counts the number of
equalities in the nested sum representation, corresponding to the number of plus signs
in (1) or (2). The weighted enumeration also has an algebraic interpretation, connecting
elementary symmetric functions ek and complete symmetric functions hk; moreover power
sum pks also appear in an alternative representation.

In the next section we introduce our weighted enumeration of k-multisets, given an
arbitrary sequence (aj)j∈N of positive reals, aj > 0. Closely related ideas have been con-
sidered by Vignat and Takhare [37], who considered (non-truncated) generalized multiple
zeta values and infinity products, with (aj)j∈N given by the zeros of certain special func-
tions. Moreover, Bachmann very briefly discussed related ideas at the end of his article [1].
Also related are the partition zeta functions introduced by Schneider [35].

We study two aspects of the weighted enumerations: first, its relation to k-sets and k-
multisets and to the interpolated (truncated) multiple zeta function, leading to our main
result in Theorems 13, and second, the probabilistic aspects of σ. While the algebraic and
number theoretic aspects of interpolated multiple zeta values have been studied in the
literature, no studies so far have been conducted on its stochastic properties concerning
structures of large size and its distribution, to the best of the author’s knowledge. Ques-
tions such as ”what is the expected value of the parameter σ” or ”what is the limit law
of σ” have not been considered before.

Introducing suitably defined random variables Sn,k, we study the distribution of σ,
as well as limit laws for k or n tending to infinity. In particular, we show that the
parameter σ in k-multisets follows a hypergeometric distribution and derive Poisson and
Gaussian limit laws. For ζ?n({1}k) we show that also different limit laws occur. In a
later section we introduce refinements of the parameter σ an also discuss related random
variables. It turns out that the random variables Sn,k, its refinements and its limit laws
are closely related to many quantities studied earlier in combinatorial probability theory:
maxima in hypercubes [2, 22], unsuccessfull search in binary search tree [6], descendants
in increasing trees [24], edge-weighted increasing trees [25, 29], distances in increasing
trees [5, 6], leaf-isolation procedures in random trees [26], as well as asymptotics of the
Poisson distribution [6, 21].

Throughout this work use the notation Hn = ζn(1) for the nth harmonic number,

H
(j)
n = ζn(j) for the nth generalized harmonic number of order j. We denote with
N (0, 1) a standard normal distributed random variable, with Poisson(λ) a Poisson dis-
tributed random variable with parameter λ, and with Hypergeo(N,K, n) a hypergeomet-
ric distributed random variable with parameters N,K, n. For the reader’s convenience
a few basic facts about the probability distributions, appearing later in our analysis,
are collected in the appendix of this work. We denote with xk the kth falling factorial,
xk = x(x− 1) . . . (x− (k− 1)), k ∈ N, with x0 = 1. Furthermore, we use the abbreviation
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Ex for the evaluation operator at x = 1. Moreover, we denote by X
(d)
= Y the equality in

distribution of the random variables X and Y , and by Xn
(d)−→ X convergence in distri-

bution of the sequence of random variables Xn to a random variable X. We denote with
P(k) the set of ordered partitions of the integer k, often also called compositions of the
integer k, and L(p) the length of a partition p, defined as the number of its summands.
E.g., for k = 3 we have PO(3) = {(1, 1, 1), (2, 1), (1, 2), (3)} and

PO(4) = {(1, 1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 3), (3, 1), (4)}.

Concerning length of partitions, we have L((1, 1, 1, 1)) = 4 and L((4)) = 1.

2 Interpolated weighted Multisets and parameter sigma

2.1 Parameter sigma

We consider k-multisets of [n] = {1, . . . , n}. Strictly speaking, we do not directly consider
multisets. Instead, we induce an increasing order on the distinct elements in the multisets
and consider the ordered sequences. For example, the unordered multiset {1, 1, 4, 2, 2, 6, 2}
corresponds to the increasing sequence (1, 1, 2, 2, 2, 4, 6). Let Mn,k denote the set

Mn,k = {~̀ ∈ Nk : 1 6 `k 6 . . . 6 `2 6 `1 6 n}, (3)

such that each ~̀ corresponds to a k-multiset of [n]. In a slight abuse of notation, we denote

with |~̀| = k the length of ~̀, in other words the cardinality of the corresponding multiset.
The cardinality of Mn,k is given by the multiset coefficients, counting the number of
k-multisets of [n]:

|Mn,k| =
n∑

`1=1

`1∑
`2=1

· · ·
`k−1∑
`k=1

1 =

(
n+ k − 1

k

)
.

Closely related is the set

Rn,k = {~̀ ∈ Nk : 1 6 `k < · · · < `2 < `1 6 n}, (4)

whose cardinality is given by binomial coefficients, counting the number of k-sets of [n]:

|Rn,k| =
n∑

`1=1

`1−1∑
`2=1

· · ·
`k−1−1∑
`k=1

1 =

(
n

k

)
.

In the following we introduce the parameter σ = σn,k for elements ~̀ ∈Mn,k.

Definition 1. Let ~̀ ∈ Mn,k (3). Then σ = σn,k(~̀) is defined as the number of elements

of ~̀ equal to the preceding one in ~̀, or in other words

σ(~̀) = σ(`1, . . . , `k) = |{1 6 j 6 k − 1: `j = `j+1}|.
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Example 2. Given ~̀ = (1, 1, 2, 2, 2, 4, 6) ∈ Mn,7 then σ(~̀) = 3. Given ~̀ = (5, 5, 5, 5) ∈
Mn,3 then σ(~̀) = 3.

Example 3. The parameter σ relatesMn,k and Rn,k, as defined in (3), (4), respectively:

Rn,k = {~̀ ∈Mn,k : σ(~̀) = 0}.

Next we define multiplicative weights for ~̀ ∈Mn,k and the weighted enumerations of
Mn,k (3).

Definition 4 (Interpolated weighted multiset sums). Given an the weight sequence a =

(aj)j∈N of positive real numbers aj. Then, the weight w(~̀) = w(~̀,a) of ~̀= (`1, . . . , `k) ∈
Mn,k is defined in terms of a as w(~̀) =

∏k
j=1 a`j and θn;k(t) = θn;k(t;a) is defined as

θn;k(t) =
∑

~̀∈Mn,k

w(~̀)tσ(~̀) =
∑

n>`1>···>`k>1

a`1a`2 . . . a`kt
σ(~̀). (5)

Note that we use the convention θn;0(t) = 1 in the boundary case k = 0.

Remark 5. The construction is also well defined for

M∞,k = {~̀ ∈ Nk : 1 6 `k 6 . . . 6 `2 6 `1 <∞}, (6)

as long as the weight sequence a = (aj)j∈N is chosen in such a way that θ∞;k(t) =∑
~̀∈M∞,k

w(~̀)tσ(~̀) converges. This construction is very closely related to the generalized

multiple zeta values of Vignat and Wakhare [37].

Remark 6 (Interpolated complete symmetric polynomials). Regarding the weight sequence
a = (aj)j∈N as variables, the values θn;k(t) can also be interpreted in an algebraic way.
This is no surprise, due to the well known relationship between the multiple zeta values
and quasi-symmetric functions [13, 15, 16, 37, 39]. They relate complete elementary
symmetric polynomials hk and elementary symmetric polynomials ek: θn;k(t) = θn;k(t;a)
at t = 0 or t = 1 is given by

θn;k(0;a) = ek(a1, . . . , an) =
∑

n>`1>···>`k>1

a`1a`2 . . . a`k ,

and
θn;k(1;a) = hk(a1, . . . , an) =

∑
n>`1>···>`k>1

a`1a`2 . . . a`k .

We will see later that the power sums pk on n variables,

pk(a1, . . . , an) = An(k) =
n∑

m=1

akm, (7)

also appear in an alternative representation of θn;k(t).
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Example 7 (Interpolated k-sets and multisets). Given the weight sequence a = (1)j∈N
we obtain

θn;k(t) =
∑

n>`1>···>`k>1

tσ(~̀),

interpolating between k-sets and multisets of [n]. The special values θn;k(0) and θn;k(1)
enumerate k-sets (4) and multisets (3) of [n]:

θn;k(0) = |Rn,k| =
(
n

k

)
, θn;k(1) = |Mn,k| =

(
n+ k − 1

k

)
.

Example 8. Given the weight sequence a = (j)j∈N we obtain

θn;k(t) =
∑

n>`1>···>`k>1

`1 · · · `k · tσ(~̀).

The special values are given in terms of the Stirling numbers of the first and second
kind [10]:

θn;k(0) =

[
n+ 1

n+ 1− k

]
= n! · ζn({1}n+k), θn;k(1) =

{
n+ k

n

}
.

Example 9 (Interpolated truncated multiple zeta values). Given the weight sequence
a = ( 1

jm
)j∈N, m > 0 we obtain a special instance of the truncated interpolated multiple

zeta values,

θn;k(t) = ζtn({m}k) =
∑

n>`1>···>`k>1

tσ(~̀)

`m1 · · · `mk
,

such that θn;k(0) = ζn({m}k) and θn;k(1) = ζ?n({m}k).

2.2 Ordered partitions and Interpolated multiple zeta values

Let ~̀ ∈ Mn,k (3). We can associate an ordered partition p ∈ PO(k) to ~̀ as follows:
there exist integers 1 6 s 6 k and n > j1 > j2 > · · · > js > 1 with multiplicities
r1, . . . , rs ∈ N with

∑s
i=1 ri = k such that ~̀ = ~j = (jrss , . . . , j

r1
1 ). Here, we use that

shorthand notation jrii for ji appearing exactly ri times. We refer to the ordered partition
p = p(~j) = (r1, . . . , rs) ∈ PO(k) as the shape of ~j. The shape, as a map, is a surjection
from Mn,k to PO(k). Note that

σ(~j) =
s∑
i=1

(ri − 1) = k − s = k − L(p).

We may write

θn;k(t) =
∑

~̀∈Mn,k

a`1 · · · · · a`ktσ(~̀) =
∑

p∈PO(k)

∑
~̀∈Mn,k

shape(~̀)=p

a`1 · · · · · a`ktσ(~̀)
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Thus, for a = ( 1
jm

)j∈N we get

θn;k(t) =
∑

p∈PO(k)

∑
~j∈Mn,k

shape(~j)=(r1,...,rs)=p

1

jm·r11

· · · · · 1

jm·rss

tσ(~j)

=
∑

p∈PO(k)

∑
n>j1>j2>···>js>1

shape(~j)=(r1,...,rs)=p

1

jm·r11

· · · · · 1

jm·rss

tσ(~j)

=
∑

p∈PO(k)

ζn(m · r1, . . . ,m · rs)tk−s =
∑

p∈PO(k)

ζn(m · p)tk−L(p).

3 Generating functions and Bell polynomials

We use symbolic combinatorics to obtain the generating function

Θn(z, t) =
∑
k>0

θn;k(t)z
k.

This leads then to several expressions for θn;k(t), collected in our main result, Theorem 13,
generalizing several results in the literature [3, 4, 16, 33, 28]. To the best of the author’s
knowledge, our general results have not appeared before in literature, although related
ideas have been developed earlier or in parallel, as mentioned in the introduction. Let
Mn denote all multisets of [n], Mn =

⋃∞
k=1Mn,k, with Mn,k as stated in (3). In order

to gain more insight into θn;k(t) we use symbolic combinatorics and study the generating
function

Θn(z, t) =
∑
~̀∈Mn

w(~̀)tσ(~̀)z|
~̀| =

∑
k>0

θn;k(t)z
k

=
∑
k>0

zk
∑

n>`1>···>`k>1

a`1a`2 . . . a`kt
σ(~̀).

Theorem 10 (Generating functions and power sums). The generating function Θn(z, t)
is given by

Θn(z, t) =
n∏

m=1

(
1 +

amz

1− amzt

)
, (8)

as well as

Θn(z, t) = exp
( ∞∑
j=1

zj

j
An(j)

(
tj − (t− 1)j

))
, (9)

with An(j) as in (7). Moreover, assume that t 6= 0 and that the a1, . . . , an > 0 are all
distinct. Then,

Θn(z, t) =
(t− 1)n

tn
+ (−1)n

n∑
j=1

(∏n
m=1

(
1−t
ajt

+ 1
am

)∏n
`=1
`6=j

( 1
aj
− 1

a`
)

)
· 1

zt− 1
ak

. (10)
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Remark 11. Very similar results also hold for n → ∞ and infinite multisets M∞,k (6).
In special cases it is possible to derive the complete generating function T (x, z, t) =∑

n>0 Θn(z, t)xn =
∑

n>0

∑
k>0 θn;k(t)x

nzk. For (aj) = (1)j∈N we get

T (x, z, t) =
1− zt

(1− zt)(1− x)− zx
.

For (aj) = (1
j
) we get an ordinary hypergeometric function

T (x, z, t) = 2F1(1, 1− z(t− 1), 1− zt;x).

Similar, but more involved, partial fraction decompositions exist when the am are not all
distinct.

Before we state the proof of Theorem 10 we collect a result on partial fraction decom-
position.

Lemma 12 (Partial fraction decomposition). Let pn(z) and qn(z) denote monic polyno-
mials of degree n with distinct zeros given by −αk and βk, 1 6 k 6 n, respectively, such
that {−α1, . . . ,−αn}∩{β1, . . . , βn} = ∅. The rational function pn(z)/qn(z) has the partial
fraction decomposition

pn(z)

qn(z)
=

n∏
k=1

z + αk
z − βk

= 1 +
n∑
j=1

(
pn(βj)∏n

`=1
` 6=j

(βj − β`)

)
· 1

z − βj
.

Proof of Theorem 10. First, we derive (8) using symbolic constructions from analytic
combinatorics, see Flajolet and Sedgewick [8]. Let Zm = {m} be a combinatorial class
of size one, 1 6 m 6 n. Due to the sequence construction we can describe the class of
multisets Bm of Zm as follows

Bm = SEQ(Zm) = {ε}+ Zm + Zm ×Zm + Zm ×Zm ×Zm + . . . ;

Thus, the generating function

Bm(z) =
∑
β∈Bm

w(β)tσ(β)z|β| = 1 +
∑

ε6=β∈Bm

w(β)t|β|−1z|β|

is given by

Bm(z) = 1 +
∞∑
j=1

tj−1ajmz
j = 1 +

amz

1− amtz
.

All multisets Mn =
⋃∞
k=1Mn,k of [n] can be combinatorially described by

Mn = B1 × B2 × · · · × Bn.

Hence, the generating function Θn(z, t) is given by

Θn(z, t) =
n∏

m=1

Bm(z) =
n∏

m=1

(
1 +

amz

1− amtz

)
.
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Next, we use the exp− log representation to obtain the expression (9) for Θn(z, t).

Θn(z, t) =
n∏

m=1

(
1 +

amz

1− amzt

)
=

n∏
m=1

exp
(

log
(
1 +

amz

1− amzt
))

= exp
( n∑
m=1

log
(
1− amz(t− 1)

)
−

n∑
m=1

log
(
1− amzt

))
.

We use (7) and expand the two logarithm functions:

Θn(z, t) = exp
( n∑
m=1

∞∑
j=1

ajmz
j

j

(
tj − (t− 1)j

))
= exp

( ∞∑
j=1

zj

j
An(j)

(
tj − (t− 1)j

))
.

Finally, we turn to (10). We assume that t 6= 0 and that the a1, . . . , an > 0 are all distinct.
Then, we can write Θn(z, t) as follows:

Θn(z, t) =
(t− 1)n

tn
·

n∏
m=1

z + 1
am(1−t)

z − 1
amt

.

Consequently, applying partial fraction decomposition (see Lemma 12) with αk = 1
ak(1−t)

and βk = 1
akt

gives

Θn(z, t) =
(t− 1)n

tn

(
1 +

n∑
j=1

(∏n
m=1

(
1
ajt

+ 1
am(1−t)

)∏n
`=1
`6=j

( 1
ajt
− 1

a`t
)

)
· 1

z − 1
ajt

)
.

Multiplying the sum with (t−1)n

tn
directly gives the stated expression (10).

As a consequence of the theorem before, we obtain alternative expressions for the
values θn;k(t) (5). We use the complete Bell polynomials Bn(x1, . . . , xn), which are de-
fined via the identity

exp
(∑
`>1

z`

`!
x`

)
=
∑
j>0

Bj(x1, . . . , xj)

j!
zj. (11)

Theorem 13. The values θn;k(t) (5) can be expressed in various ways:

• in terms of values θn;k(0) and θn;k(1):

θn;k(t) =
k∑
j=0

tjθn,j(1) · (1− t)k−jθn,k−j(0). (12)

• Bell polynomials and the power sums An(j) (7):

θn;k(t) =
1

k!
Bk(0!An(1)

(
t1 − (t− 1)1

)
, . . . , (k − 1)!An(k)

(
tk − (t− 1)k

)
)

=
∑

m1+2m2+···=k

1

m1!m2! . . .

(An(1)(t1 − (t− 1)1)

1

)m1
(An(2)(t2 − (t− 1)2)

2

)m2

. . . .

(13)

the electronic journal of combinatorics 29(1) (2022), #P1.48 9



• Determinantal expression: let αn(j; t) = An(j)(tj − (t− 1)j), it holds

θn;k(t) =
1

k!

∣∣∣∣∣∣∣∣∣∣∣

αn(1; t) −1 0 . . . 0
αn(2; t) αn(1; t) −2 . . . 0

. . . . . . . . .
... . . .

αn(k − 1; t) αn(k − 2; t) αn(k − 3; t) . . . −(k − 1)
αn(k; t) αn(k − 1; t) αn(k − 2; t) . . . αn(1; t)

∣∣∣∣∣∣∣∣∣∣∣
. (14)

• Combinatorial sum: assume that t 6= 0 and that the values a1, . . . , an > 0 are all
distinct. Then,

θn;k(t) = (−1)n−1

n∑
j=1

(∏n
m=1

(
1−t
ajt

+ 1
am

)∏n
`=1
`6=j

( 1
aj
− 1

a`
)

)
· ak+1

j tk. (15)

Example 14. For t = 1
2

we solely sum over the odd indices m1,m3, . . . , since only
m2 = m4 = · · · = 0 lead to a positive contribution. We obtain

θn;k

(1

2

)
=

1

k!
Bk

(
0!An(1) · 2 · 1

21
, 0, 2!An(1) · 2 · 1

23
. . . , (k − 1)!An(k) ·

( 1

2k
− (−1

2
)k
))

=
∑

m1+3m3+···=k

2m1+m3+...

21·m1+3·m3+...m1!m3! . . .

(An(1)

1

)m1
(An(3)

3

)m3

. . . .

A direct byproduct of this result is an expression for ζtn({mk}). We state the formula
for ζtn({1k}), generalizing the already known results for t = 0, ζn({1}k) and t = 1, ζ?n({1}k);
see for example [28] and the references therein.

Example 15. Given the weight sequence a = (1
j
)j∈N we obtain for θn;k(t) = ζtn({1}k) the

results

ζtn({1}k) =
k∑
j=0

tjζ?n({1}j) · (1− t)k−jζn({1}k−j).

as well as

ζtn({1}k) =
1

k!
Bk(0!H(1)

n

(
t1 − (t− 1)1

)
, . . . , (k − 1)!H(k)

n

(
tk − (t− 1)k

)
)

=
∑

m1+2m2+···=k

1

m1!m2! . . .

(H(1)
n (t1 − (t− 1)1)

1

)m1
(H(2)

n (t2 − (t− 1)2)

2

)m2

. . . .

Moreover, we obtain for t 6= 0 the identity

ζtn({1}k) = tk ·
n∑
j=1

(
n+ 1−t

t
· j

n

)(
n

j

)
(−1)j−1

jk
.
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For t = 1
2

we obtain as a special case a truncated analog of the formula of Hoffman and
Ihara [16, eqn. (41)]:

ζ
1
2
n ({1}k) =

1

2kk!
(Bk(0! · 2H(1)

n , 0, 2! · 2H(3)
n , 0, . . . )

=
∑

m1+3m3+5m5···=k

2m1+m3+m5+...

2km1!m3! . . .

(H(1)
n

1

)m1
(H(3)

n

3

)m3

. . . .

The combinatorial sum extends a result of Prodinger for t = 1
2

[33] (see also [32, 34, 36]),
originally stated solely in terms of the combinatorial sum and the expression in terms of
Bell polynomials (11):

ζ
1
2
n ({1}k) =

1

2k

n∑
j=1

(
n+ j

j

)(
n

j

)
(−1)j−1 1

jk
.

Finally, we mention that for t = 1 the combinatorial sum turns into a well-known and
often rediscovered formula [3, 4, 9, 28]:

ζ?n({1}k) =
n∑
j=1

(
n

j

)
(−1)j−1 1

jk
.

Proof of Theorem 13. First, we turn to the expression (12) for θn,k(t). From Theorem 10
and (8) we obtain

Θn(z, t) =
n∏

m=1

(
1 +

amz

1− amzt

)
=

n∏
m=1

1 + amz(1− t)
1− amzt

=

(∑
j>0

(zt)jθn,j(1)

)
·
(∑

j>0

zj(1− t)jθn,j(0)

)
.

Thus, extraction of coefficients gives the stated result:

θn,k(t) = [zk]

(∑
j>0

(zt)jθn,j(1)

)
·
(∑

j>0

zj(1− t)jθn,j(0)

)

=
k∑
j=0

tjθn,j(1) · (1− t)k−jθn,k−j(0).

For (13) we use (9) of Theorem 10. The definition of the Bell polynomials (11) and
extraction of coefficients, θn,k(t) = [zk]Θn(z, t), then directly gives the stated results, with
the Bell polynomials (11) evaluated at x` = (`− 1)!An(`)

(
t` − (t− 1)`

)
. Following Hoff-

man [14], the determinant (14) can be obtained using the theory of symmetric functions.
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Let x1, x2, . . . denote variables of degree one. As in Remark 6 let hk denote the complete
symmetric functions and pk the power sums. There exists polynomials Qk such that

hk = Qk(p1, . . . , pk).

Let H(z) and P (z) denote the generating functions of hk and pk:

H(z) =
∞∑
k=0

hkz
k =

∏
i>1

1

1− zxi
, P (z) =

∞∑
k=1

pkz
k =

∑
i>1

xi
1− zxi

.

Then,

H(z) = exp

(∫ z

0

P (v)dv

)
= exp

(
−
∑
i>1

ln(1− zxi)

)
= exp

(∑
j>1

zj · pj
j

)
.

This gives the Bell polynomial type expression for the Qk:

Qk(p1, . . . , pk) =
∑

m1+2m2+···=k

1

m1!m2! . . .

(p1

1

)m1
(p2

2

)m2

. . . .

On the other hand, MacDonald [30] gives the determinant

Qk(y1, . . . , yk) =
1

k!

∣∣∣∣∣∣∣∣∣∣∣

y1 −1 0 . . . 0
y2 y1 −2 . . . 0

. . . . . . . . .
... . . .

yk−1 yk−2 yk−3 . . . −(k − 1)
yk yk−1 yk−2 . . . y1

∣∣∣∣∣∣∣∣∣∣∣
,

which proves the stated result. Finally, the combinatorial expression (15) is readily ob-
tained by extraction of coefficients from the partial fraction decomposition (10) of Θn(z, t)
in Theorem 10.

4 Further generalizations

4.1 Refinements of the parameter σ

Definition 16 (Refined parameter sigma). Let ~̀ ∈ Mn,k (3). Then σ(i)(~̀) = σ
(i)
n,k(

~̀) is

defined as the number equal signs in ~̀ stemming from numbers i ∈ N. Then, as functions
acting from Mn,k to N0:

σ =
n∑
i=1

σ(i).

Example 17. Given ~̀ = (1, 1, 2, 2, 2, 4, 6) ∈ Mn,7 then σ(1) = 1, σ(2) = 2 and σ(i) = 0,
i > 2.
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In the following we use the vector notation ~t~σ(~̀) = t
σ1(~̀)
1 . . . t

σn(~̀)
n .

Definition 18 (Multi-interpolated weighted multiset sums). Given a = (aj)j∈N, let
θn;k(~t) = θn;k(~t;a) be defined as

θn;k(~t) =
∑

~̀∈Mn,k

w(~̀)~t~σ(~̀) :=
∑

n>`1>···>`k>1

a`1a`2 . . . a`kt
σ(1)(~̀)
1 . . . tσ

(n)(~̀)
n .

The generating function Θn(z,~t) =
∑

k>0 θn;k(~t)z
k =

∑
`∈Mn

w(~̀)~t~σ(~t)z|
~̀| can readily

be obtained using the symbolic methods.

Theorem 19 (Generating functions and power sums). The generating function Θn(z,~t)
is given by

Θn(z,~t) =
n∏

m=1

(
1 +

amz

1− amztm

)
= exp

( ∞∑
j=1

zj

j

n∑
m=1

ajm
(
tjm − (tm − 1)j

))
.

Moreover, assume that for 1 6 m 6 n we have am · tm > 0 and distinct. Then,

Θn(z,~t) =
n∏

m=1

tm − 1

tm
+ (−1)n

n∑
j=1

(∏n
m=1

(
1−tm
ajtj

+ 1
am

)∏n
`=1
`6=j

( t`
ajtj
− 1

a`

)
· 1

ztj − 1
aj

)
.

The proof of the theorem is very similar to the proof of Theorem 13 and therefore
omitted.

Example 20 (Even-odd interpolated truncated multiple zeta functions). For even indices
m let tm = tE, whereas for odd indices let tm = tO. Then,

θn;k(tE, tO) =
∑

~̀∈Mn,k

w(~̀)tσ
E(~̀)tσ

O(~̀)

The generating function is

Θn(z, tE, tO) = exp
( ∞∑
j=1

zj

j

[(
tjO − (tO − 1)j

) n∑
m=1
m odd

ajm +
(
tjE − (tE − 1)j

) n∑
m=1
m even

ajm

])
.

We consider for example am = 1
m

, and assume n = 2N . Then,

n∑
m=1
meven

ajm =
1

2j

N∑
m=1

1

mj
=

1

2j
H

(j)
N

and
n∑

m=1
m odd

ajm =
N∑
m=1

1

(2m− 1)j
= H

(j)
2N −

1

2j
H

(j)
N .

Thus,

Θ2N(z, tE, tO) = exp
( ∞∑
j=1

zj

j

[(
tjO− (tO− 1)j

)
(H

(j)
2N −

1

2j
H

(j)
N ) +

(
tjE − (tE − 1)j

) 1

2j
H

(j)
N

])
.
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4.2 Sums of multisets: partitions

Yet another direction would be to introduce a new parameter p = pn,k on Mn,k (3),

with p the one-norm of ~̀. It measures the numbers p(~̀) the partitions ~̀ ∈ Mn,k induce:

p(~̀) = ‖~̀‖1 =
∑k

i=1 `k. Then,

θn;k(t, q) =
∑

~̀∈Mn,k

w(~̀)qp(
~̀)tσ(~̀) =

∑
n>`1>···>`k>1

a`1a`2 . . . a`kq
∑k

i=1 `ktσ(~̀).

Note that this can alternatively be achieved by a change of weights am 7→ am · qm. Then,
the generating function Θn(z, t, q) =

∑
k>0 θn;k(t, q) satisfies

Θn(z, t, q) =
n∏

m=1

(
1 +

amq
mz

1− amqmzt

)
.

It is then possible to study the distribution of p, or the joint distribution of p and σ on
Mn,k.

Example 21 (Partitions - distributions). Setting t = 1 we the generating function

Θn(z, 1, q) =
∑

~̀∈Mn
w(~̀)qp(

~̀)z|
~̀| simplifies to

∏n
m=1

(
1

1−amqmz

)
.

Example 22 (Partitions and infinite multisets). Moreover, setting am = z = t = 1 and
letting n → ∞ in Θn(z, t, q) leads us directly to the generating function of the partition
function:

Θ∞(1, 1, q) =
∑
~̀∈M∞

qp(
~̀) =

∞∏
m=1

1

1− qm
.

5 Distributions and limit laws

Before, we treated the variable t as a parameter, mainly between zero and one, interpo-
lating between weighted k-subsets and k-multisets or truncated multiple zeta values and
their star counterparts. Here, we are interested in the distribution of σ and introduce a
random variable Sn,k. In the following we denote with [zj] the extraction of coefficients
operator, [zj]f(x) = [zj]

∑∞
k=0 fk · zk = fj, j ∈ N0.

Definition 23 (Random variable Sn,k). Given the weight sequence a = (aj)j∈N with
positive real weights aj. The random variable Sn,k counts the number of equal signs in

an element ~̀ ∈Mn,k (3). Its probability mass function is defined in terms of θn;k(t) (5):

P{Sn,k = j} :=
[tj]θn;k(t)

θn;k(1)
, 0 6 j 6 k − 1;

equivalently, the probability generating function E(tSn,k) is given by

E(tSn,k) =
θn;k(t)

θn;k(1)
.
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Note the the actual support of Sn,k is the range max{0, k − n} 6 j 6 k − 1, since for
k > n at most n elements out of a total of k can be unequal.

The expected value

E(Sn,k) =

∑
n>`1>···>`k>1 σ(~̀)w(~̀)∑
n>`1>···>`k>1w(~̀)

can be obtained by extraction of coefficients:

E(Sn,k) =
θ′n;k(1)

θn;k(1)
=

[zk]Et
∂
∂t

Θn(z, t)

θn;k(1)
. (16)

Here Et denotes the evaluation operator at t = 1. The variance is determined via the
second factorial moment E(S2

n,k),

V(Sn,k) = E(S2
n,k) + E(Sn,k)− E(Sn,k)

2, (17)

with

E(S2
n,k) =

θ′′n;k(1)

θn;k(1)
=

[zk]Et
∂2

∂t2
Θn(z, t)

θn;k(1)
.

5.1 Interpolated k-element multisets

We choose the weight sequence a = (1)j∈N and obtain the distribution of Sn,k

Theorem 24 (Distribution - k-multisets). The probability mass function of the random
variable Sn,k in random k multisets of [n], is given by

P{Sn,k = j} =

(
n
k−j

)(
k−1
j

)(
n+k−1

k

) , 0 6 j 6 k − 1.

Thus, Sn,k
(d)
= Hypergeo(n + k − 1, k − 1, k) follows a hypergeometric distribution. Its

expected value and variance are given by

E(Sn,k) =
k(k − 1)

n+ k − 1
, V(Sn,k) =

k(k − 1)n(n− 1)

(n+ k − 1)2(n+ k − 2)
.

Moreover, the factorial moments are given by

E(Ssn,k) =
ks · (k − 1)s

(n+ k − 1)s
, s > 1.

Proof. The probability mass function is readily obtained by extraction of coefficients.
First, we note that

Θn(z, t) =
n∏

m=1

(
1 +

z

1− zt

)
=
(1− zt+ z

1− zt

)n
.
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Then,

P{Sn,k = j} =
[tj]θn,k(t)

θn,k(1)
=

[zktj]Θn,k(z, t)(
n+k−1

k

) =
1(

n+k−1
k

) [zk−j(zt)j]
(1− zt+ z

1− zt

)n
=

(
n
k−j

)(
n+k−1

k

) [(zt)j]
1

(1− zt)k−j
=

(
n
k−j

)
·
(
k−1
j

)(
n+k−1

k

) .

Alternatively, observe that j equal signs are distributed amongst k − 1 places, leading to(
k−1
j

)
, and that the remaining k − j sums give a factor

∑
n>`1>···>`k−j>1

1 = |Rn,k−j| =
(

n

k − j

)
.

The expected value, the variance and the factorial moments of the hypergeometric distri-
bution are well known, or directly obtained using the Vandermonde identity.

Theorem 25 (Limit laws - k-multisets). The limit laws for max{n, k} → ∞ are given
by three different distributions:

1. Degenerate case: for n → ∞ and k = o(
√
n): Sn,k → 0; similarly, for k → ∞ and

n = o(
√
k): Sn,k − k + n→ 0.

2. Poisson range: for k →∞ and n ∼ c
√
k: Sn,k− k+n→ Poisson(c2); similarly, for

k, n→∞ and k ∼ c ·
√
n with c > 0: Sn,k → Poisson(c2).

3. Normal range: for k, n→∞ and
√
n� k � n2:

Sn,k − E(Sn,k)√
V(Sn,k)

→ N (0, 1).

Proof. First we note that the expected value of the random variable Sn,k, counting the
number of equal signs in random k multisets of [n], has the following behavior:

E(Sn,k) ∼


k2

n
, n→∞ and k = o(

√
n),

c, k, n→∞ and k ∼ c ·
√
n,

k − n+ c2, k →∞ and n ∼ c
√
k,

k − n+ n2

k
, k →∞ and n = o(

√
k),

The Poisson limit law for k ∼ c ·
√
n follows directly from the asymptotic expansion of

the factorial moments:

E(Ssn,k) =
ks · (k − 1)s

(n+ k − 1)s
∼ (c2)s.

Thus, by the method of moments the (factorial) moments Sn,k converge to the (factorial)
moments of a Poisson distributed random variable with parameter λ = c2. In the range

the electronic journal of combinatorics 29(1) (2022), #P1.48 16



k →∞ and n ∼ c
√
k the Poisson limit law is indicated by the asymptotic expansions of

E(Sn,k) and V(Sn,k). We obtain elementarily

P{Sn,k = k − n+ `} =

(
n
n−`

)(
k−1
k−n+`

)(
n+k−1

k

) .

By our assumption n ∼ c
√
k so

(
n
n−`

)
∼ (nc)`/`!. We use the asymptotic expansion of the

factorials,

n! ∼ nn

en

√
2πn

as well as a precise expansion of the terms

(n+ k − 1)n+k−1, (k − n+ `)k−n+`,

using the exp− log representation. This gives the desired result

P{Sn,k = k − n+ `} ∼ n2`(c2)`

`!k`
e−c

2

, ` > 0.

The normal limit laws for the hypergeometric distribution are classical and well known,
see Nicholson [31] or Feller [7] and the discussion in the introduction; the proofs are
omitted.

5.2 Interpolated truncated multiple zeta values

We consider the weight sequence a = (1/j)j∈N and the distribution of Sn,k, defined by the
probability generating function

E(tSn,k) =
θn,k(t)

θn,k(1)
=
ζtn({1}k)
ζ?n({1}k)

.

For example, the boundary values are given by

P{Sn,k = 0} =
ζn({1}k)
ζ?n({1}k)

, P{Sn,k = k − 1} =
H

(k)
n

ζ?n({1}k)
.

We derive the expected value

E(Sn,k) =
1

ζ?n({1}k)
∑

n>`1>···>`k>1

σ(~̀)

`m1 · · · `mk

using (16).

Theorem 26. The expected value is given by the following exact expression:

E(Sn,k) =
1

ζ?n({1}k)

k−2∑
`=0

H(`+2)
n ζ?n({1}k−`−2).
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Note that the variance can be obtained using the second factorial moment (17), but
it is more involved. The limit laws for Sn,k are technically much more involved compared
to the case a = (1)j∈N. The cases of either n fixed and k →∞ or n→∞ and k fixed are
not too difficult to analyze. In contrast, for both n, k →∞ the asymptotic expansions of
the denominator ζ?n({1}k) require a more precise analytic combinatorial analysis; see the
works of Hwang [18, 20, 22] and Bai et al. [2]. The case of n and k → ∞ indicates that
a normal limit should appear. Note that the limit law, given by the sum of independent
Bernoulli random variables, also appeared in the analysis of algorithms literature; amongst
others, in the the unsuccessful search in binary search trees [6], the degree of the root
in increasing trees [6], distances in increasing trees [5, 6] or edge-weights in increasing
trees [25, 29].

Proposition 27. For k →∞ and n fixed,

k − Sn,k
(d)−→ Dn = B1 ⊕B2 ⊕ · · · ⊕Bn,

where Bj = Be(1
j
) denote independent Bernoulli-distributed random variables; hence the

probability mass function of D is given by

P{D = `} =
ζn−1({1}`−1)

n
, 1 6 ` 6 n.

For n→∞ and k fixed the random variable Sn,k degenerates: Sn,k
(d)−→ 0.

Remark 28. The growth range of the degenerate case can be extended and made more
precise using the results of Hwang [19] for ζn({1}k), stated in terms of the unsigned Stirling
numbers of the first kind, and his results [22] (see also Bai et al. [2]) for ζ?n({1}k), related
to the expected number of maxima in hypercubes.

Remark 29. It is well known that the sum of the limit law of Dn, normalized and central-
ized, for n→∞ is asymptotically normal:

Dn − log n√
log n

(d)−→ N (0, 1).

See for example Dobrow and Smythe [6] for an approach using Poisson approximation or
Hwang [21]. Thus, we expect that the random variable Sn,k is asymptotically normal at
least in a certain range of n, k both tending to infinity. We observe that k−Sn,k ∼ Dn, or
Sn,k ∼ k −Dn, where Dn is concentrated around log n. Thus k − log n should govern the
behavior of Sn,k and also its total mass ζ?n({1}k). Note further, that even the asymptotic
expansions of ζ?n({1}k) for k, n → ∞ derived earlier by Hwang [18, 20, 22] are more
involved.

Proof. (Expected value). Our starting point is the generating function

Θn(z, t) =
n∏

m=1

(
1 +

z
m

1− zt
m

)
.
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Differentiating with respect to t gives

∂

∂t
Θn(z, t) = Θn(z, t) ·

n∑
j=1

z2

j2(1− zt
j

)2
· 1

1 +
z
j

1− zt
j

= Θn(z, t) ·
n∑
j=1

z2

j2(1− zt
j

)(1− zt
j

+ z
j
)
.

Evaluation at t = 1 gives

Et
∂

∂t
Θn(z, t) = Θn(z, 1) ·

n∑
j=1

z2

j2(1− z
j
)
.

Extraction of coefficients leads to the stated result:

E(Sn,k) =
[zk]Et

∂
∂t

Θn(z, t)

[zk]Θn(z, 1)
=

∑n
j=1[zk−2]Θn(z,1)

1− z
j

ζ?n({1}k)
,

noting that [z`]Θn(z, 1) = ζ?n({1}`).

Proof. (Limit laws). For n→∞ and k fixed we study

P{Sn,k = 0} =
ζn({1}k)
ζ?n({1}k)

.

We use the representation given in Corollary 15 for t = 0 and t = 1. We require the
asymptotic expansion of the harmonic numbers Hn for n→∞:

Hn = log n+ γ +
1

2n
− 1

12n2
+O

( 1

n4

)
.

Asymptotically, the summand m1 = k dominates and gives for both t = 0 and t = 1 the

same value 1
k!

logkn. Consequently, P{Sn,k = 0} ∼ logk n

logk n
= 1 for large n.

For k → ∞ and n fixed we use singularity analysis [9] and derive the asymptotic
equivalent of P{Sn,k = k − j}, 1 6 j 6 n. We have

P{Sn,k = k − j} =
1

ζ?n({1}k)
[zktk−j]Θn(z, t) =

1

ζ?n({1}k)
[zktk−j]

n∏
m=1

(
1 +

z
m

1− zt
m

)
.

Since zktk−j = uk−jzj for u = zt we get

P{Sn,k = k − j} =
1

ζ?n({1}k)
[zjuk−j]

n∏
m=1

(
1 +

z
m

1− u
m

)
.
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The product has a dominant singularity is at u = 1 and can be written as

n∏
m=1

(
1 +

z
m

1− u
m

)
=

1

1− u
·Rn(u, z),

with Rn(u, z) analytic inside a circle of radius 2. Consequently, for k →∞

[uk−j]
n∏

m=1

(
1 +

z
m

1− u
m

)
∼ Rn(1, z) = n ·

n∏
m=1

(
1 +

z − 1

m

)
.

It remains to derive the asymptotic expansion of ζ?n({1}k). We can use again singularity
analysis as before; alternatively, the well known [9, 2, 28] binomial sum representation
directly gives us the desired result:

ζ?n({1}k) =
n∑
`=1

(
n

`

)
(−1)`+1

`k
∼ n.

Finally, combining our results gives

P{Sn,k = k − j} ∼ [zj]
n∏

m=1

(
1 +

t− 1

m

)
, 1 6 j 6 n.

The product is exactly the probability generating function of the independent Bernoulli
random variables with success probability 1

m
. Extraction of coefficients directly leads to

the stated result, using the representation of ζn({1}k) given in [28].

5.3 Interpolated truncated multiple zeta values - only twos

We consider the weight sequence a = (1/j2)j∈N and the distribution of Sn,k, defined by
the probability generating function

E(tSn,k) =
θn,k(t)

θn,k(1)
=
ζtn({2}k)
ζ?n({2}k)

.

For example, the boundary values are given by

P{Sn,k = 0} =
ζn({2}k)
ζ?n({2}k)

, P{Sn,k = k − 1} =
H

(2k)
n

ζ?n({2}k)
.

We obtain the following limit laws.

Theorem 30. For max{n, k} → ∞ the limit laws for Sn,k are given by three different
distributions:

1. For n→∞ and k fixed: Sn,k
(d)−→ S∞,k, with

P{S∞,k = j} =
1

ζ?({2}k)
·
∑

p∈PO(k)
L(p)=k−j

ζ(2 · p), 0 6 j 6 k − 1.
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2. For k →∞ and n fixed: k − Sn,k
(d)−→ Dn. The random variable Dn is given by the

sum of independent Bernoulli random variables:

Dn = B1 ⊕B2 ⊕ · · · ⊕Bn,

where Bj = Be( 1
j2

) denote independent Bernoulli-distributed random variables. More-

over, E(Ds
n) = s!ζn−1({2}s), s > 1.

3. For k, n→∞: k − Sn,k
(d)−→ D;

D = B1 ⊕B2 ⊕ · · · =
∞⊕
m=1

Bm.

Here Bj = Be( 1
j2

), j > 1, denote independent Bernoulli-distributed random vari-

ables. Moreover, E(Ds) = s!ζ({2}s), s > 1.

Remark 31. The random variable D is exactly the limit law of the number of cuts in a
recursive tree to isolate a leaf [26]; modified weight sequences lead to other families of
increasing trees. Moreover, Dn is closely related the the distribution of the number of
cuts in a tree of size n.

Proof. Similar to (2) we have,

ζtn({2}k) =
∑

◦=“,”or “+”

tσζn(2 ◦ 2 ◦ · · · ◦ 2︸ ︷︷ ︸
k

) =
∑

p∈PO(k)

tk−L(p)ζn(2 · p).

By taking the limit n→∞, k being fixed, and extraction of coefficients we directly obtain
the stated result.

For k →∞ and arbitrary n we use singularity analysis [9] and derive the asymptotic
equivalent of P{Sn,k = k − j}, 1 6 j. We have

P{Sn,k = k − j} =
1

ζ?n({2}k)
[zktk−j]Θn(z, t) =

1

ζ?n({2}k)
[zktk−j]

n∏
m=1

(
1 +

z
m2

1− zt
m2

)
.

Setting as before u = zt, we get

P{Sn,k = k − j} =
1

ζ?n({2}k)
[zjuk−j]

n∏
m=1

(
1 +

z
m2

1− u
m2

)
.

The product has a dominant singularity is at u = 1 and can be written as

n∏
m=1

(
1 +

z
m2

1− u
m2

)
=

1

1− u
·Rn(u, z),
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with Rn(u, z) analytic inside a circle of radius 2. Consequently, for k →∞

[uk−j]
n∏

m=1

(
1 +

z
m2

1− u
m2

)
∼ Rn(1, z) =

2n

n+ 1
·

n∏
m=1

(
1 +

z − 1

m2

)
.

For the asymptotic expansion of ζ?n({2}k) we can use again singularity analysis and obtain
ζ?n({2}k) ∼ 2n

n+1
. Finally, combining our results gives

P{Sn,k = k − j} ∼ [zj]
n∏

m=1

(
1 +

t− 1

m2

)
, 1 6 j 6 n.

The product is exactly the probability generating function of n independent Bernoulli
random variables each with success probability 1

m2 for 1 6 m 6 n.

5.4 Refined decomposition of sigma, random vectors and marginals

Similarly to the refinements of the parameter σ into σ(i), 1 6 i 6 n, the random variable
Sn,k can be decomposed into S

(i)
n,k: Sn,k =

∑n
i=1 S

(i)
n,k. Given the weight sequence a =

(aj)j∈N, the joint distribution of the random vector Sn,k = (S
(1)
n,k, . . . , S

(n)
n,k) is determined

by

P{Sn,k = ~j} = [~t
~j]
θn;k(~t)

θn;k(~1)
.

Another possibility is to distinguish only between odd and even indices, such that
Sn,k = S

(O)
n,k + S

(E)
n,k , and to study the bivariate probability generating function

E(t
S
(O)
n,k

O t
S
(E)
n,k

E ) =
θn;k(tO, tE)

θn;k(1, 1)
.

For truncated zeta values with the weight sequence a = (1)j∈N, the random vector
Sn,k has the probability generating function

E(tSn,k) =
1(

n+k−1
k

) [zk]
n∏

m=1

(
1 +

z

1− ztm

)
.

Example 32 (Truncated zeta values - random vector). For truncated zeta values with
weight sequence a = (1/j)j∈N, the random vector Sn,k has the probability generating
function

E(tSn,k) =
1

ζ?({1}k)
[zk]

n∏
m=1

(
1 +

z
m

1− ztm
m

)
.

Example 33 (Truncated zeta values - marginals). In contrast to the multiset case, the

marginals S
(i)
n,k are not exchangeable anymore. The probability generating functions are

given by

E(tS
(i)
n,k) =

1

ζ?({1}k)
[zk](1− z

i
)
(

1 +
z
i

1− zt
i

)
·

n∏
m=1

( 1

1− z
m

)
.
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It is expected that the marginals are asymptotically independent, at least in some growth
range of k and n.

Theorem 34 (Marginals - interpolated multisets). The marginals S
(i)
n,k are identically

distributed, but not independent; the sequence Sn,k is exchangeable. The probability mass
function is given by

P{S(i)
n,k = j} =


(n−2+k

k )+(n−3+k
k )

(n+k−1
k )

, j = 0,

(n−3+k−j
k−j−1 )

(n+k−1
k )

, 1 6 j 6 k − 1.

The factorial moments, s > 1, are given by

E(Ssn,k) = s! · ks+1

(n+ k − 1)(n+ s− 1)s
.

Theorem 35. We obtain the following limit laws, depending on the growth of k and n:

• for k → ∞ and n fixed the normalized random variable
Sn,k

k
converges to a Beta-

distributed random variable
Sn,k

k

(d)−→ B(1, n− 1).

• for k/n → ∞ and k, n → ∞ the normalized random variable n
k
Sn,k converges to a

standard exponentially distributed random variable, n
k
Sn,k

(d)−→ Exp(1).

• for k/n→ c > 0 and k, n →∞ the random variable Sn,k converges to a (modified)
geometric distribution G:

P{G = j} =
cj+1

(1 + c)j+2
, j > 1 ,P{G = 0} =

1

1 + c
+

c

(1 + c)2
.

• for k/n→ 0 and n→∞ the random variable Sn,k degenerates, Sn,k
(d)−→ 0.

Remark 36. The random variable S
(i)
n,k is closely related to the number of descendants

Dn+k,k of node labelled k in a recursive trees of size n + k [24]. Thus, S
(i)
n,k can be

described in terms of a Polya-urn model and the asymptotics for k →∞ and n fixed can
be refined to almost sure convergence; moreover a classical result is available in terms of
a martingale tail sum [11].

Proof of Theorem 34. Let 1 6 i 6 n. The probability generating function of the marginal
distribution S

(i)
n,k is given by

E(tS
(i)
n,k) =

1(
n+k−1

k

) [zk]
1

(1− z)n−1
·
(

1 +
z

1− zt

)
.
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By the structure of the probability generating function, the random variables are identi-
cally distributed and the random vector is exchangable. Thus, we can directly obtain the
expected value from E(Sn,k).

E(S
(i)
n,k) =

1

n
E(Sn,k) =

k(k − 1)

n(n+ k − 1)
.

Additionally, the probability mass function is obtained readily by extraction of coefficients.
All factorial moments, s > 1, can be obtained in a straightforward way:

E(Ssn,k) = [zk]Et
∂s

∂ts
E(tS

(i)
n,k) =

s!(
n+k−1

k

) [zk]
zs+1

(1− z)n+s

=
s!
(
n+k−2
k−s−1

)(
n+k−1

k

) = s! · ks+1

(n+ k − 1)(n+ s− 1)s
.

Proof of Theorem 35. We use the method of moments and derive asymptotic expansions
of the factorial moments. For n fixed and k →∞ we get

E(Ssn,k) = s! · ks+1

(n+ k − 1)(n+ s− 1)s
∼ s!

(n+ s− 1)s
· ks.

Consequently, the power moments of Sn,k/k are asymptotically given by s!
(n+s−1)s

, which
proves the Beta limiting distributions.

For n→∞ we observe that

E(Ssn,k) ∼ s! · λsn,k ·
k

n+ k
, with λn,k =

k

n
.

Thus, the factorial moments are almost of mixed Poisson type [27] with standard expo-
nential mixing distribution; the additional factor k

n+k
can be explained by the definition

of the parameter σ, which influences the discrete limit case. This directly leads to the
stated limit laws using Lemma 2 of [27]. Alternatively, the discrete limit for k/n→ c can
be directly obtained as follows:

P{S(i)
n,k = j} =

(
n−3+k−j
k−j−1

)(
n+k−1

k

) =
kj+1 · (n− 1)

(n+ k − 1)j+2 ∼
cj+1

(1 + c)j+2
, j > 1.

The remaining case j = 0 is treated in a similar way. For k/n→ 0 we observe that

P{S(i)
n,k = 0} =

n− 1

n+ k − 1
+

k(n− 1)

(n+ k − 1)2
∼ 1.

5.5 Sum theorem for interpolated multiple zeta values

Yamamoto [38] established, amongst many other things, the sum theorem for interpolated
multiple zeta values:∑

k1>2,ki>1∑n
`=1 k`=k

ζt(k1, . . . , kn) = ζ(k) ·
n−1∑
j=0

(
k − 1

j

)
tj(1− t)n−1−j, (18)
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with k > n. Note that the case t = 1 gives the sum theorem for multiple zeta star values∑
k1>2,ki>1∑n

`=1 k`=k

ζ?(k1, . . . , kn) = ζ(k) ·
(
k − 1

n− 1

)
,

whereas t = 0 gives the ordinary sum theorem.

Using (18), we can study the distribution of the parameter σ on sums of interpolated
multiple zeta values with the same depth n and weight k. Let Sn,k denote the random
variable with probability generating function

E(tSn,k) =
ζ(k) ·

∑n−1
j=0

(
k−1
j

)
tj(1− t)n−1−j

ζ(k) ·
(
k−1
n−1

) =

∑n−1
j=0

(
k−1
j

)
tj(1− t)n−1−j(
k−1
n−1

) .

Let Bj,n(t) denote the Bernstein polynomials

Bj,n(t) =

(
n

j

)
tj(1− t)n−j, 0 6 j 6 n.

We obtain the following result.

Theorem 37. The probability generating function E(tSn,k) is given by a Bernstein form
of degree n− 1 with Bezier coefficients βj = 1

(k−1−j
k−n )

E(tSn,k) =
n−1∑
j=0

βj ·Bj,n−1(t).

Let Rn,k = n− Sn,k. The probability mass function P{Rn,k = i}, is given by

P{Rn,k = i} =

(
k−1−i
j−2

)(
k−1
j−1

) , 1 6 i 6 n,

setting with n = k − j + 1 and 2 6 j 6 k. Consequently, Rn,k, with n = k − j + 1, has
the same distribution as the random variable Dn,j, counting the number of descendants of

node j in a random recursive tree of size n: Rn,k
(d)
= Dn,j.

As a byproduct of our identification of Rn,k, we get the following limit laws from [24].

Corollary 38. The limiting distribution behaviour of the random variable Rn,k = n−Sn,k,
with n = k−j+1 and 2 6 j 6 k, is, for k →∞ and depending on the growth of j = j(k),
characterized as follows.

• for j fixed,
Rn,k

k

(d)−→ β(1, j − 1)

• for small j: j → ∞ such that j = o(k): the normalized random variable j
n
Rn,k is

asymptotically Exponential distributed,
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• for j: j → ∞ such that j ∼ ρk, with 0 < ρ < 1. The shifted random variable

Rn,k − 1 is asymptotically negative binomial-distributed, Rn,k − 1
(d)−→ NegBin(1, ρ),

• for large j: j → ∞ such that ` := n − j = o(n): Rn,k → 1, i.e. limk→∞ P{Rn,k =
1} = 1.

Proof. We note that by definition, the summands are weighted Bernstein polynomials:

E(tSn,k) =
1(
k−1
n−1

) n−1∑
j=0

(
k−1
j

)(
n−1
j

)Bj,n−1(t).

Simplification gives the stated expression for the Bezier coefficients. The probability mass
function is obtained by extraction of coefficients:

P{Sn,k = i} = [ti]E(tSn,k) =
1(
k−1
n−1

) i∑
j=0

(
k − 1

j

)
[ti−j](1− t)n−1−j

=
1(
k−1
n−1

) i∑
j=0

(
k − 1

j

)(
n− 1− j
i− j

)
(−1)i−j.

Using an identity for binomial coefficients [10] then readily gives

P{Sn,k = i} =

(
k−n+i−1
k−n−1

)(
k−1
n−1

) , 0 6 i 6 n− 1,

and thus we get the corresponding result for Rn,k = n − Sn,k. We observe that for
n = k − j + 1 the probability mass functions and thus the distribution of Rn,k and the
random variable Dn,j (case c2 = 0) in [24] coincide and thus we can directly transfer the
limit laws for Dn,j.

6 Summary and Outlook

We introduced a parameter σ on weighted k-element multisets and studied properties
of it using symbolic combinatorics. This allows to prove several relations for truncated
interpolated multiple zeta values ζtn({m}k) ( as well as reproving identities for truncated
multiple zeta values ζt({m}k)). Introducing refined enumeration leads to new refinements
of previous identities. Interpreting the parameter σ as a random variable Sn,k leads to
several different limit laws, depending on the considered weight sequences and the growth
of n and k. Interestingly, the limits laws are closely related to a great many results in
combinatorial probability and analytic combinatorics.

It is of interest to complete the analysis of Sn,k in the case a = (1/j); we will report on
this elsewhere. Similar to the random variable Sn,k, defined in terms of the parameter σn,k,
one may also study the distribution of the parameter p = pn,k or the joint distribution of
p and σ. Moreover, it is certainly of interest to study the distribution of Sn,k for other
interesting sequences, compare with Vignat and Wakhare [37] or Hoffman and Mező [17].
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7 Appendix: Auxiliary results about probability distributions

A beta-distributed random variable Z
(d)
= β(α, β) with parameters α, β > 0 has a prob-

ability density function given by f(x) = 1
B(α,β)

xα−1(1 − x)β−1, where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

denotes the Beta-function. The (power) moments of Z are given by

E(Zs) =

∏s−1
j=0(α + j)∏s−1

j=0(α + β + j)
=

(α + s− 1)s

(α + β + s− 1)s
, s > 1.

The beta-distribution is uniquely determined by the sequence of its moments. In this

work we will discuss a beta-distributed random variable Z
(d)
= β(1, n− 1), with moments

given by E(Zs) = s!
(n+s−1)s

, for s > 1.

An exponentially distributed random variable Z
(d)
= Exp(1) with parameter one has

density f(x) = e−x, x > 0 and power moments E(Zs) = s!.

A Bernoulli distributed random variable B
(d)
= Be(p) with parameter p ∈ [0, 1] has

probability mass function determined by P{B = 1} = p, P{B = 0} = 1 − p. The sum
Zn =

⊕n
j=1Bj of n independent Bernoulli distributed random variables Bj = Be(pj) has

probability generating function

E(vZn) =
n∏
j=1

E(vBj) =
n∏
j=1

(
1 + (v − 1)pj

)
.

The factorial moments E(Zs
n) of Zn are given by

E(Zs
n) = Ev

∂s

∂vs
E(vZn) = s! ·

∑
n>`1>···>`s>1

p`1p`2 . . . p`s .
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Under the assumption that the probabilities pj tend to zero fast enough, we may define
Z = Z∞ as the sum of infinitely many Bernoulli random variable: Z =

⊕∞
j=1 Bj, with

factorial moments formally given by s! times a multiple series:

E(Zs) = s! ·
∑

`1>···>`s>1

p`1p`2 . . . p`s .

A Poisson distributed random variable Z
(d)
= Poisson(λ), λ > 0, has probability mass

function and factorial moments given by

P{Z = j} =
λj

j!
· eλ, j > 0, E(Zs) = λs, s > 1.

A hypergeometric distributed random variable Z
(d)
= Hypergeo(N,K, n) with parame-

ters N,K, n has probability mass function and factorial moments given by

P{Z = j} =

(
K
j

)(
N−K
n−j

)(
N
n

) , 0 6 j 6 n E(Zs) =
Ksns

N s
, s > 1.

In particular,

E(Z) = n · K
N
, V(Z) = n · K(N −K)(N − n)

N2(N − 1)
.

Moreover, the following normal limit law can be deduced (see Nicholson [31] or Feller [7]).

Lemma 39. Let Z
(d)
= Hypergeo(N,K, n) denote a hypergeometric distributed random

variable. Under the assumption min{K,N} → ∞ and n such that E(Z),V(Z) → ∞,
the random variable Z, centered and normalized, is asymptotically standard normal dis-
tributed:

Z − E(Z)√
V(Z)

(d)−→ N (0, 1).
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