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Abstract

The maximum average degree mad(G) of a graph G is the maximum over all
subgraphs of G, of the average degree of the subgraph. In this paper, we prove that
for every G and positive integer k such that mad(G) > k there exists S ⊆ V (G)
such that mad(G − S) 6 mad(G) − k and G[S] is (k − 1)-degenerate. Moreover,
such S can be computed in polynomial time. In particular, if G contains at least
one edge then there exists an independent set I in G such that mad(G − I) 6
mad(G) − 1 and if G contains a cycle then there exists an induced forest F such
that mad(G− F ) 6 mad(G)− 2. As a side result, we also obtain a subexponential
bound on the diameter of reconfiguration graphs of generalized colourings of graphs
with bounded value of their mad.

Mathematics Subject Classifications: 05C07, 05C10, 05C15, 05C20, 05C21,
05C85

1 Introduction

The maximum average degree (abbreviated as mad) of a graph is a heavily studied notion.
Multiple results show that a lower or upper bound on mad implies the existence of a par-
ticular partition of vertices of G, e.g., [5, 12, 13, 15, 24]. Another class of results considers
edge partitions, including [2, 7, 17, 21, 22, 23]. In these directions, particular attention
has been paid to planar graphs, where, due to the inequality (mad(G)−2)(g(G)−2) < 4,
an upper bound on mad can be inferred from a lower bound on the girth.

∗This research is a part of projects that have received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme Grant Agreement
714704 (W. Nadara) and 677651 (M. Smulewicz).
†Supported by European Research Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme Grant Agreement 714704.
‡Supported by European Research Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme Grant Agreement 677651.

the electronic journal of combinatorics 29(1) (2022), #P1.49 https://doi.org/10.37236/9455

https://doi.org/10.37236/9455


A graph parameter f(G) is called partitionable [3, 25, 29] if for every undirected
simple graph G and positive real numbers a and b such that f(G) < a + b, the vertex
set V (G) can be partitioned into A and B so that f(G[A]) < a and f(G[B]) < b. It
is quite simple to prove that degeneracy [26], maximum degree [25] and treewidth [14]
are all partitionable parameters. Hendrey, Norin and Wood asked whether mad is also
partitionable as part of the open problems for Barbados workshop [1, Problem #14]. Such
a result would agree exactly with or even improve many existing results, for example, the
ones mentioned in [15, 24]. We answer this question positively for cases a = 1 and a = 2.
It is a consequence of a following theorem which is the main result of this paper.

Theorem 1. For every undirected simple graph G and a positive integer k such that
mad(G) > k there exists S ⊆ V (G) such that G[S] is (k−1)-degenerate and mad(G−S) 6
mad(G)− k. Moreover such S can be computed in polynomial time.

Up to our knowledge this is the first theorem of a kind where we are given a graph with
bounded value of its mad where we partition its vertex set into some parts so that their
values of mad are smaller, however they need not be bounded by absolute constant. This
is opposed to all results where every resulting part induces a forest or is an independent
set or has maximum degree 1, etc.

Our results can be applied as a tool for directly deriving many results for some specific
sparse graph classes, for example planar graphs with constraints on girth. It seems that
our results do not show as much expressive power as it is possible to get on such restrictive
graph classes (where arguments specifically adjusted to the researched restricted graph
classes can be used), which is a price for deriving them from a more general theorem.
However, our results can be seen as a nice way of unifying these results and there are
cases where using our results improves the state of the art.

Our results imply a positive answer for the open problem presented in [16] (Prob-
lem 2 from the final remarks), which implies a subexponential bound on the diameter
of reconfiguration graphs of (k + 2)-colourings for graphs G with maximum average de-
gree strictly less than k + 1. However, this bound has already been improved in [18] to
a polynomial bound depending on the value of mad(G) in a slightly less general setting.
Nevertheless, we are able to get a novel analogous result for reconfiguration graphs of
H-colourings, in particular for circular colourings. This line of research is motivated by
Cereceda’s conjecture [10] that states that reconfiguration graphs of (k + 2)-colourings
for k-degenerate graphs have a quadratic diameter. Its polynomial version was proved
in [8].

The rest of the paper is organized as follows. In Section 2, we introduce a few useful
notions. In Section 3, we state our main result and provide its proof. In Section 4,
we present our reconfiguration graphs results. In Section 5, we present some direct
consequences of our results and conclude this paper. In Appendix A, we present detailed
proofs deferred from Section 4.

2 Preliminaries

Theorems proved in this paper will be about simple undirected graphs, however multiple
directed graphs will show up throughout the proofs.
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An undirected edge between vertices u and v will be denoted as uv. A directed edge
from u to v will be denoted as −→uv.

If G is a graph and A is a subset of its vertices, then by G[A] we denote the subgraph of
G induced on vertices of A. The length of the shortest cycle in a graphG is called girth and
will be denoted as g(G). If G is a forest we set that g(G) =∞. The maximum degree of a
vertex in a graph is denoted ∆(G). The set of neighbours of a vertex v is denoted byNG(v)
(or N(v) if clear from the context) and the closed neighbourhood of v, that is NG(v)∪{v}
is denoted by NG[v]. For Y ⊆ V (G) we additionally denote NG[Y ] :=

⋃
v∈Y NG[v]. By G

we denote the complement of G, that is the graph on the same set of vertices, where for
u, v ∈ V (G), such that u 6= v, we have uv ∈ E(G)⇔ uv 6∈ E(G).

The maximum average degree of a given graph G is defined as follows:

mad(G) := max
H⊆G,H 6=∅

2|E(H)|
|V (H)|

,

where E(H) and V (H) are respectively the set of edges in H and the set of vertices of H.
We assume that mad of a graph with an empty vertex set is −∞.

We say that undirected graph G is k-degenerate if each of its subgraphs contains a
vertex of degree at most k. Degeneracy of a graph is the smallest value of k such that
this graph is k-degenerate.

Let us note that class of 0-degenerate graphs is exactly the same class of graphs
as graphs with mad(G) < 1, because both are just edgeless graphs. Moreover class of
1-degenerate graphs is exactly the same class of graphs as graphs with mad(G) < 2,
because both are just forests.

3 Proof of Theorem 1

In order to prove Theorem 1 we are going to investigate a flow network that allows us
to determine the value of mad in polynomial time. An example of such network can be
found in [20], however we are going to use one adjusted to our own use.

Let us define a flow network F (G, c) for given undirected graph G and any nonnegative
real number c. The network will consist of one node for each v ∈ V (G), one node for
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Figure 1: Example of graph G and flow network F (G, c) corresponding to it.
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each e ∈ E(G) denoted as ve and two special nodes s and t, respectively source and sink.
There will be three layers of directed edges in F (G, c):

• The first layer – Edges of capacity one from s to each node ve.

• The second layer – Edges of infinite capacity from each ve where e = uw ∈ E(G)
to u and to w.

• The third layer – Edges of capacity c from each v ∈ V (G) to t.

Lemma 2. For any graph G and any real number c, maximum flow between s and t in
F (G, c) is equal to |E(G)| if and only if 2c > mad(G).

Proof. By the max-flow min-cut theorem we know that maximum flow in a graph G is
equal to the minimum cut, so we are going to investigate structure of s − t cuts in this
graph. We refer to cuts as sets of edges. The set of all edges from first layer form an
inclusion-wise minimal cut of weight |E(G)|. Since edges in the second layer have infinite
capacities they surely do not belong to any minimum cut, so if maximum flow is smaller
than |E(G)| then there exists a minimum cut with some edges in third layer. Let us
fix some minimal cut C ⊆ E(F (G, c)) and let W be the nonempty subset of V (G) of

all vertices w such that
−→
wt belongs to C. Let H = G[W ]. If e 6∈ E(H) then −→sve has

to belong to C. Observe that all mentioned edges, that is
−→
wt for w ∈ W and −→sve for

e 6∈ E(H) already form an s − t cut. Its weight is c|V (H)| + |E(G)| − |E(H)|. If this
value is less than |E(G)| then we know that maximum flow in this graph is less than
|E(G)|. However, if for any H this value is not smaller than |E(G)| then we know that
maxflow in this graph is |E(G)|.

We get that maxflow in this graph is smaller than |E(G)| if and only if there exists

H ⊆ G such that c|V (H)|+|E(G)|−|E(H)| < |E(G)| ⇔ c|V (H)| < |E(H)| ⇔ c < |E(H)|
|V (H)| .

The maximum value of |E(H)|
|V (H)| equals mad(G)

2
, so we get that maxflow in F (G, c) is equal

to |E(G)| if and only if c > mad(G)
2

, as desired.

Let us note that by using Lemma 2, observing that mad(G) = a
b

for some a, b ∈ Z
and a 6 n2, b 6 n and knowing that we can compute maximum flow in polynomial time,
we can conclude that mad(G) can be computed in polynomial time.

Let us fix any graph G and denote F := F (G, mad(G)
2

). Let us define a directed graph
Gf for a given s − t flow f in F of capacity |E(G)| by directing some of edges from G
and discarding the rest. Flow f routes one unit of flow through each vuw. Node vuw has
two outgoing edges to u and to w. If f sends more than 1

2
unit of flow to w then in Gf

we put directed edge −→uw, similarly if f sends more than 1
2

unit of flow to u we put edge
−→wu. Otherwise if f sends exactly 1

2
unit to both u and w we simply discard this edge.

Lemma 3. There exists flow f of capacity |E(G)| in F such that Gf is acyclic. Moreover,
it can be determined in polynomial time.

Proof. From Lemma 2 we know that there exists at least one flow f between s and t of
capacity |E(G)|. Let us take f such that number of edges in Gf is as small as possible.
Suppose there is a cycle in Gf on vertices c1, c2, . . . , ck respectively. Denote ck+1 := c1 as
we are dealing with a cycle. Let x be the minimum amount of flow that f sends through
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some edge −−−−−−→vcici+1
ci+1 for some valid i. From definition of Gf we deduce that x > 1

2
. Let

us define f ′ by decreasing flow f on edges −−−−−−→vcici+1
ci+1 and increasing it on edges −−−−→vcici+1

ci
by x− 1

2
. The amount of flow leaving and entering each vertex remains unchanged hence

f ′ is also a flow. Moreover, f ′ still satisfies the capacity constraints. Flow f ′ for at least
one vertex vcici+1

sends exactly 1
2

unit of flow through both edges outgoing from it, so
at least one edge on the cycle is no longer present in Gf ′ and edges outside the cycle
remain unchanged when compared to Gf . This contradicts the assumption that Gf has
the smallest possible number of edges, which implies the existence of such an f .

In order to compute such f in polynomial time let us take any f of capacity |E(G)| in
F (G, mad(G)

2
) (let us remind the reader that we can determine the value of mad(G) in the

polynomial time). If Gf contains a cycle, we can detect one, determine the corresponding
value of x and adjust f in the manner described in previous paragraph to remove this
cycle. The number of edges in Gf ′ is strictly smaller than in Gf , so we will not do this
more than |E(G)| times, which gives us an algorithm performing a polynomial number of
operations. In order to omit dealing with rational numbers we can multiply all capacities
in F by 2b, where mad(G) = a

b
for some coprime integers a, b. That concludes the

description of a polynomial time algorithm determining the desired f .

Let us fix f from the above lemma. We will present an algorithm in which:

• the routine NoInEdges(Hf ) returns any vertex from directed acyclic graph Hf

which has no incoming edges (as the graph is acyclic there always exists at least
one such vertex)

• the routine KNeighborhood(H,S, k) takes as input a given graph H, a subset of
its vertices S and an integer k, and returns the set of all vertices from H outside of
S adjacent to at least k vertices from S.

Algorithm 1

function Solve(H,Hf , k)
S ← ∅
while Hf 6= ∅ do

x← NoInEdges(Hf )
S ← S ∪ {x}
Hf ← Hf − {x} −KNeighborhood(H,S, k)

return S

Theorem 4. For positive integer k such that mad(G) > k algorithm Solve(G,Gf , k)
returns a set S ⊆ V (G) such that G[S] is a (k − 1)-degenerate and that mad(G − S) 6
mad(G)− k.

Proof. First we argue that the graph induced on the set of vertices returned by the
algorithm is (k− 1)-degenerate. In each iteration the vertex x picked by the algorithm is
adjacent to at most k − 1 already picked vertices. So G[S] is (k − 1)-degenerate indeed.

To show that mad(G − S) 6 mad(G) − k we just have to find a flow f ′ in graph

F ′ := F (G − S, mad(G)
2
− k

2
) of value |E(G − S)| thanks to Lemma 2. Observe that F ′
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is a subgraph of F with capacities of edges on the third layer reduced by k
2
. The flow

f ′ has to saturate all edges from the first layer in order to have value |E(G − S)|. On
the second layer we define f ′ using f , for each edge from the second layer of F ′ flow f ′

will send exactly the same amount of flow as f on corresponding edge in F . Now we just
have to argue that the amount of flow sent by f ′ to any node between the second and
third layer in F ′ is bounded by mad(G)

2
− k

2
i.e. capacity of edge going from that node to

sink. Each such node corresponds to vertex from G − S, so let us take arbitrary vertex
u ∈ V (G − S). During execution of the algorithm vertex u has been removed from Hf

as incident to some k vertices already picked to S. Denote them x1, . . . , xk and let us
consider arbitrary xi. When the algorithm picked xi from Hf , there were no incoming
edges to xi. In particular, in Hf there was no edge −→uxi. At that time u still belonged to
Hf , so there was no edge −→uxi even in Gf . Since u and xi are adjacent in G, there was
either an edge −→xiu in Gf which means that flow f sends more than 1

2
unit of flow from

vuxi
to u in F or there was no −→xiu and −→uxi which means that flow f sends exactly 1

2
unit

of flow from vuxi
to u in F . Through node u in F flow f sends at most mad(G)

2
units of

flow and for every 1 6 i 6 k at least 1
2

unit of flow comes from vuxi
to u. Therefore flow

going through u is decreased by at least 1
2

unit per each xi in F ′ what implies that f ′

sends at most mad(G)
2
− k

2
units of flow to vertex u in F ′.

What is more, procedure Solve(G,Gf , k) can be trivially implemented in a polynomial
time. Theorem 1 directly follows from Theorem 4. As two notable special cases we
mention following corollaries:

Theorem 5. For every undirected simple graph G there exists I ⊆ V (G) such that I is
an independent set and mad(G− I) 6 mad(G)− 1. Moreover such I can be computed in
polynomial time.

Theorem 6. For every undirected simple graph G there exists F ⊆ V (G) such that
G[F ] is a forest and mad(G − F ) 6 mad(G) − 2. Moreover such F can be computed in
polynomial time.

4 Reconfiguration graphs results

The reconfiguration graph Rk(G) for a positive integer k and a graph G is the graph whose
vertex set is the set of k-colourings of G and there is an edge between two colourings if
and only if they differ by colour of exactly one vertex.

Let us recall the Cereceda’s conjecture [10].

Conjecture 7. Let k and l > k + 2 be positive integers and let G be a k-degenerate
graph on n vertices. Then Rl(G) has diameter O(n2).

As we have already mentioned, our results imply the positive answer to the last
remaining step in the outline of the proof by Eiben and Feghali [16] of the following fact:

Theorem 8. Let k > 2 and l > k+ 2 be integers and let G be a graph on n vertices such
that mad(G) < k + 1. Then Rl(G) has diameter kO(k

2√n).
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Let us remind that any graph with mad(G) < k+ 1 is k-degenerate, hence the setting
of Theorem 8 can be seen as an easier setting of Conjecture 7. The obtained bound on the
diameter is worse as well. Nonetheless, Theorem 8 seems interesting as previous proofs
regarding the connectivity of such reconfiguration graphs yield only exponential bounds.
However, this bound under a slightly less general assumption has already been improved
by Feghali [18] to the polynomial one. Nevertheless, the idea of the proof of Theorem 8
transfers over to a novel analogous result for reconfiguration graphs of colouring viewed
as homomorphism to a given graph H, which we shall present now.

For a given graph H, the H-colouring of a graph G is any homomorphism f : V (G)→
V (H), that is, a function f such that if uv ∈ E(G), then f(u)f(v) ∈ E(H). We call f(v)
the colour of v. In particular, if H is loopless and uv ∈ E(H), then it must hold that
f(u) 6= f(v). The H-reconfiguration graph of G is the graph whose vertex set consists of
all H-colourings of G and two colourings are adjacent if and only if they differ by colour
of exactly one vertex.

The main result of this section is the following theorem:

Theorem 9. Let k > 2 be a positive integer and let G = (V,E) be a graph on n vertices
with mad(G) < k+ 1 and let H be a graph such that ∆(H) 6 d and |V (H)| > (d+ 1)(k+
1)+1. Let α and β be two H-colourings of G. It is possible to get β from α by a sequence
of kO(k

2√n) recolourings.

Note that if we set H = Kl and d = 0 we get the exact statement of Theorem 8, as
regular colouring is exactly H-colouring for clique H. Moreover, to prove that fact we
mainly follow the outline of the proof by Eiben and Feghali [16] of Theorem 8. Since the
proof requires following closely proofs of all the intermediate lemmas and generalizing
them to H-colourings, we defer this proof to the Appendix.

As a motivation for such generalization, we use the notion of circular colourings. We
focus on the following description of the circular colourings [9], also known as (p, q)-
colouring [30].

Definition 10. Let a and b, where a > 2b, be positive integers. The circular clique
Ga,b has the vertex set {0, 1, . . . , a − 1} where ij is an edge when b 6 |i − j| 6 a − b.
A homomorphism φ : G → Ga,b is called a circular colouring in general, and an (a, b)-
colouring of G for the specific pair (a, b).

We remark that Ga,1 is isomorphic to Ka and so an (a, 1)-colouring is simply an
a-colouring.

Brewster and Noel [9] have proved that for a given graph G and positive integers
a, b if a

b
> 2l + 2, where l is the degeneracy of G, then the reconfiguration graph of

(a, b)-colourings of G is connected. However, the bound on its diameter that follows from
their proof is exponential. Based on our H-colourings result, we are able to deduce the
following bound on this diameter.

Corollary 11. Let k > 2 and G = (V,E) be a graph on n vertices with mad(G) < k+ 1.
Let a > 2b be positive integers. If a

b
> 2k + 2, then the (a, b)-reconfiguration graph of G

is connected and has diameter kO(k
2√n).

Proof. We use Theorem 9 for H := Ga,b. The complement of Ga,b is (2b − 2)-regular,
hence we set d := 2b− 2. If a

b
> 2k + 2, then V (H) = a > b(2k + 2) = (d + 2)(k + 1) >
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(d+ 1)(k+ 1) + 1, hence all assumptions of that theorem are satisfied and the conclusion
follows.

5 Conclusions and open problems

Our main results imply many results for some specific classes of graphs as a direct con-
sequence and here we mention a few of them.

Following folklore fact will come in handy in deriving some of the consequences:

Fact 12. For every planar graph G we have (mad(G)− 2)(g(G)− 2) < 4.

Based on Theorems 5, we are able to improve Theorem 1 from [15] and one of its
consequences.

Theorem 13 ([15]). Let M be a real number such that M < 3. Let d > 0 be an integer
and let G be a graph with mad(G) < M . If d > 2

3−M − 2, then V (G) can be partitioned
into A ] B such that G[A] is an independent set and G[B] is a forest with maximum
degree at most d.

We are able to strengthen this to the following theorem:

Theorem 14. Let M be a real number such that M < 3. Let d > 0 be an integer and let
G be a graph with mad(G) < M . If d > 2

3−M −2, then V (G) can be partitioned into A]B
such that G[A] is an independent set and G[B] is a forest whose connected components
have size at most d+ 1.

Proof. By using Theorem 5 one can partition V (G) into A ] B such that G[A] is an
independent set and mad(G[B]) < M − 1. Let us bound M − 1 from above using
assumed inequalities:

d >
2

3−M
− 2 ⇒ d+ 2 >

2

3−M
⇒ 3−M >

2

d+ 2
⇒ M − 1 6 2− 2

d+ 2
.

G[B] does not contain a cycle because mad(G[B]) < M − 1 6 2− 2
d+2

< 2. Assume that

G[B] contains a tree T on d + 2 vertices as a subgraph. Then mad(G[B]) > 2|E(T )|
|V (T )| =

2(d+1)
d+2

= 2− 2
d+2

>M − 1 > mad(G[B]). Note that if G[B] contains a component which
is a tree on at least d + 2 vertices then it contains tree on exactly d + 2 vertices as a
subgraph, hence shown contradiction finishes the proof that connected components of
G[B] are trees on at most d+ 1 vertices.

Dross et al. [15] use their theorem and Fact 12 to deduce the following corollary:

Corollary 15. For every planar graph G with g(G) > 10, the vertex set V (G) can
be partitioned into A ] B such that A is an independent set and G[B] is a forest with
maximum degree 2.

We are able to strengthen this to the following corollary:

Corollary 16. For every planar graph G with g(G) > 10, the vertex set V (G) can be
partitioned into A ] B such that A is an independent set and G[B] is a forest whose
connected components have size at most 3.
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Borodin et al. proved in [6] that the vertex set of any planar graph with g(G) > 7
admits a partition into an independent set and a set that induces graph with maximum
degree at most 4. Dross et al. proved in [15] that the vertex set of any planar graph with
g(G) > 7 admits a partition into an independent set and a set that induces forest of max
degree at most 5. In Corollary 17 we add another partition result for the class of planar
graphs with girth at least 7.

Corollary 17. For every planar graph G with g(G) > 7, the vertex set V (G) can be
partitioned into A]B such that A is an independent set and G[B] is a forest where every
connected component has at most 9 vertices.

Proof. Since g(G) > 7 we deduce that mad(G) < 1 + 9
5
, so based on Theorem 5 we

get that there exist A and B such that V (G) = A ] B, A is an independent set and
mad(G[B]) < 9

5
. It can be readily verified that class of graphs with value of their mad

smaller than 9
5

is class of graphs which are forests with connected components of size at
most 9.

Recently, independently of our work, Cranston and Yancey [13] improved Corollaries
16 and 17. Namely, they claim that every planar graph G of girth at least 9 (resp. 8, 7)
has a partition of V (G) into an independent set I and a set F such that G[F ] is a forest
with each component of order at most 3 (resp. 4, 6).

Apart from that, based on Theorem 5 and 6 and Fact 12 we are able to deduce
following corollaries:

Corollary 18. For every planar graph G, the vertex set V (G) can be partitioned into
A ]B ] C such that G[A], G[B], G[C] are forests.

Proof. Every planar graph satisfies mad(G) < 6, so using Theorem 6 we can partition
V (G) into A and D such that mad(G[A]) < 2 and mad(G[D]) < 4 and then using
Theorem 6 again we can partition D into B and C such that mad(G[B]) < 2 and
mad(G[C]) < 2. Hence G[A], G[B], G[C] are forests.

Corollary 19. For every planar graph G without triangles, the vertex set V (G) can be
partitioned into A ]B such that G[A], G[B] are forests.

Proof. Based on Fact 12 we know that if G has no triangles then g(G) > 4⇒ g(G)−2 >
2⇒ mad(G) < 4. Therefore using Theorem 6 we deduce that there exist A,B such that
V (G) = A ]B and G[A], G[B] are forests.

Corollary 20. For every planar graph G without cycles of length 3 and 4, the vertex set
V (G) can be partitioned into A ]B such that G[A] is a forest and ∆(G[B]) 6 1.

Proof. Since g(G) > 5 we deduce that mad(G) < 2+ 4
3
, so based on Theorem 6 we get that

there exist A and B such that V (G) = A ] B and mad(G[A]) < 2 and mad(G[B]) < 4
3
.

Therefore G[A] is a forest and ∆(G[B]) 6 1, because if G[B] contains a vertex with
degree > 2 then this vertex together with its two neighbours induce a graph with mad
at least 4

3
.

Corollary 21. For every planar graph G with g(G) > 6 its vertex set V (G) can be
partitioned into A ]B such that G[A] is a forest and B is an independent set.
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Proof. Since g(G) > 6 we deduce that mad(G) < 3, so based on either Theorem 6 or
Theorem 5 we get that there exist A and B such that V (G) = A]B and mad(G[A]) < 2
and mad(G[B]) < 1. Therefore G[A] is a forest and B is an independent set.

However, Corollaries 18, 19, 20 and 21 have already been proven and even improved
before. Corollary 18 was proven in [11] and later improved in [27]. An improved version
of Corollary 19 was proven in [28]. Theorem improving both Corollaries 20 and 21 was
proven in [4].

5.1 Open problem

As the main open problem in the area of partitionability of graphs with bounded mad,
we recall the following conjecture.

Conjecture 22. For every graph G and positive real numbers c1, c2 if mad(G) < c1 + c2
then there exists a partition of the vertex set V (G) = A ] B such that mad(G[A]) < c1
and mad(G[B]) < c2.

Our main result shows that this conjecture is true for c2 ∈ {1, 2}. Moreover, since for
positive k we have that k-degenerate graphs fulfill mad(G) < 2k we can deduce that for
every integer k > 2 and a graph G that satisfies mad(G) < c1 + k there exists a partition
of the vertex set V (G) = A ]B such that mad(G[A]) < c1 and mad(G[B]) < 2k − 2.
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A Proof of the bound on the diameter of reconfiguration graphs
of H-colourings of graphs with bounded maximum average
degree

The overall structure of proof of Theorem 9 consists of combining the generalization of
Lemma 2 from [16] with Theorem 5 in the same way that Lemmas 8, 9 and 10 in [19]
are combined to obtain Theorem 6 in [19]. It is the generalization of the outline of the
analogous result for standard colourings from [16].

Lemma 23. Let k, d > 0, and let G be the graph on n vertices such that mad(G) < k+1.
Let {u1, . . . , us} be the set of vertices of G of degree at least k+ 2. Let H be a graph such
that ∆(H) 6 d and |V (H)| > (d + 1)(k + 1) + 1 and let α be a H-colouring of G. Let
F be any subset of V (H) of size at most d + 1. It is possible to reconfigure α to some
H-colouring α′ of G such that α′(V (G)) ⊆ V (H) − F by using at most n2

∏s
i=1 deg(ui)

recolourings.

Let us note that the case d = 0 coincides with Lemma 1 from [16] with the slight
change in the assumption on G. The proof presented here is a generalization of its proof.

Proof. Since mad(G) < k + 1, we know that G is k-degenerate, hence we can fix its
k-degenerate ordering σ = v1, . . . , vn and without loss of generality, let ui appear before
uj in σ whenever i < j. In the following, we will describe an algorithm Recolour(h, Fh),
which given an index h ∈ [n] and the subset Fh ⊆ V (H) of forbidden colours for vh such
that |Fh| 6 d+ 1, outputs a sequence of recolourings with the following properties:

• for i < h, vi is not recoloured,

• for i > h, vi is recoloured at most
∏s

j=l deg(uj) times, where ul is the first vertex
of degree at least k + 2 with index at least h in σ

• vh ends up with a colour from V (H)−Fh (in particular, if f(vh) ∈ V (H)−Fh, then
an empty sequence is a feasible one, where f(vh) denotes the current colour of vh)

Notice that the algorithm takes at most n
∏s

i=1 deg(ui) recolourings to recolour vh. Hence,
by repeatedly calling Recolour(i, F ) for i = 1, . . . , n, we obtain the colouring α′ in which
colours from F do not appear by using at most n2

∏s
i=1 deg(ui) recolourings, as required.

Given h ∈ [n], k-degenerate ordering σ = v1, . . . , vn of G and the set Fh of forbidden
colours, the algorithm Recolour(h, Fh) works as follows:

1. If f(vh) 6∈ Fh, then terminate.
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2. If vh has degree at most k, then

• Let c be a colour not belonging to NH [f(N(vh))]∪Fh. Such colour exists since
∆(H) 6 d, so |NH [f(N(vh))] ∪ Fh| 6 (d+ 1)k + (d+ 1) < |V (H)|.
• Recolour vh to c.

3. If vh has degree at least k + 1, then

• Let c be a colour not belonging to NH [f(Z)]∪Fh, where Z is the set consisting
of first k neighbours of vh in ordering σ. Such colour exists since ∆(H) 6 d,
so |NH [f(Z)] ∪ Fh| 6 (d+ 1)k + (d+ 1) < |V (H)|.
• Let vi1 , . . . , vit be the neighbours of vh outside Z with i1 < i2 < . . . < it. Note

that h < i1, since G is k-degenerate.

• For each j ∈ [t] in the ascending order call Recolour(ij, NH [c]).

• Recolour vh to c.

It is clear that this algorithm is correct. To estimate the number of used recolourings,
it is sufficient to observe that the recursion branches only on vertices of degree at least
k + 2.

Lemma 24. Let k > 1, d > 0 and let G be a graph on n vertices and with mad(G) < k+1.
Let H be a graph such that ∆(H) 6 d and |V (H)| > (d+ 1)(k+ 1) + 1 and let α be a H-
colouring of G. Let F be a subset of V (H) of size at most d+1. It is possible to reconfigure
α to some H-colouring α′ of G such that α′(V (G)) ⊆ V (H) − F by max(k, 2)O(k

2√n)

recolourings.

Let us note again that the case d = 0 coincides with Lemma 2 from [16] and that the
proof presented here is a generalization of its proof.

Proof. We will call H-colourings of G small if they do not use colours from F . We will
denote k′ = max(k, 2).

We shall prove by the induction on the size n := |V (G)| that we can reconfigure α
to a small H-colouring α′, such that each vertex in G is recoloured at most n2 · k′9k′2

√
n

times, which implies the lemma.
As the base case we distinguish graphs P on p vertices such that mad(P ) < k + 1

that contain at most 2(k + 1)
√
p vertices of degree at most k. Let {u1, . . . , us} be a

set of vertices of P of degree at least k + 2. In the case of such graphs
∏s

i=1 deg(ui) is

bounded from above by (2(k+1))2k(k+1)
√
p 6 (k′3)3k

′2√p = k′9k
′2√p as proven by Eiben and

Feghali as part of the proof of Lemma 2 in [16]. Thus, in this case we can use algorithm
from Lemma 23 and prove that we can get α′ using at most p2

∏s
i=1 deg(ui) 6 p2k′9k

′2√p

recolourings in total, in particular the number of recolourings of each particular vertex is
bounded by p2k′9k

′2√p.
For the inductive step, suppose that G contains more than 2(k + 1)

√
n vertices of

degree at most k and that we can reconfigure any subgraph P of G with p < n vertices to
some small H-colouring αP such that each vertex gets recoloured at most p2k′9k

′2√p times.
Let S be an independent set in G of size at least 2

√
n containing only vertices of degree

at most k. Note that G is k-degenerate, so it can be partitioned into k + 1 independent
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sets and one of them has to contain at least 2
√
n vertices of degree at most k, so such

S exists. Using an inductive argument, we can recolour the graph P = G − S to some
small H-colouring through a recolouring sequence R. We can extend this sequence of
recolourings in P to a sequence in G in the following way. Let a recolouring of v ∈ V (P )
from c1 to c2 be one of the recolouring operations from R and let u ∈ S be a neighbour
of v. Let C be the sum of {c1, c2} and colours present in the neighbours of u in P other
than v. We have that |C| 6 k + 1, so NH [C] 6 (d + 1)(k + 1) < |V (H)|, so there exists
a colour c ∈ V (H) − NH [C]. In the reconfiguration sequence extended to G we put an
operation of recolouring u to c before recolouring v. This way we get a valid recolouring
sequence for G. Finally, we recolour each vertex u ∈ S to any colour not belonging to
F ∪NH [f(NG(u))]. It is possible as |F ∪NH [f(NG(u))]| 6 (d+ 1)(k + 1) < |V (H)|. For
each vertex outside S we recoloured it exactly as many times as in R, whereas for each
vertex in S we recoloured it at most as many times as all its neighbours were recoloured
in total in R plus one.

Let g(n) be the maximum number of times that a vertex of a graph on n vertices is
recoloured in this process. In the base case we require at most n2k′9k

′2√n recolourings,
while in the inductive step case we require at most k ·g(bn−2

√
nc)+1 recolourings, hence

we have g(n) 6 max(n2 ·k′9k′2
√
n, k ·g(bn−2

√
nc)+1). However, simple calculations show

that k ·k′9k′2
√

n−2
√
n + 1 6 k′9k

′2√n (as
√
n >

√
n− 2

√
n+ 1), so n2 ·k ·k′9k′2

√
n−2
√
n + 1 6

n2 · k′9k′2
√
n, hence g(n) 6 n2 · k′9k′2

√
n, which concludes this proof that each vertex can

be recoloured at most n2 · k′9k′2
√
n times. Thus, in total we get a sequence of at most

n3 · k′9k′2
√
n = max(2, k)O(k

2√n) recolourings.

Remark. If we were a bit more meticulous, then in Lemma 23 it would be possible to
get the bound of O(n2

∏s
i=1(deg(ui)−k)) instead of O(n2

∏s
i=1 deg(ui)). In consequence,

it would be possible to improve the bound from Lemma 24 to 2O(k
2√n), but proving that

would lead to significantly longer exposition and the improvement would not be that
significant, hence we decided not to present it.

Now we are ready to prove Theorem 9.

Proof. Let k > 0 be a positive integer and let G = (V,E) be a graph on n vertices with
mad(G) < k+1 and let H be a graph such that ∆(H) 6 d and |V (H)| > (d+1)(k+1)+1.
We will define a H-colouring of G called γ and then prove that any H-colouring δ can
be reconfigured to γ by a sequence of at most max(2, k)O(max(k2,1)

√
n) recolourings, which

clearly implies the thesis by using twice this statement for δ = α and for δ = β.
We will prove this inductively on k. The base case k = 0 is trivial: if mad(G) < 1,

then G is an edgeless graph and every colouring is valid. We can set γ as an arbitrary
colouring of G. Now we can recolour each vertex directly from colour from δ to colour
from γ using at most n recolourings in total.

Now we present the inductive step. Let us consider an independent set I from Theorem
5 such that mad(G− I) < k and any colour u ∈ V (H). For each v ∈ I we set γ(v) = u.
Thanks to Lemma 24 for F := NH [u], we are able to reconfigure δ to a colouring δ′ that
does not use colours from NH [u]. Afterwards, we reconfigure δ′ to δ′′ by recolouring each
vertex from I to the colour u. We define G′ = G − I and H ′ = H − NH [u]. Graphs G′

and H ′ meet the assumptions of the inductive hypothesis for k′ = k − 1. So there exists
γ′ independent of δ′′ and a sequence of recolourings R′ configuring δ′′ to γ′. Now we just
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need to concatenate all those reconfiguration sequences and set γ(v) = γ′(v) for v ∈ G′.
This concatenation yields a valid reconfiguration sequence because colour c is connected
to all colours from H ′.

To build the final reconfiguration sequence we used the construction from Lemma 24
exactly k times. Apart from that, each vertex is recoloured at most once, to its final
colour, so in total we used at most n + n · max(2, k)O(k

2√n) 6 max(2, k)O(max(k2,1)
√
n)

recolourings, as desired.

It is worth noting that all parts of this proof were constructive, hence we can compute
such sequence of recolourings in kO(k

2√n) time and polynomial space.
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