
Sharp upper and lower bounds on a

restricted class of convex characters

Steven Kelk Ruben Meuwese
Department of Data Science and Knowledge Engineering (DKE)

Maastricht University
P.O. Box 616, 6200 MD Maastricht, The Netherlands

{steven.kelk,ruben.meuwese}@maastrichtuniversity.nl

Submitted: Jul 22, 2021; Accepted: Feb 4, 2022; Published: Mar 11, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let T be an unrooted binary tree with n distinctly labelled leaves. Deriving its
name from the field of phylogenetics, a convex character on T is simply a partition
of the leaves such that the minimal spanning subtrees induced by the blocks of the
partition are mutually disjoint. In earlier work Kelk and Stamoulis (Advances in
Applied Mathematics 84 (2017), pp. 34–46) defined gk(T) as the number of convex
characters where each block has at least k leaves. Exact expressions were given for
g1 and g2, where the topology of T turns out to be irrelevant, and it was noted that
for k > 3 topological neutrality no longer holds. In this article, for every k > 3
we describe tree topologies achieving the maximum and minimum values of gk and
determine corresponding expressions and exponential bounds for gk. Finally, we
reflect briefly on possible algorithmic applications of these results.

Mathematics Subject Classifications: 05C05, 05A18, 92B10.

1 Introduction

Consider an unrooted, undirected binary tree T where the n leaves are bijectively la-
belled by a set X of labels. In this article we are interested in partitions of X whereby
the minimal spanning trees induced by the blocks, are disjoint in T . In the field of math-
ematical phylogenetics, where T represents a hypothesis about the evolutionary history
of a set of contemporary species X and interior nodes represent hypothetical ancestors,
such partitions are called convex characters [14]. Convex characters are of interest be-
cause they represent a ‘most parsimonious’ evolutionary scenario. Specifically, a block
of the partition can be viewed as a subset of X that shares a certain trait e.g. has a
backbone. The fact that the induced spanning trees do not overlap, models the situation
whereby these traits can be extended to ancestors in T , such that all contemporary and

the electronic journal of combinatorics 29(1) (2022), #P1.50 https://doi.org/10.37236/10589

https://doi.org/10.37236/10589

ancestral species that share the trait form a connected component. In other words: the
trait emerges once in history; it does not vanish and re-emerge multiple times. Convex
characters, which are sometimes called homoplasy-free characters due to the absence of
recurrent mutation, play a central role in the well-studied perfect phylogeny problem [11]
and a number of other combinatorial and algorithmic problems inspired by phylogenet-
ics (e.g. [13, 6, 1]). We refer to standard texts such as [15, 5] for more background on
(mathematical) phylogenetics.

In [12] the question was posed: how many convex characters are there on T where
each block has at least k leaves, denoted gk(T)? The authors proved that for k ∈ {1, 2}
the answer is a Fibonacci number, and independent of the topology of T , but that for
k = 3 the topology of the tree does matter. This raised the question of establishing lower
and upper bounds on gk, for k > 3.

In this article we give, for every k > 3, sharp upper and lower bounds. We do
this by identifying tree topologies that provably obtain the maximum and minimum and
determining gk on these trees. The maximum is attained by caterpillar trees, and the
minimum by trees we call fully k-loaded trees. Informally, fully k-loaded trees are trees in
which as often as possible the leaves are organized in size k − 1 clusters at the periphery
of the tree. For the lower bound, an exact expression is given: it grows at Θ(φ

n
k−1)

where φ ≈ 1.618 is the golden ratio. For the upper bound, an exact expression and an
exponential rate of growth can be obtained by determining the real positive root of a
characteristic polynomial induced by a homogeneous linear recurrence, and then solving
for initial conditions.

In Section 2 we establish preliminaries. In Section 3 we prove the upper bound. In
Section 4 we prove the lower bound and pause briefly to study the behaviour of g3 between
its upper and lower bounds. In Section 5 we reflect on potential algorithmic applications
of these results, noting that the running times of algorithms listing all gk characters speed
up considerably as k increases. Finally, in Section 6 we list a number of open problems.

2 Preliminaries

We note that the results in the article are not specific to phylogenetics: they apply to
undirected binary trees with distinctly labelled leaves. However, to ensure consistency
with the phylogenetics literature that inspired the research we adopt standard phyloge-
netic notation. An unrooted binary phylogenetic X-tree is an undirected, unrooted tree
T = (V (T), E(T)) where every internal vertex has degree 3 and whose leaves are bi-
jectively labelled by a set X, where X is often called the set of taxa (representing the
contemporary species). All the trees in this articles are unrooted binary phylogenetic
trees, so we simply write tree for brevity. We let n = |X|. For X ′ ⊆ X we write T [X ′] to
denote the unique minimal subtree of T that spans X ′, and T |X ′ to denote the phyloge-
netic tree obtained from T [X ′] by repeatedly suppressing nodes of degree 2. For X ′ ⊂ X
we define T \X ′ to be T |(X \X ′).

A character f on X is simply a partition of X into blocks (i.e. non-empty subsets)
X1, X2, . . . , Xm. Following the phylogenetics literature we will often refer to the blocks of

the electronic journal of combinatorics 29(1) (2022), #P1.50 2

the partition as states. We write X1|X2| . . . |Xm to denote that the subsets X1, X2, . . . , Xm

form a partition/character of X. A character X1|X2| . . . |Xm is said to be convex on T if,
for each i 6= j, T [Xi] is disjoint from T [Xj]. The convexity of a character on a tree T can
be tested in polynomial [7, 9] (in fact, linear [3]) time. For the tree T shown in Figure 1,
abde|c|fg is an example of a convex character.

a b

c

d

e
f

g

a b

c

d

e
f

g

a b

c

d

e
f

g

a b

c

d

e
f

g

a b

c

d

e
f

g

a b

c

d

e
f

g

a b

c

d

e
f

g

a b

c

d

e
f

g

Figure 1: For the given tree T (on 7 taxa) there are 233 convex characters in total, but
only 8 in which each state (i.e. block of the partition) contains at least 2 taxa, and these
are shown above. Taxa connected by grey edges are in the same state of the character.
The 3 g3 characters are abcdefg, abc|defg and abcd |efg , and the single g4 character is
abcdefg .

Following [12], we define gk(T) to be the number of convex characters on T where each
state contains at least k taxa. For shorthand we refer to such characters as gk characters;
note that g1 characters are just convex characters without any further restrictions. See
Figure 1 for an example. In [12] it was proven that g1(T) and g2(T) are equal to the
(2n−1)th and (n−1)th Fibonacci number, respectively. This yielded the following exact
expressions, where T is replaced by n due to the topological neutrality, and φ ≈ 1.618 is
the golden ratio.

g1(n) =

⌊
φ2n−1
√

5
+

1

2

⌋
,

g2(n) =

⌊
φn−1
√

5
+

1

2

⌋
.

We will use the following simple observation repeatedly; it shows that for very small n
(relative to k) gk is independent of topology.

Observation 1. Let T be a tree on n taxa. If n < k, gk(T) = 0, and if k 6 n < 2k,
gk(T) = 1.

the electronic journal of combinatorics 29(1) (2022), #P1.50 3

Proof. Every character contains at least one state, and each state must have at least k
taxa, so for n < k no gk characters can exist. If k 6 n we have gk(T) > 1 because we can
always take the unique convex character with a single size-n state. If n < 2k then it is
not possible to have 2 or more gk characters, because at least one of them would need to
have 2 or more states, and each such state must contain at least k taxa.

Let A|B be a bipartition of X. We say that a tree T on X contains the split A|B
if there is a single edge of T whose deletion disconnects T into two components, where
A is the set of taxa in one component and B is the set of taxa in the other. The next
observation will also be used repeatedly.

Observation 2. Let T be a tree on n vertices and suppose T contains a split A|B such
that |B| 6 k. Then every gk character of T includes a state that is a superset of B. If
|B| < k, then every gk character of T includes a state that is a strict superset of B.

Proof. Firstly, recall that every taxon in B has to appear in some state. Suppose for
the sake of contradiction that there is a gk character such that B intersects with two
or more states in the character. Given that |B| 6 k, each of these states contains at
most k− 1 taxa from B (because each of the states must include at least one taxon from
B, and states are disjoint). Hence, each of these states also contains at least one taxon
from A. But then the subtrees induced by these two (or more) states are not disjoint; in
particular, they both use the edge corresponding to split A|B, contradicting the convexity
of the character. Hence, B intersects with at most one state. If |B| = k, then this state
must necessarily include all of B. If |B| < k then this state must also include at least one
taxon from A, and we are done.

The next lemma establishes a useful recurrence.

Lemma 3. Suppose T contains a split A|B where |A| = k, and let x be an arbitrary
element of A. Then gk(T) = gk(T \ A) + gk(T \ {x}).

Proof. Consider an arbitrary gk character f of T . Due to Observation 2 and the fact that
|A| = k, there are only two cases. In the first case, f contains a state equal to A. There
are exactly gk(T \ A) such characters.

In the second case, f contains a state Xi that is a strict superset of A, and which thus
also intersects with B; the state contains at least k + 1 taxa. There are gk(T \ {x}) such
characters. To see this, note that removing x from Xi gives a state that still has at least
k taxa, so this yields a gk character for T \ {x}. In the other direction, a gk character for
T \ {x} necessarily includes a state that contains all of A \ {x} and at least one taxon
from B. Adding x to this state yields a state that contains all of A, and at least one
taxon of B.

3 Caterpillars maximize gk(T) for every k > 1

We say that two distinct taxa x, y form a cherry of a tree T if they have a common parent.
For n > 4 a caterpillar is a tree on n taxa which has exactly two cherries. Equivalently, a

the electronic journal of combinatorics 29(1) (2022), #P1.50 4

a

b

c

h

i

d e f g

Figure 2: A caterpillar tree on 9 taxa.

caterpillar is a tree where all the degree-3 nodes form a path. See Figure 2 for an example.
For convenience we also regard the unique trees on 1, 2 or 3 taxa to be caterpillars. We
write Catn to denote the caterpillar on n > 1 vertices.

We start by describing a recurrence for gk(Catn) and then prove that this is the
maximum value of gk(T) ranging over all trees T with n taxa.

Observation 1 establishes the initial values of gk(Catn).

Lemma 4. For n > k > 2, gk(Catn) = gk(Catn−1) + gk(Catn−k). As a consequence,
gk(Catn) ∈ Θ(αn) where α is the positive real root of the polynomial xk − xk−1 − 1.

Proof. Due to its regular topology Catn definitely contains a split A|B where |A| = k.
Observe that T \A is a caterpillar, and T \ {x} (for any x ∈ X) is also a caterpillar. The
recurrence now follows directly from Lemma 3. This is a homogeneous linear recurrence;
it is well understood how to solve such recurrences (see standard textbooks such as [8]).
In particular, it follows that gk(Catn) grows at rate Θ(αn) where α is the positive real
root of the characteristic polynomial1 xk−xk−1−1. A precise expression for gk(Catn) can
then be derived, if desired, by taking the initial terms of the recurrence into account.

We give an explicit example for g3. The closed expression is:

g3(Catn) =

⌊
0.194225 . . . · 1.46557 . . .n +

1

2

⌋
where 1.46557. . . is the real solution to x3 − x2 − 1 = 0. The value 0.194225. . . is ob-
tained by taking the real solution of 31x3 − 31x2 + 9x − 1 = 0 and dividing it by
(1.46557 . . .)3 to adjust for the fact that in this expression n refers to the number of
taxa. See: http://oeis.org/A0009302.

Let A|B|C be a tripartition of X. We say that a tree T contains A|B|C if there is a
degree-3 node u such that A,B,C are the subsets of taxa of the three subtrees incident
at u.

Suppose T contains a tripartition A|B|C where |A|, |B|, |C| > 2. If we delete the C
subtree and replace it with a length-|C| caterpillar inserted between the A and B subtrees,
we obtain a new tree T ′ and say that this is the result of linearizing the C subtree. See
Figure 3 for an example.

1A homogeneous linear recurrence of the form yn = c1yn−1+ . . .+ckyn−k has a characteristic equation
xk = c1x

k−1 + . . . + ck. In our case, c1 and ck are 1, and all other ci are 0. This yields the characteristic
polynomial.

2This recurrence is also known as Narayana’s cows sequence.

the electronic journal of combinatorics 29(1) (2022), #P1.50 5

http://oeis.org/A000930

T

a

b

c

d

e

f

g

h i

j

T´

a

b

c

d

e

f

g h i j

Figure 3: An example of the linearization operation, acting on the tripartition A|B|C
of T where A = {a, b, c}, B = {d, e, f} and C = {g, h, i, j}, to yield T ′. Linearization
replaces subtree C by a caterpillar.

Lemma 5. Let k > 3. Suppose T contains a tripartition A|B|C where |A|, |B|, |C| > 2,
and |C| < k. Let T ′ be the result of linearizing the C subtree. Then gk(T ′) > gk(T) and
T ′ has fewer cherries than T .

Proof. The crucial fact here is that |C| < k. Specifically, by Observation 2, a gk character
f for T must contain a state Xi that includes all of C and which additionally intersects
with at least one of A and B. As a result, there is no state Xj 6= Xi in f that intersects
both A and B, but not C - because then T [Xj] and T [Xi] would intersect. Hence, f is
also a gk character of T ′.

The C subtree contained at least one cherry, because |C| > 2; these are all destroyed
by linearization. However, no new cherries are created because |A|, |B| > 2.

Theorem 6. Let k > 1. gk(T) 6 gk(Catn) for every tree T on n taxa.

Proof. For k ∈ {1, 2} the result follows automatically because g1 and g2 are invariant for
topology. Henceforth we assume k > 3.

We use induction on n+ t, where t is the number of cherries in T . For the base case,
recall from Observation 1 that for n < k we have gk(T) = 0, and for k 6 n < 2k we have
gk(T) = 1, irrespective of the topology of T , so the claim holds vacuously when n < 2k.
Now, observe that if n + t 6 2k and n > 4, then n < 2k (because t > 2 in any tree
with at least 4 taxa) - so, again, by topological neutrality the claim holds. For n 6 3,
the definition of t is somewhat ambiguous, but however one defines it we have t 6 3, so
n + t 6 6 6 2k, and the claim clearly holds for such very small trees. Summarizing, we
have shown that the claim always holds for n+ t 6 2k, which concludes the base case.

Next, the inductive step. Assume that the claim holds for all trees where n + t 6 N
(where N > 2k). We show that the claim holds for all trees where n + t 6 N + 1.
Consider, therefore, a tree T where n+ t is equal to N + 1. (If no such tree exists, we are

the electronic journal of combinatorics 29(1) (2022), #P1.50 6

immediately done). If n < 2k, then we are immediately done by the earlier argument. So
assume that n > 2k.

Suppose T contains a tripartition A|B|C where |A|, |B|, |C| > 2 and |C| < k. Then
by linearizing T to obtain T ′, we obtain via Lemma 5 that gk(T ′) > gk(T) and that
T ′ has fewer cherries than T , but the same number of taxa, so by induction we have
gk(Catn) > gk(T ′) > gk(T) and we are done.

Let us therefore assume that the tripartition from the previous paragraph does not
exist. Instead, consider any tripartition A|B|C such that |A|, |B| > 1, |C| 6 k and |C| is
maximized. (Such a tripartition must exist, because T contains a cherry, so taking |C| = 2
is always possible in the worst case.) We claim that |C| = k. Suppose this was not so,
i.e. that 2 6 |C| < k. Then exactly one of |A| and |B| would be equal to 1. If neither
was equal to 1, we would be in the earlier linearization case, and if they would both be
equal to 1, then n = |A| + |B| + |C| = |C| + 2 6 k + 1 < 2k which is not possible due
to the earlier assumption that n > 2k. So assume without loss of generality that |B| = 1
and |A| > 2. It follows that T contains a new tripartition A′|B′|C ′ where |C ′| = |C|+ 1,
|A′|, |B′| > 1 and |A′| + |B′| = |A|. However, this new tripartition yields a contradiction
to the assumption that |C| was maximum: A′|B′|C ′ also satisfies the required conditions
but has |C|′ > |C| (and |C|′ 6 k because |C| < k). So, indeed, |C| = k.

Now, T contains the split C|(A∪B), simply because it contains the tripartition A|B|C.
Hence, Lemma 3 can be applied to T . This gives:

gk(T) = gk(T \ C) + gk(T \ {x})

where x is an arbitrary taxon in C. Tree T \C has n−k taxa and less than or equal to the
same number of cherries as T (because at most one new cherry can be created by pruning
the C subtree, but at least one is destroyed, since |C| = k > 2). Tree T \ {x} has n− 1
taxa and less than or equal to the same number of cherries as T . So the inductive claim
holds for both these two trees. So gk(T \C) 6 gk(Catn−k) and gk(T \{x}) 6 gk(Catn−1).
Hence, by Lemma 4 we have that gk(T) 6 gk(Catn), and we are done.

Corollary 7. For every n, the maximum value of gk ranging over all trees on n taxa is
gk(Catn), which is Θ(αn), where α is the positive real root of the characteristic polynomial
xk − xk−1 − 1.

4 Fully k-loaded trees minimize gk for every k

Having established that caterpillars maximize gk, we now turn to the question of the
minimum. We begin with a number of auxiliary lemmas and observations.

Lemma 8. Let T be a tree on n > k taxa. Then T contains a split A|B such that
k 6 |B| 6 2(k − 1).

Proof. Pick an arbitrary taxon of T and orient the edges of T away from this taxon. We
label each edge with the number of taxa reachable from the head of this edge by directed
paths (i.e. the number of taxa on the “far” side of the split induced by this edge). Starting

the electronic journal of combinatorics 29(1) (2022), #P1.50 7

from the edge incident to our chosen taxon, which has label n− 1 > k, we walk onto an
outgoing edge if it is labelled by a number > k (if there are two such edges we can break
ties arbitrarily) and we continue this walk until it cannot be extended any further. Let e
be the edge we have reached. At this point both outgoing arcs from e are labelled by at
most k− 1; if the label was higher we could have continued the walk. Hence, the label of
e is at most 2(k− 1). Also, the sum of the labels on these two edges is at least k, because
otherwise the walk would not have reached edge e in the first place. Hence, e induces a
split with the desired property.

Lemma 9. Let T be a tree on n > 3k − 2 taxa. Then gk(T) > 2.

Proof. Let A|B be the split whose existence is guaranteed by Lemma 8. Due to the fact
that k 6 |B| 6 2k − 2, we have that |A| > |X| − (2k − 2) > (3k − 2) − (2k − 2) > k.
Hence, the character with two states, A and B, is definitely a gk character. Combined
with the fact that X (i.e. the character with a single size-n state) is vacuously also a gk
character, we have that gk(T) > 2.

We say that a tree T on n vertices is fully k-loaded if it can be created by the following
process, which is schematically illustrated in Figure 4. First, select a tree S on d n

k−1e taxa,
we call this the scaffold tree. If n mod (k−1) = 0, we replace each leaf of S with a subtree
on k − 1 taxa. If n mod (k − 1) 6= 0, we replace all but one of the leaves of S with a
subtree on k − 1 taxa, and the remaining leaf with a subtree on n mod (k − 1) taxa. We
call this remaining subtree, if it exists, the residue subtree (and the corresponding leaf of
the scaffold the residue leaf). We note that the subtrees used in this process, do not have
to have the same topology, and that at least one fully k-loaded tree exists for every n.
We will write fully loaded tree when k is implicit from the context.

Figure 4: The tree on the left is a scaffold tree with 4 vertices. If n mod (k−1) = 0, then
each of its 4 leaves is replaced by a subtree on k − 1 taxa, depicted as white triangles in
the top tree. If n mod (k − 1) 6= 0, then exactly one of these subtrees is allowed to have
n mod (k− 1) taxa - this is the residue subtree - shown as a black triangle in the bottom
tree.

As an explicit example, consider the tree in Figure 1. This is a fully 4-loaded tree,
because you could obtain it from the (unique) scaffold tree on 3 leaves, by attaching

the electronic journal of combinatorics 29(1) (2022), #P1.50 8

subtrees with taxa {a, b, c}, {e, f, g} and {d} to the leaves of the scaffold. In this case,
{d} would be the residue subtree, because it does not contain exactly 4−1 = 3 taxa. The
tree is actually also fully 5-loaded, by taking a single edge as the scaffold, and attaching
subtrees on {a, b, c, d} and {e, f, g} (where here {e, f, g} is the residue). However, the tree
is not a fully 3-loaded tree, because more than one of its taxa are not in cherries.

Lemma 10. Let T be a fully k-loaded tree on n taxa, and S be a corresponding scaffold
tree. Then gk(T) = g2(S) = g2(d n

k−1e). In particular: all fully k-loaded trees on n taxa
have the same gk value.

Proof. Recall that, in the process of constructing T from S, at most one of the leaves
of S is replaced with a subtree with strictly fewer than k − 1 taxa; all other leaves are
replaced by subtrees with exactly k − 1 taxa. Now, each state in a g2 character of S
contains at least 2 leaves of S, so at least one of these leaves corresponds to a subtree of
T with exactly k− 1 taxa (and the other leaf corresponds to a subtree of T with at least
1 taxon). Hence, when this g2 character is mapped to a character of T each state in the
character of T has at least k taxa i.e. it is a gk character.

In the other direction, consider an arbitrary gk character of T . The subtrees of T
corresponding to leaves of S all have at most k − 1 taxa, so any gk character of T must
intersect with taxa from at least two such subtrees. When projected back to a character
S in the natural fashion, this induces a character of S that has at least two leaves per
state.

The second inequality follows from [12], where it is established that g2 depends only
on n, and not the topology of the tree.

A subtree of T is pendant if it can be detached from T by deleting a single edge. The
subtrees attached in the construction of fully loaded trees are all pendant, for example.
The following lemma, which applies to all trees, shows that the topology of “small’ (with
respect to k) pendant subtrees is irrelevant for determining gk.

Lemma 11. Let T be a tree on n > k taxa. Suppose T contains a split A|B where
|B| 6 k. Let T ′ be the tree obtained by replacing the B subtree with an arbitrary other
subtree on the same subset of taxa. Then gk(T) = gk(T ′).

Proof. This is a direct consequence of Observation 2.

Our final auxiliary lemma shows that “moderately large” pendant subtrees (with re-
spect to k) can be replaced by subtrees that, in a local sense, are fully k-loaded, without
increasing gk.

Lemma 12. Let T be a tree on n taxa. Suppose T contains a split A|B such that
k 6 |B| 6 2(k − 1). Consider the unique fully k-loaded tree F on |B| taxa obtained from
the scaffold tree that is just a single edge e. Create a new tree T ′ on n taxa by replacing the
size-|B| subtree of T , with F , where F is attached by subdividing e. Then gk(T) > gk(T ′).

the electronic journal of combinatorics 29(1) (2022), #P1.50 9

B

Figure 5: The transformation described in Lemma 12. The subtree on the right, indicated
by a small white triangle, has exactly k−1 taxa. The other subtree on the right, indicated
by a grey triangle, has at most k − 1 taxa.

Proof. Note that, due to our choice of where to attach F , the subtree F (when viewed
as part of T) consists of two subtrees: one containing exactly k − 1 taxa, and the other
containing at most k−1 taxa; see Figure 5. Every gk character of T ′ must have a state that
includes all the taxa from both subtrees: this is a consequence of applying Observation 2
to both the subtrees. Any such character is also a gk character for T .

We now move towards our main result. The following lemma establishes the base case
of the induction proof used in Theorem 14.

Lemma 13. For k 6 n 6 4k − 4, there exists a fully k-loaded tree on n vertices that
minimizes gk.

Proof. For k 6 n 6 2k − 1 this is immediate from Observation 1 and the fact that
fully k-loaded trees exist for every n. For 2k 6 n 6 3k − 3, observe that any fully
k-loaded tree T obtained from the unique scaffold tree on 3 leaves (i.e. the star tree
with single degree-3 node incident to 3 leaves), has gk(T) = 1 which is minimal. For
3k − 2 6 n 6 4k − 4, observe that a fully k-loaded tree T obtained from the unique
scaffold tree on 4 vertices, has gk(T) = 2. This must be minimum, due to the lower
bound established by Lemma 9.

Theorem 14. Let n > k. Every fully k-loaded tree T on n taxa is a minimizer for gk.

Proof. We prove this by induction. Our inductive claim is not that every fully k-loaded
tree on n taxa is minimum, but that at least one is. The strengthening to every will then
follow automatically from Lemma 10, which states that all fully k-loaded trees have the
same gk value. Note that, in the remainder of the proof, this allows us to safely leverage
the inductive assumption that all fully k-loaded trees are minimizers. For brevity we will
not explicitly mention the application of Lemma 10 again.

We assume k > 3, because for k ∈ {1, 2} the result is immediate due to topological
neutrality.

For the base case we take n 6 4k − 4. This is proven by Lemma 13.
Now, assume that for all n 6 N the claim holds, where N > 4k − 4. Let T be

an arbitrary tree on n = N + 1 taxa that minimizes gk. From Lemma 8, there exists
a split E|F in T such that k 6 |F | 6 2(k − 1). By applying Lemma 12, we obtain a
new tree T ◦ on the same number of taxa (that also contains the split E|F) such that
gk(T) > gk(T ◦), so T ◦ is also a minimizer – because by assumption T was a minimizer.
For ease of notation, we will take T = T ◦ in the rest of the proof.

the electronic journal of combinatorics 29(1) (2022), #P1.50 10

Crucially, by construction, the F subtree of T now consists of one subtree containing
exactly k−1 taxa, and one subtree containing at least 1 and at most k−1 taxa. Hence, T
contains a tripartition A|B|C where |B| = k−1 and 1 6 |C| 6 k−1 and |A| > 2(k−1) > k
(where the last inequality follows because n > N > 4k − 4 and k > 3). Let a, b, c be the
cardinalities of A,B,C respectively.

The following recurrence holds3, because b = k − 1:

gk(T) = gk(T |A ∪B)gk(T |C) + gk(T |A)gk(T |B ∪ C) + gk(T |A ∪B)gk(T |B ∪ C). (1)

The three terms of the recurrence are based on Observation 2 i.e. that every character
we wish to count has a state that is a strict superset of B. Such a state must also
intersect with (i) A (but not C), or (ii) C (but not A) or (iii) both. The third term,
which models (iii), requires a little explanation. It is correct because every such state can
be decomposed into a part that intersects both B and A, and a part that intersects both
B and C; both these parts have size at least k. In the other direction, gk characters for
T |A∪B (respectively, T |B ∪C) necessarily contain a state that contains all of B, and at
least one taxon from A (respectively, C), so every pairing of a gk character from T |A∪B
with a gk character from T |B ∪ C yields a character of type (iii).

Note that a, b, c, a + b, b + c are all strictly less than n, so the inductive claim holds
for all trees restricted to subsets of taxa of these sizes. Let gflk (n) denote the value of gk
for a fully k-loaded tree on n taxa; as proven earlier this is independent of topology. By
induction we therefore have,

gk(T) > gflk (a+ b)gflk (c) + gflk (a)gflk (b+ c) + gflk (a+ b)gflk (b+ c). (2)

The next part of the proof has two phases of applying the inductive hypothesis. If at
least one of a and c is divisible by k − 1, then only the first phase will be necessary.

We create a new tree T ′ on n taxa by doing the following. We replace the A subtree
with an arbitrary fully k-loaded tree on a taxa. The attachment point of this fully loaded
tree should be a subdivided edge of its underlying scaffold tree. (This is necessary to
avoid that we accidentally attach it “inside” one of its size-(k− 1) subtrees, which would
destroy its fully k-loaded structure). Note that such a scaffold tree definitely contains
at least one edge, because a > k. Moreover, if a is not divisible by k − 1, we must use
as attachment point a subdivision of the unique edge of the underlying scaffold tree that
feeds into the residue leaf: in Figure 4 this would mean the edge feeding into the black
triangle. (The significance of this will be explained later).

We leave the B and C subtrees untouched. This completes the construction of T ′.
Observe that the subtrees T ′|A ∪ B, T ′|C, T ′|B ∪ C, T ′|A are all fully k-loaded; for

T ′|B ∪C and T ′|A ∪B this follows because b = k − 1 and (for T ′|A ∪B) because of our
choice of attachment point. T ′|A is fully k-loaded by construction, and T ′|C is vacuously
fully k-loaded because 1 6 c < k. Hence, gk(T ′) is identical to the right hand side of

3The recurrence could actually be simplified because gk(T |C) = 0, by virtue of the fact that c < k,
and gk(T |B ∪C) = 1, because k 6 b+ c < 2k. However, this simplification is not necessary for the proof
and obfuscates the origin of the recurrence.

the electronic journal of combinatorics 29(1) (2022), #P1.50 11

inequality (2). Hence, gk(T) > gk(T ′), so due to the fact that we assumed that T was a
minimizer, T ′ is also a minimizer. Now, if at least one of a and c is divisible by k − 1,
it follows that T ′ is not only a minimizer, but also a fully k-loaded tree, so the proof is
complete.

If neither a nor c is divisible by k − 1, then T ′ will not be fully k-loaded. This is
because the A part of T ′ will contain a residue subtree, and the C part of T ′ is (entirely)
a residue subtree, yielding two residue subtrees in total; a fully k-loaded tree has at most
one residue subtree. In this situation, depicted in Figure 6, a second phase of induction
is necessary to “clean up” these unwanted subtrees. Observe that a > 2k − 2, so the
underlying scaffold tree for A has at least 3 leaves (because a fully k-loaded tree with an
underlying scaffold consisting of just 2 leaves, can have at most 2(k−1) taxa). Hence, the
underlying scaffold tree contains a cherry, such that neither leaf of the cherry is a residue
leaf. In more detail: if the scaffold has 4 or more leaves, it will have at least 2 cherries,
and the residue leaf can be part of at most one of them. If the scaffold has 3 leaves, then
any pairing of 2 leaves forms a cherry, so take the 2 non-residue leaves.

B

C

u

A

Figure 6: If neither |A| nor |C| is divisible by k − 1, then T ′ will not yet be fully loaded,
due to having two residue subtrees (shown as black triangles). In this case a second
application of induction is required.

Hence, both leaves of this cherry expand to subtrees with exactly k − 1 taxa. By
construction the attachment point explicitly avoids both these subtrees and the two edges
feeding into them; this is the significance of the earlier careful choice of attachment location
in the case that a is not divisible by k− 1. As a result, these two subtrees with k− 1 taxa
have a common parent in T ′ (this is the node u in Figure 6). This means that T ′ contains
a tripartition A′|B′|C ′ where |B′| = |C ′| = k−1, by taking these two size k−1 subtrees as
B′ and C ′. We repeat the original induction argument with this new tripartition, yielding
a new tree T ′′ with the property that gk(T ′) > gk(T ′′). Due to the fact that (at least)
two parts of the new tripartition are divisible by k − 1, T ′′ will be fully k-loaded (i.e.
we will only need the first phase of the proof), and a minimizer, so the inductive claim
follows.

Corollary 15. For n > k > 2, the minimum value of gk ranging over all trees on n taxa

the electronic journal of combinatorics 29(1) (2022), #P1.50 12

is exactly ⌊
φd

n
k−1
e−1

√
5

+
1

2

⌋
.

Proof. Recall from the preliminaries that an exact expression for g2 is

g2(n) =

⌊
φn−1
√

5
+

1

2

⌋
.

The desired new expression is obtained by substituting d n
k−1e for n in the g2 expression

(see Lemma 10), while Theorem 14 establishes that this is indeed minimum.

Returning to our concrete example of g3, this yields a minimum of Θ(φn/2), so Θ(1.272n),
contrasting with the caterpillar-induced maximum of Θ(1.466n). Given the gap between
the maximum and minimum, it is reasonable to conjecture that g3 drops smoothly as the
number of cherries t in the tree increases (because fully 3-loaded trees consist primarily
of cherries, with at most 1 taxon not in a cherry). The following bound shows that this
is partially the case.

Lemma 16. Let T be a tree on n taxa with t cherries. Then g3(T) is O(φn−t).

Proof. Let T ′ be the fully 3-loaded tree obtained from T by doubling the n− 2t taxa not
in cherries. T ′ has n+ (n− 2)t = 2n− 2t taxa. This is even, so from Lemma 10 we have
that,

g3(T ′) =

⌊
φn−t−1
√

5
+

1

2

⌋
.

Observe that every g3 character of T naturally maps injectively to a g3 character of T ′, by
putting each newly added taxon into the same state as its sibling. Hence g3(T) 6 g3(T ′)
and the result follows.

Although the upper bound given above does converge on the true minimum (consider
t = n/2), it remains quite weak, in the sense that once t falls below (roughly) n/5, the
caterpillar upper bound of O(1.466n) is stronger. It would be interesting to develop tighter
upper bounds when t is comparatively small compared to n.

5 Applications

We note in Table 1 minimum and maximum values of gk, for the first few values of k.
Each entry α indicates that the minimum (respectively, maximum) grows at rate Θ(αn).
For k > 3 we have used the results in this article: fully k-loaded trees determine the
minimum and caterpillars determine the maximum.

The numbers in the right column, let us denote these αk, have an algorithmic sig-
nificance. Any algorithm that functions by looping through all the gk characters, and

the electronic journal of combinatorics 29(1) (2022), #P1.50 13

minimum maximum
g1 2.618 2.618
g2 1.618 1.618
g3 1.272 1.466
g4 1.174 1.380
g5 1.128 1.325
g6 1.101 1.285

Table 1: Each entry α indicates that the minimum (respectively, maximum) value of
gk(T), ranging over all trees on n taxa, grows at the rate Θ(αn).

performing polynomial-time computation on each such character, will have a worst-case
running time of the form O(αn

k · poly(n)). This is a consequence of the results from [12],
where it is shown how to compute gk in polynomial time, and (relatedly) how to list all gk
characters in time Θ(gk(T) ·poly(n)). Clearly, for a given T this worst-case running time
will decrease as k increases, due to gk(T) decreasing sharply as an exponential function
of n for increasing k.

This raises the question of how scalable such algorithms can be in practice. To answer
this, we took the code from [12] and for 1 6 k 6 6 used it to determine the highest n
for which all gk characters could be listed within 1, 10 or 100 seconds. We did this twice:
once on caterpillar trees, and once on randomly generated trees (which are typically far
from being caterpillars due to being fairly balanced). Although we could also have run
the experiment on fully k-loaded trees, we decided not to, as best-case running times of
algorithms are of little use in practice.

The random trees were generated following the same protocol as used in in [16], which
we summarize here. Starting with an empty rooted binary phylogenetic tree, we place
a taxon from X on one side of the root with probability 1

2
, and on the other side with

probability 1
2
, and then recurse on the two sides of the root until the leaves are reached.

The process indeed generates a rooted binary phylogenetic tree, but upon completion it is
turned into an unrooted tree by suppressing the degree-2 root. The results are in Table 2.4

We see that, for k > 3, the listing algorithms scale somewhat better on random trees
than on caterpillars. Beyond extremely small n, real phylogenetic trees inferred from
biological data rarely reach either topological extreme, so for such trees it is realistic to
expect an intermediate level of scalability.

Although the running times remain prohibitive for larger trees, they are still quite
encouraging by the standards of exponential-time algorithms. This was noted in [12] where
an algorithm based on listing g2 characters was used to design a simple but surprisingly
practical algorithm for exact computation of maximum parsimony distance [6] on two

4The experiment was conducted within the Linux Subsystem (Ubuntu 16.04.6 LTS), running under
Windows 10, on a 64-bit HP Envy Laptop 13-ad0xx (quad-core i7-7500 @ 2.7 GHz), with 8 Gb of memory.

the electronic journal of combinatorics 29(1) (2022), #P1.50 14

caterpillar random trees
1s 10s 100s 1s 10s 100s

g1 14 16 19 14 16 19
g2 27 32 37 27 32 37
g3 34 41 47 38 49 55
g4 40 48 56 56 66 74
g5 47 56 64 73 84 96
g6 52 63 72 83 101 116

Table 2: The numbers in row gk indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all gk characters could be listed within {1, 10, 100}
seconds.

phylogenetic trees. This later became the foundation for a far more scalable sampling-
based heuristic for the same problem [16]; both the listing and sampling leverage the
dynamic programming scaffolding originally used to actually count gk. In [12] it was also
observed that the maximum agreement forest problem [2] can be solved in time O(2.619n)
by listing g1 characters. One can think of an agreement forest on a set of trees as a
character that is convex on all trees and where the states induce the same topologies
across all trees. There are many convex characters that do not induce agreement forests,
but - crucially - every agreement forest does induce a convex character.

Indeed, any optimization or decision problem that ‘projects down’ onto convex char-
acters, can potentially be tackled by such listing algorithms. The flexibility of such an
approach is that one only requires an algorithm to check whether a convex character ac-
tually has the desired, typically stronger, property, and thus little time needs to be spent
on algorithm design or research. The new upper bounds given in this article additionally
allow us to bound the worst-case running time of such algorithms. Some simple examples
of problems that could easily be modelled within this ‘convex character programming’
framework are listed below. In all cases we assume the input is a set of phylogenetic trees
T on X whereby |T| is O(poly(n)). The notation O∗(.) denotes that polynomial factors
are suppressed.

• Partition problems with lower bounds: Compute an agreement forest for T with a
minimum number of components, such that every component of the forest contains
at least k taxa, or state that no such forest exists. Here gk can be used, yielding a
running time of O∗(αn

k). Generalizes easily to the variant where disjointness is only
required in one or more of the input trees.

• Exact partition problems: Determine whether it is possible to perfectly partition X
into size-4 blocks, such that in each tree in T the induced size-4 subtrees (“quartets”)
are disjoint and have the same topology. Here g4 can be used, yielding a running
time of O∗(1.38n).

the electronic journal of combinatorics 29(1) (2022), #P1.50 15

• Character inference problems subject to an objective function: Let T be a specified
tree in the input set T. Find a gk character f on T that optimizes a polynomial-time
computable objective function Z(f,T), such as sum of parsimony scores, or sum of
log likelihoods subject to a chosen statistical model of evolution. Here gk can be
used, yielding a running time of O∗(αn

k). Can be generalized to the case when T ∈ T
is not given and the choice of tree from T needs to be co-optimized.

6 Future work

It would be particularly interesting to quantify the growth of gk between the two topo-
logical extremes of fully k-loaded trees and caterpillars. For g3, for example, it is clear
that the value drops towards its minimum as the number of cherries in a tree increases,
but as discussed earlier it is only a partial explanation for the behaviour of g3. Thus,
it is necessary to identify which topological features of trees, if any, are sufficient (and
possibly necessary) to yield a decrease in gk. It would also be interesting to dive deeper
into a question posed in [12]: what are necessary and sufficient conditions for two non-
isomorphic trees on n taxa to induce the same vector of gk values? How might such
a vector of gk values change under the action of tree rearrangement operations? These
are commonly used to heuristically navigate through the space of trees in the process of
inferring phylogenetic trees from sets of characters [10]; see [4] for similar questions.

Acknowledgements

Ruben Meuwese was supported by the Dutch Research Council (NWO) KLEIN 1 grant
Deep kernelization for phylogenetic discordance, project number OCENW.KLEIN.305.

References

[1] N. Alexeev and M. Alekseyev. Combinatorial scoring of phylogenetic trees and
networks based on homoplasy-free characters. Journal of Computational Biology,
25(11):1203–1219, 2018.

[2] B. Allen and M. Steel. Subtree transfer operations and their induced metrics on
evolutionary trees. Annals of Combinatorics, 5:1–15, 2001.

[3] E. Bachoore and H. Bodlaender. Convex recoloring of leaf-colored trees. Utrecht
University technical report, 2006.

[4] D. Bryant. The splits in the neighborhood of a tree. Annals of Combinatorics,
8(1):1–11, 2004.

[5] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Incorporated, 2004.

[6] M. Fischer and S. Kelk. On the maximum parsimony distance between phylogenetic
trees. Annals of Combinatorics, 20(1):87–113, 2016.

the electronic journal of combinatorics 29(1) (2022), #P1.50 16

[7] W. Fitch. Toward defining the course of evolution: minimum change for a specific
tree topology. Systematic Zoology, 20(4):406–416, 1971.

[8] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, 1989.

[9] J. Hartigan. Minimum mutation fits to a given tree. Biometrics, pages 53–65, 1973.

[10] K. St John. The shape of phylogenetic treespace. Systematic Biology, 66(1):e83,
2017.

[11] S. Kannan and T. Warnow. A fast algorithm for the computation and enumeration
of perfect phylogenies. SIAM Journal on Computing, 26(6):1749–1763, 1997.

[12] S. Kelk and G. Stamoulis. A note on convex characters, fibonacci numbers and
exponential-time algorithms. Advances in Applied Mathematics, 84:34–46, 2017.

[13] S. Moran and S. Snir. Efficient approximation of convex recolorings. Journal of
Computer and System Sciences, 73(7):1078–1089, 2007.

[14] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.

[15] M. Steel. Phylogeny: Discrete and Random Processes in Evolution. SIAM, 2016.

[16] R. van Wersch, S. Kelk, S. Linz, and G. Stamoulis. Reflections on kernelizing and
computing unrooted agreement forests. Annals of Operations Research, 309(1):425–
451, 2022.

the electronic journal of combinatorics 29(1) (2022), #P1.50 17

	Introduction
	Preliminaries
	Caterpillars maximize gk(T) for every k 1
	Fully k-loaded trees minimize gk for every k
	Applications
	Future work

