
Ramsey numbers of fans and large books

Meng Liu∗

School of Mathematical Sciences
Anhui University

Hefei, China

liumeng@ahu.edu.cn

Yusheng Li†

School of Mathematical Sciences
Tongji University
Shanghai, China

li yusheng@tongji.edu.cn

Submitted: Sep 22, 2021; Accepted: Feb 21, 2022; Published: Mar 25, 2022

c©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For graphs G and H, the Ramsey number R(G,H) is the minimum integer N
such that any red/blue edge coloring of KN contains either a red G or a blue H. Let
G +H be the graph obtained from vertex disjoint G and H by adding new edges
connecting G and H completely, Fm = K1 + mK2 and Bp(n) = Kp + nK1. It is
shown R(Fm, Bp(n)) = 2(n+ p− 1) + 1 for fixed m, p and large n.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction

Our notation is standard. For positive functions f(n) and g(n) we write that f(n) !
O(g(n)) if there exists a positive constant c so that f(n) ! cg(n) and that f(n) " Ω(g(n))
if g(n) ! O(f(n)) for all sufficiently large n. We write f(n) = Θ(g(n)) if Ω(g(n)) ! f(n) !
O(g(n)).

For graphs G and H, the Ramsey number R(G,H) is the minimum N such that any
red/blue edge coloring of KN contains either a red G or a blue H. The following is a
celebrated result of Chvátal for tree Tn of order n and complete graph Km of order m.

Theorem 1 ([5]). Let m,n " 1 be integers. Then R(Km, Tn) = (m− 1)(n− 1) + 1.

Let χ(F ) be the chromatic number of F , and s(F ) the minimum size of a color class
over all proper vertex colorings of F with χ(F ) colors. Burr observed following general
lower bound.
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Lemma 2 ([3]). Let H be a connected graph of order |H| " s(F ). Then

R(F,H) " (χ(F )− 1)(|H|− 1) + s(F ).

Burr defined H to be F -good if the equality in Lemma 2 holds. Thus Theorem 1 tells
us that Tn is Km-good. Many results on Ramsey numbers can be found in the dynamic
survey [28].

For vertex disjoint graphs G1 and G2, denote by G1 ∪G2 the union of G1 and G2, and
G1 + G2 the graph obtained from G1 ∪ G2 by adding new edges to connect G1 and G2

completely. Call G1 ∪G2 and G1 +G2 the union and the joint of G1 and G2. Let mG be
the union of m disjoint copies of G. Call Fn = K1 + nK2 a fan, and Bp(n) = Kp + nK1

a p-book, in which the given p-clique is called the base and the n additional vertices are
called the pages. The number n of pages of Bp(n) is said to be the size of the p-book.
The largest book size of a p-book in a graph G is denoted by bs(p)(G).

Books and fans play central roles in Ramsey theory, and many important questions
and results concern the Ramsey numbers of books and fans versus other natural classes
of graphs, see, e.g., [4, 6, 7, 11, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29].

The Ramsey numbers involving only books and fans are pairs of (book,book), (fan,fan)
and (book,fan). Rousseau and Sheehan [29] proved that

R(B2(m), B2(n)) ! m+ n+ 2 + 2
!

(m2 +mn+ n2)/3.

Furthermore, if 4n+ 1 is a prime power, then R(B2(n), B2(n)) = 4n+ 2.
Conlon [6] shown that for fixed p

R(Bp(n), Bp(n)) = (2p + o(1))n

as n → ∞, for which the small term o(1) is shown to be O[(log log log n)−1/25] in Conlon,
Fox and Wigderson [7].

For pair of (fan,fan), Chen, Yu and Zhao [4] proved

9n

2
− 5 ! R(Fn, Fn) !

11n

2
+ 6

for all positive n.
For different type graphs, a general result on Ramsey goodness [17, 23, 27] is as follows.

Theorem 3 ([17, 23, 27]). Let G and H be graphs. If m is fixed and n is large, then
Km + nH is (K2 +G)-good.

The most important corollary of Theorem 3 is the goodness of large Fm on fixed Bp(n).

Corollary 4. Let n, p " 1 be fixed integers. Then Fm is Bp(n)-good if m is large.

Among these results, we shall add one that is on goodness of large books on fixed fans.

Theorem 5. Let m, p " 1 be fixed integers. If n is large, then the Ramsey number

R(Fm, Bp(n)) = 2(n+ p− 1) + 1,

namely, Bp(n) is Fm-good.
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2 Lemmas

The following is Stability Theorem due to Erdős and Simonovits [9, 10, 12, 30], in which
E(H) is the edge set of H and e(H) = |E(H)|, and dU(x) = |NG(x) ∩ U | for U ⊆ V (G).
The stability theorem is one of tools for the proof of Theorem 5.

Lemma 6. Let G be a given “forbidden” graph with χ(G) = p+1. For every ξ > 0 there
exist δ = δ(ξ) > 0 and n0 = n0(ξ) > 0 such that if H is a graph of order N > n0 and
e(H) > 1

2p
(p− 1)N2 − δN2 that does not contain G, then there exists a partition of V (H)

into classes C1, C2, . . . , Cp such that

• N/p− ξN < |Ci| < N/p+ ξN for each i = 1, 2, . . . , p;

• all but at most ξN2 pairs {x, y} with x ∈ Ci, y ∈ Cj (i ∕= j) belong to E(H);

• at most ξN2 pairs {x, y} with x, y in the same Ci belong to E(H);

• no vertex x ∈ Ci such that dCi
(x) > dCj

(x) (i ∕= j) for each i = 1, 2, . . . , p.

Lemma 6 describes how a large graph H with forbidden G is similar to Kk(N/p) if
e(H) is close to e(Kk(N/p)), where N = |H| and χ(G) = p+ 1.

Another tool for the proof of Theorem 5 is the regularity lemma of Szemerédi. For
the sake of completeness we introduce some notions.

Let G be a graph. If A,B ⊂ V (G) are nonempty disjoint sets, we write e(A,B) for

the number of edges of G between A and B, and call d(A,B) = e(A,B)
|A||B| the density of the

pair (A,B).
For ε > 0, a pair (A,B) of nonempty disjoint sets A,B ⊂ V (G) is called to be ε-regular

if
|d(A,B)− d(X, Y )| < ε,

whenever X ⊂ A, Y ⊂ B such that |X| " ε|A| and |Y | " ε|B|.
We shall use the following version of Szemerédi’s Regularity Lemma.

Lemma 7 ([16, 31]). Let l " 1 and ε > 0. There exists M = M(ε, l) such that, for every

graph G of large order n, there exists a partition V (G) =
k"

i=0

Vi satisfying l ! k ! M and

• |V0| < εn, |V1| = |V2| = · · · = |Vk|;

• all but at most εk2 pairs (Vi, Vj), i, j ∈ [k], are ε-regular.

We also need the following result of Erdős.

Lemma 8 ([8]). Given an integer p " 2 and a graph F of order m, there exists a constant
cm,p > 0 such that if G is an F -free graph of order n " R(F,Kp), then G contains at least
cm,pn

p independent p-sets.

The next lemma gives a lower bound on the number of p-cliques in a graph consisting
of several dense ε-regular pairs sharing a common part.
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Lemma 9 ([16]). Let 0 < ε < d ! 1 and (d − ε)p−2 > ε. Suppose H is a graph and
V (H) = A ∪B1 ∪ · · · ∪Bk is a partition with |A| = |B1| = · · · = |Bk| such that for every
i with 1 ! i ! k, the pair (A,Bi) is ε-regular with e(A,Bi) " d|A||Bi|. If t is the number
of the p-cliques in A, then there are at least

k|A|(t− εp|A|p)(d− ε)p

(p+ 1)-cliques of H which have exactly p vertices in A.

The following is a special form of blow-up lemma [15] due to Komlós, Sárközy and
Szemerédi, in which G is a kind of blow-up of F . The “blow-up” in Lemma 10 means to
replace each vertex of F by additional m vertices and each edge of F by an edge set of
edge density d instead of Km,m.

Lemma 10 ([16]). Let 0 < ε < d < 1 be real numbers and F be a graph. For a positive
integer m, let us construct a graph G by replacing every vertex of F by m vertices, and
replacing the edges of F with ε-regular pairs of density at least d. Let H be a subgraph
of F with h vertices and maximum degree ∆ > 0. If ε ! (d − ε)∆/(∆ + 2), then H is a
subgraph of G.

The following is Erdős-Stone theorem [13], a fundamental theorem in extremal graph
theory. Sharpening this result, Bollobás and Erdős [2] proved that t " Ω(log n).

Lemma 11. Let k " 2 be an integer and ε > 0. Then there is n0 = n0(k, ε) such that if
F is a graph of order n " n0 with

e(F ) "
#
k − 2

k − 1
+ ε

$#
n

2

$
,

then F contains Kk(t) for some t " Ω(log n).

3 Proof of Theorem 5

This section is devoted to the proof of Theorem 5. To do so, we need another lemma
[1] as follows.

Lemma 12. If m " 1 and n " 2, then

R(Kn,mK2) = n+ 2m− 2.

Proof of Theorem 5. Let ζ > 0 be sufficiently small, and let ξ ≪ ζ be as in
Lemma 6 and cm,p be as in Lemma 8. Let N = 2(n + p − 1) + 1. It suffices to show
R(Fm, Kp + nK1) ! N by Lemma 2. Thus we shall show that any red/blue edge coloring
of KN yields either a red Fm or a blue Kp + nK1 if n is large.
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Suppose that there is a coloring that contains neither a red Fm nor a blue Kp + nK1.
We shall find a contradiction which proves Theorem 5.

Let R and B denote the red graph and the blue graph, respectively. Let dR(v) and
dB(v) be the red degree and the blue degree of v, respectively.

Claim 1. e(R) " (1
4
− o(1))N2.

Proof of Claim 1. The proof of Claim 1 is very similar to that of Nikiforov and
Rousseau [23] although there are some difference when using Lemma 10 to embed Fm

instead of Km in [23], so we shall briefly outline it as follows. For some properly selected
ε, applying Lemma 7, we partition all but εN vertices of R into k sets V1, V2, . . . , Vk of
equal cardinality such that almost all pairs (Vi, Vj) are ε-regular. We shall admit a pair
(Vi, Vj) as dense ε-regular if the pair is ε-regular with edge density at least c for a constant
c > 0. We may assume that the number of dense ε-regular pairs (Vi, Vj) in R is no more

than k2

4
, since otherwise, from Lemma 10 and Lemma 11, R will contain a Fm. Therefore,

there are at least (1
4
+ o(1))k2 dense ε-regular pairs (Vi, Vj) in B. From Lemma 8, it

follows that the number of blue p-cliques in any of the sets V1, . . . , Vk is Θ(Np). Consider
the size of the p-books in B, each of which has its base in a single Vi. From Lemma 9,
for every dense ε-regular pair (Vi, Vj) in B, almost every vertex in Vj is a page of such a
book. Also each ε-regular pair (Vi, Vj) whose density is not very close to 1 in R contributes
substantially many additional pages to such books. Precise estimations show that either
bs(p)(B) > N/2 or else the number of all ε-regular pairs (Vi, Vj) with density close to 1 in
R is at least (1

4
− o(1))k2. Thus the size of R is at least (1

4
− o(1))N2.

Claim 1 says that the edge density condition for Lemma 6 is satisfied by the red graph
for arbitrary ξ > 0. In particular, with the forbidden graph Fm, Lemma 6 shows that if
n is sufficiently large, then there is a partition of the vertex set of colored KN into two
classes C1, C2 such that

• N/2− ξN < |Ci| < N/2 + ξN for each i = 1, 2;

• all but at most ξN2 pairs {x, y} with x ∈ C1, y ∈ C2 belong to E(R);

• at most ξN2 pairs {x, y} with x, y in the same Ci belong to E(R);

• no vertex x ∈ Ci such that dCi
(x) > dCj

(x) (i ∕= j) for each i = 1, 2.

We define a subset C ′
i of Ci as

C ′
i = {x ∈ Ci | dR(x, C3−i) ≧ (1− 2

!
ξ)|C3−i|},

where dR(x, C3−i) = |NR(x) ∩ C3−i|, which is the number of red neighbors of x in the
other class.

Claim 2. |C ′
i| ≧ (1− 4

√
ξ)|Ci| for i = 1, 2.

Proof of Claim 2. We suppose that |C ′
i| < (1− 4

√
ξ)|Ci|, then we have that

|Ci\C ′
i| > 4

!
ξ|Ci| ≧ 4

!
ξ(1/2− ξ)N.
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Any x ∈ Ci\C ′
i satisfies

dB(x, C3−i) ≧ 2
!

ξ|C3−i| ≧ 2
!

ξ(1/2− ξ)N.

Thus the number of blue edges between C1 and C2 is at least

4
!

ξ(1/2− ξ)N · 2
!

ξ(1/2− ξ)N = 8ξ(1/2− ξ)2N2 > ξN2,

which is a contradiction. □
We now partition Ci\C ′

i into two subsets Zi1 and Zi2 for i = 1, 2 such that

Zi1 = {w ∈ Ci\C ′
i : dR(w,C

′
3−i) " ζ|C ′

3−i|}.

Claim 3. Any vertex w ∈ Zi1 satisfies dR(w,C
′
i) ! m− 1.

Proof of Claim 3. By symmetry, we will prove the assertion for i = 1. Suppose to the
contrary, there exists a vertex w ∈ Z11 such that dR(w,C

′
1) " m. Choose m vertices from

NR(w,C
′
1), denote them by M1 = {y11, . . . , y1m}. Note that dR(y, C2) " (1−2

√
ξ)|C2| for

each y ∈ M1, so we obtain |∩y∈M1 NR(y, C2)| " (1− 2m
√
ξ)|C2|. Since dR(w,C ′

2) " ζ|C ′
2|

and 0 < ξ ≪ ζ < 1 are sufficiently small numbers, it follows that

|NR(w,C
′
2) ∩ (∩y∈M1NR(y, C2))| " ζ|C ′

2|+ (1− 2m
!

ξ)|C2|− |C ′
2| " m

for large n. So we can choose m vertices from NR(w,C
′
2)∩ (∩y∈M1NR(y, C2)) to get a red

K1,m,m, thus we find a red Fm, which is a contradiction. □
Claim 4. |Zi2| ! a, where a = R(Fm, Kp)− 1.
Proof of Claim 4. Suppose to the contrary that |Zi2| " a+1. As we know, each vertex

w ∈ Zi2 satisfies
dR(w,C

′
3−i) < ζ|C ′

3−i|.
Then we have that

dR(w,C
′
i) ! dR(w,Ci) ! dR(w,C3−i) ! dR(w,C

′
3−i) + |C3−i\C ′

3−i| < 2ζ|C ′
3−i|

for large n. Thus

dB(w,C
′
i ∪ C ′

3−i) " |C ′
i|+ |C ′

3−i|− 1− (dR(w,C
′
i) + dR(w,C

′
3−i))

" |C ′
i|+ |C ′

3−i|− 3ζ|C ′
3−i|

> (1− 3ζ)(|C ′
i|+ |C ′

3−i|).

Since |Zi2| " R(Fm, Kp), and there is no red Fm from the assumption, we can find a
blue clique of order p in Zi2, these p vertices have at least

(1− 3pζ)(|C ′
i|+ |C ′

3−i|) " n

blue neighbors in common in C ′
i ∪ C ′

3−i for large n. This forces a blue Kp + nK1, which
is a contradiction. □
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Since there is no red Fm, we have that NR(x, C
′
1) contains no red mK2, where x ∈ C ′

2.
By Lemma 12 and Claim 2, we can find a blue clique on X ⊂ NR(x, C

′
1) such that

|X| " (1− 6
!

ξ)|C1|− 2(m− 1) " (1− 7
!

ξ)|C1|.

for large n. Thus we can take a blue clique on X ⊂ C ′
1 with |X| = (1− 7

√
ξ)|C1| and put

the other vertices in C ′
1 into Z11. With a similar proof to that in Claim 3, we know that

any vertex u ∈ C ′
1 satisfies dR(u, C

′
1) ! m − 1, which is a basic fact that we shall use in

the following proof. Similarly, we can find a blue clique on Y ⊂ NR(y, C
′
2) where y ∈ C ′

1,
such that

|Y | " (1− 6
!

ξ)|C2|− 2(m− 1) " (1− 7
!

ξ)|C2|
for large n. Thus we can take a blue clique on Y ⊂ C ′

2 with |Y | = (1− 7
√
ξ)|C2| and put

the other vertices in C ′
2 into Z21. With a similar proof to that in Claim 3, we know that

any vertex v ∈ C ′
2 satisfies dR(v, C

′
2) ! m − 1, which is a basic fact that we shall use in

the following proof.
Thus we get a new partition

V (KN) = C1 ∪ C2 = (C ′
1 ∪ Z11 ∪ Z12) ∪ (C ′

2 ∪ Z21 ∪ Z22)

= (X ∪ Z11 ∪ Z12) ∪ (Y ∪ Z21 ∪ Z22)

= (X ∪ Z11 ∪ Z22) ∪ (Y ∪ Z12 ∪ Z21).

Without loss of generality, we may assume |X ∪ Z11 ∪ Z22| " p+ n. We shall construct a
blue Kp + nK1 as follows.

Noting that any vertex x ∈ Z11 satisfies dR(x,X) ! m, and that any vertex y ∈ Z22

satisfies dR(y,X) ! ζ|C ′
1|, we can find a subset X ′ ⊂ X such that any vertex of X ′ is

blue-adjacent to all vertices of Z11 ∪ Z22 with

|X ′| " |X|−m|Z11|− ζ|C ′
1| · |Z22|

" (1− 7
!

ξ)|C1|−m · 7
!

ξ|C1|− a · ζ|C1| " p

for small ζ and large n. Then X ′ is blue adjacent to all vertices of (X\X ′) ∪ Z11 ∪ Z22.
Hence we can find a blue Kp + nK1, which is a contradiction. □
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