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Abstract

An (n, r, s)-system is an r-uniform hypergraph on n vertices such that every
pair of edges has an intersection of size less than s. Using probabilistic arguments,
Rödl and Šiňajová showed that for all fixed integers r > s > 2, there exists an
(n, r, s)-system with independence number O

(
n1−δ+o(1)

)
for some optimal constant

δ > 0 only related to r and s. We show that for certain pairs (r, s) with s 6 r/2
there exists an explicit construction of an (n, r, s)-system with independence number
O
(
n1−ε

)
, where ε > 0 is an absolute constant only related to r and s. Previously

this was known only for s > r/2 by results of Chattopadhyay and Goodman.

Mathematics Subject Classifications: 05B05,05C69,05D40

1 Introduction

For a finite set V and a positive integer r denote by
(
V
r

)
the collection of all r-subsets of

V . An r-uniform hypergraph (r-graph) H is a family of r-subsets of finite set which is
called the vertex set of H and is denoted by V (H). We use |H| to denote the number
of edges in H. A set I ⊂ V (H) is independent in H if it contains no edge of H. The
independence number of H, denoted by α(H), is the maximum size of an independent set
in H.

For integers n > r > s > 1 an (n, r, s)-system (also called design) is an r-graph on
n vertices such that every pair of edges has an intersection of size less than s. Rödl and
Šiňajová [13] proved a lower bound for the independence number of an (n, r, s)-system, and
moreover, they showed that there exists an (n, r, s)-system whose independence number
achieves the lower bound up to a multiplicative constant factor.
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Theorem 1 (Rödl–Šiňajová [13]). For fixed integers r > s > 2 there exists a constant c =

c(r, s) such that every (n, r, s)-system has independence number at least cn
r−s
r−1 (log n)

1
r−1 .

Moreover, there exists a constant C = C(r, s) such that there exists an (n, r, s)-system

with independence number at most Cn
r−s
r−1 (log n)

1
r−1 for every integer n > r.

Definition 2. For fixed integers r > s > 1 we say there is an explicitly construction of an
(n, r, s)-system with property P if there exists an algorithm A such that for every integer
n as input, A runs in time poly(n) and outputs an (n, r, s)-system with property P .

Explicit constructions of (n, r, s)-systems with certain properties are very useful in
theoretical computer science. For example, in the seminal work of Nisan and Wigderson
[10], dense (n, r, s)-systems are used to construct pseudorandom generators (PRGs) (see
also [17, 12] for more applications). More recently, explicit constructions of (n, r, s)-
systems with small independence number were used to construct extractors for adversarial
sources [4, 3].

In this note, we focus on the explicit constructions of (n, r, s)-systems with small
independence number. Rödl and Šiňajová’s proof of the existence of an (n, r, s)-system
with small independence number uses the Lovász local lemma, and hence it does not
provide an explicit way to construct them. Perhaps the first explicit construction of an
(n, 3, 2)-system (also called a Steiner triple system) with independence number O(n1−ε)
for some absolute constant ε > 0 is due to Chattopadhyay, Goodman, Goyal, and Li [4].
Their proof uses results about cap sets (see [5, 6]).

Theorem 3 (Chattopadhyay–Goodman–Goyal–Li [4]). There exists a constant C > 1
such that for every integer n > 3 there exists an explicit construction of an (n, 3, 2)-
system with independence number at most Cn0.9228.

Later, using results about linear codes [8, 2] and Sidorenko’s recent bounds on the
size of sets in Zn2 containing no r elements that sum to zero [14, 15], Chattopadhyay and
Goodman [3] extended Theorem 3 to all integers r > s > 2 with s > dr/2e.

Theorem 4 (Chattopadhyay–Goodman [3]). There exists a constant C > 1 such that for
every integer s > 2 and every even integer r > s there exists an explicit construction of

an (n, r, s)-system with independence number at most Cr4n
2(r−s)

r .

Remark. For odd r they showed that there exists an explicit construction of an (n, r, s)-

system with independence number at most C(r + 1)4n
2(r+1−s)

r+1 .
Our main results in this note extend Theorem 3 for certain values of r and s in the

range s < dr/2e which was not addressed by Theorem 4.
Our proof of the first theorem below is based on a recent result about the maximum

size of a set in Zn6 that avoids 6-term arithmetic progressions [11].

Theorem 5. There exists a constant C > 0 such that for every integer r ∈ {4, 5, 6}
and every integer n > r there exists an explicit construction of an (n, r, 2)-system H with
α(H) 6 Cn0.973.
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Using a lemma about the independence number of the product of two hypergraphs we
are able to extend Theorem 5 to a wider range of r and s.

For every integer s = 3`14`25`36`4 + 1, where `1, `2, `3, `4 > 0 are integers, define

R(s) =


6(s− 1) if `1 = `2 = `3 = 0

5(s− 1) if `1 = `2 = 0 and `3 6= 0

4(s− 1) if `1 = 0 and `2 6= 0

3(s− 1) if `1 6= 0

Theorem 6. For every integer s of the form 3`14`25`36`4 + 1, where `1, `2, `3, `4 > 0
are integers, and every integer r satisfying 2s 6 r 6 R(s) there exist constants C =
C(`1, `2, `3, `4), ε = ε(`1, `2, `3, `4) > 0 such that for every integer n > r there exists an
explicit construction of an (n, r, s)-system with independence number at most Cn1−ε.

The following result focusing on (n, 5, 4)-systems uses a different argument and it
improves the bound O(n2/3) given by Theorem 4.

Theorem 7. There exists a constant C > 0 such that for every integer n > 5 there
exists an explicit construction of an (n, 5, 4)-systems with independence number at most
Cnlog3 2 6 Cn0.631.

We prove Theorems 5 and 6 in Section 2, and prove Theorem 7 in Section 3.

2 Proofs of Theorems 5 and 6

2.1 Proof of Theorems 5

Let us first introduce a construction of r-graphs based on r-term arithmetic progressions
(r-AP) over Zkr . We do not allow trivial progressions so an r-AP has r distinct elements.
Construction A(r, k). Let r > 3 and k > 1 be integers. The hypergraph A(r, k) is the
r-graph with vertex set V = Zkr and edge set{

{v1, . . . , vr} ∈
(
V

r

)
: v1, . . . , vr form an r-AP

}
.

Remarks.

• It is clear that A(r, k) can be constructed in time poly
(
rk
)

for all integers r, k > 1.

• Even though we defined A(r, k) for all integers r > 3, in the proof of Theorem 5 we
will consider only the case r = 6.

The following easy proposition shows that for every integer r > 3 the hypergraph
A(r, k) is linear, i.e. every pair of edges has an intersection of size at most one.

Proposition 8. Let r > 3, k > 1 be integers and n = rk. Then A(r, k) is an (n, r, 2)-
system.
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Proof of Proposition 8. Suppose to the contrary that there exist two distinct edges E,E ′ ∈
H such that |E ∩ E ′| > 2. Assume that E = {a, a + d, . . . , a + (r − 1)d} for some
a, d ∈ Zkr and d is not the zero vector. Without loss of generality we may assume that
a ∈ E ∩ E ′ (otherwise we can choose an arbitrary element in E ∩ E ′ and rename it as a)
and assume that E ′ = {a, a + id, . . . , a + (r − 1)id} for some integer i ∈ [r − 1]. Since
|E ′| = r, the set {0, id (mod r), . . . , (r − 1)id (mod r)} has size r. Therefore, sets {0, id
(mod r), . . . , (r − 1)id (mod r)} and {0, 1, . . . , r − 1} are identical, which implies that
E = E ′, a contradiction. Therefore, A(r, k) is an (n, r, 2)-system.

The next proposition shows that in order to prove Theorem 5 it suffices to find an
explicit construction of an (n, 6, 2)-system with independence number O(n1−ε).

Proposition 9. Suppose that there exists an (n, r, s)-system with independence number
at most α. Then there exists an (n, r′, s)-system with independence number at most α for
every integer r′ ∈ [s+ 1, r].

Proof. Let H be an (n, r, s)-system with independence number at most α. Let V = V (H).
Fix an integer r′ ∈ [s+1, r]. Let the r′-graph H′ be obtained from H in the following way:
for every edge E ∈ H replace it by an arbitrary r′-set E ′ ⊂ E. It is clear that H′ is an
r′-graph on V . Now suppose that S ⊂ V is a set of size strictly greater than α. Then, by
assumption, there exists an edge E ∈ H such that E ⊂ S. It follows from the definition
of H′ that there exists E ′ ∈ H such that E ′ ⊂ E ⊂ S. So, S is not an independent set in
H′, which implies that α(H′) 6 α.

Another ingredient we need for the proof of Theorem 5 is the following result due to
Pach and Palincza [11].

Theorem 10 (Pach–Palincza [11]). Suppose that k is a sufficiently large integer. Then
every set of Zk6 of size greater than (5.709)k contains a 6-AP.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. By Proposition 9, it suffices to prove that there exists an (n, 6, 2)-
system H with α(H) = O(n0.973).

First, for all integers n of the form 6k we let the construction be H = A(6, k). It
follows from Proposition 8 that H is an (n, 6, 2)-system. On the other hand, it follows
from the definition of A(6, k) that a set S ⊂ V is independent in A(6, k) iff it does not
contain a 6-AP. So, by Theorem 10, |S| 6 (5.709)k. Therefore, α(H) 6 (5.709)k 6 n0.973.

Now suppose that n is not of the form 6k. Then let k be the smallest integer such that
n 6 6k. Let H be any n-vertex induced subgraph of A(6, k). Then α(H) 6 α(A(6, k)) 6
(5.709)k 6 6n0.973.
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2.2 Proof of Theorem 6

Given two hypergraphs H1 and H2, the direct product of H1 and H2, denoted by H1�H2,
is the hypergraph on V (H1)× V (H2) with edge set

{E1 × E2 : E1 ∈ H1 and E2 ∈ H2} ,

where × denotes the usual cartesian product of sets.
Remark. It is clear that there exists an algorithm A′ such that for every input (H1,H2),
A′ runs in time poly (|H1| · |H2|) and outputs H1�H2.

One nice property of the operation defined above is that the direct product of two
designs is still a design.

Lemma 11. Suppose that H1 is an (n1, r1, s1)-system and H2 is an (n2, r2, s2)-system.
Then H1�H2 is an (n1n2, r1r2,max{r1(s2 − 1) + 1, r2(s1 − 1) + 1})-system.

Proof. Let n = n1n2, r = r1r2, and s = max{r1(s2 − 1) + 1, r2(s1 − 1) + 1}. It is
clear that H1�H2 is an r-graph on n vertices. So it suffices to show that every s-set of
V (H1)× V (H2) is contained in at most one edge in H1�H2.

Fix an s-set S ⊂ V (H1) × V (H2). Suppose to the contrary that there exist two
distinct edges E,E ′ ∈ H1�H2 such that S ⊂ E ∩ E ′. Assume that E = E1 × E2

and E ′ = E ′1 × E ′2, where E1, E
′
1 ∈ H1, E2, E

′
2 ∈ H2, and (E1, E2) 6= (E ′1, E

′
2). Since

E ∩E ′ = (E1 ∩E ′1)× (E2 ∩E ′2), we have |E ∩E ′| = |E1 ∩E ′1| × |E2 ∩E ′2|. On the other
hand, since (E1, E2) 6= (E ′1, E

′
2), we have either E1 6= E ′1 or E2 6= E ′2. In the former case

we have |E ∩E ′| = |E1 ∩E ′1| × |E2 ∩E ′2| 6 r2(s1 − 1) < s, and in the latter case we have
|E ∩ E ′| = |E1 ∩ E ′1| × |E2 ∩ E ′2| 6 r1(s2 − 1) < s, both contradict the assumption that
S ⊂ E ∩ E ′ and |S| = s.

Using Lemma 11 we obtain the following corollary.

Corollary 12. Let (`1, `2, `3, `4) ∈ N4, s = 3`14`25`36`4 + 1, m ∈ N, mi,j ∈ N for i ∈ [`j]

and j ∈ [4], and M = m
∏4

j=1

∏`j
i=1mi,j. Suppose that Hi,j is an (mi,j, 3, 2)-system for

i ∈ [`j] and j ∈ [4], and G = �4
j=1�

`j
i=1Hi,j. Then the following hold.

(1) Suppose that `1 6= 0 and H is an (m, 3, 2)-system. Then H�G is an (M, 3(s−1), s)-
system.

(2) Suppose that `1 = 0, `2 6= 0, and H is an (m, 4, 2)-system. Then H�G is an
(M, 4(s− 1), s)-system.

(3) Suppose that `1 = `2 = 0, `3 6= 0, and H is an (m, 5, 2)-system. Then H�G is an
(M, 4(s− 1), s)-system.

(4) Suppose that `1 = `2 = `3 = 0, `4 6= 0, and H is an (m, 6, 2)-system. Then H�G is
an (M, 6(s− 1), s)-system.
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The proof of Corollary 12 requires some simple but tedious calculations and we omit
it here. Corollary 12 explains the reason we define R(s) in the first section.

Next, we will show that the independence number of the direct product of two hy-
pergraphs with small independence number is still relatively small. To prove this we will
use the following bipartite version of the Dependent random choice lemma. Its proof is
basically the same as proofs in [7, 9, 1, 16], and for the sake of completeness we include
it here.

For a graph G and a set T ⊂ V (G) we use N(T ) to denote the common neighbors of
T in G.

Lemma 13 (Dependent random choice, see [7, 9, 1, 16]). Let a,m, n1, n2, r be positive
integers and d1 > 0 be a real number. Let G = G[V1, V2] be a bipartite graph with |V1| = n1,
|V2| = n2, and |G| > d1n1. If there exists a positive integer t such that

n1d
t
1

nt2
−
(
n1

r

)(
m

n2

)t
> a.

Then there exists a subset U ⊂ V (G) of size at least a such that every set of r vertices in
U has at least m common neighbors.

Proof. Pick a set T of t vertices from V2 uniformly at random with repetition. Set A =
N(T ) ⊂ V1 and let X denote the cardinality of A. By the linearity of expectation,

E[X] =
∑
v∈V1

(
|N(v)|
n2

)t
= n−t2

∑
v∈V1

|N(v)|t > n−t2 n1

(∑
v∈V1 |N(v)|
n1

)t
>
n1d

t
1

nt2
.

Let Y be the random variable counting the number of subsets S ⊂ A of size r with fewer
than m common neighbors. For a given such subset S the probability that it is a subset

of A equals
(
|N(S)|
n2

)t
. Since there are at most

(
n1

r

)
subsets S ⊂ V1 of size r for which

|N(S)| < m, it follows that

E[Y ] 6

(
n1

r

)(
m

n2

)t
.

By the linearity of expectation,

E[X − Y ] >
n1d

t
1

nt2
−
(
n1

r

)(
m

n2

)t
> a.

Hence there exists a choice of T for which the corresponding set A = N(T ) satisfies
X − Y > a. Deleting one vertex from each subset S of A of size r with fewer than m
common neighbors. We let U be the remaining subset of A. The set U has at least
X − Y > a vertices and all subsets of size r have at least m common neighbors.

The following lemma gives an upper bound for the independence number of the direct
product of two hypergraphs.
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Lemma 14. Suppose that H1 is an r1-graph on n1 vertices with α(H1) < n1/f(n1) and H2

is an r2-graph on n2 vertices with α(H2) < n2/g(n2) for some real numbers f(n1), g(n2) >
1. Then H1�H2 is an r1r2-graph on n1n2 vertices with α(H1�H2) < n1n2/h(n1, n2),

where h(n1, n2) = (f(n1)/2)1/t and t =

⌈
log(nr1−1

1 f(n1)/r1!)
log g(n2)

⌉
.

Proof. Let f = f(n1), g = g(n2), t = d log(n
r1−1
1 f/r1!)
log g

e, h = h(n1, n2) = (f/2)1/t, d1 = n2/h,

m = n2/g, and a = n1/f . Let S ⊂ V (H1)×V (H2) be a set of size d1n1 = n1n2/h. Define
an auxiliary bipartite graph G = G[V1, V2] with V1 = V (H1) and V2 = V (H2), and u ∈ V1,
v ∈ V2 are adjacent iff (u, v) ∈ S. Since

n1d
t
1

nt2
−
(
n1

r1

)(
m

n2

)t
− a > n1

ht
− nr11
r1!

1

gt
− n1

f

= n1

(
2

f
− nr1−11

r1!

1

gt
− 1

f

)
> n1

(
2

f
− 1

f
− 1

f

)
= 0,

it follows from Lemma 13 that there exists a set U ⊂ V1 of size n1/f such that every
r1-subset of U has at least n2/g common neighbors. Since α(H1) < n1/f , there exists
an r1-subset E1 ⊂ U such that E1 ∈ H1. Let W = N(E1). Since |W | > n2/g > α(H2),
there exists an r2-subset E2 ⊂ W such that E2 ∈ H2. Since every pair {u, v} with u ∈ E1

and v ∈ E2 is an edge in G, the set E1 × E2 is contained in S. This implies that S is
not an independent set in H1�H2 as it contains the edge E1 × E2 ∈ H1�H2. Therefore,
α(H1�H2) < n1n2/h.

Now we are ready to prove Theorem 6. As indicated by Corollary 12 our construction
will be the direct product of some (mi, 3, 2)-systems, (mj, 4, 2)-systems, (mk, 5, 2)-systems,
and (m`, 6, 2)-systems depending on the value of `1, `2, `3, `4, where the choice of integers
mi,mj,mk,m` can be optimized so that the independence number of the resulting con-
struction is as small as possible. In the following proof we will use an inductive argument
to show that this construction has small independence number. In order to keep the
argument simple, we will not try to optimize the choice of integers mi,mj,mk,m`.

Proof of Theorem 6. We prove this theorem by induction on
∑

i∈[4] `i. Theorem 5 shows

that the base case
∑

i∈[4] `i = 0 holds, so we may assume that
∑

i∈[4] `i > 1. Let s =

3`14`25`36`4 + 1, and let us assume, for the sake of simplicity, that `1 > 1 (the other cases
can be proved using a similar argument). By Proposition 9 it suffices to show there is an
explicit construction of an (n,R(s), s)-system with independence number O(n1−ε).

Fix n and let m = d
√
ne, s1 = 3`1−14`25`36`4 + 1, r1 = 3(s1 − 1). By the induc-

tion hypothesis, there exists an explicit construction H1 of an (m, r1, s1)-system with
α(H1) 6 C1m

1−ε1 , where C1 > 0 and ε1 > 0 are constants only related to r1 and s1. On
the other hand, by Theorem 5, there exists an explicit construction H2 of an (m, 3, 2)-
system with α(H2) 6 C2m

1−ε2 , where C2 > 0 and ε2 > 0 are absolute constants. Let
C = C(C1, C2, ε1, ε2) > 0 be a sufficiently large constant, ε = ε(C1, C2, ε1, ε2) > 0 be
a sufficiently small constant (C and ε can be determined from the proof below), and
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let H3 = H1�H2. Then by Lemma 11, H3 is an (m2, 3(s − 1), s)-system. Applying

Lemma 14 to H3 with f(m) = mε1/C1, g(m) = mε2/C2 we obtain t = d log(r1!C1)
logC2

r1−1+ε1
ε2
e,

h(m,m) = (mε1/2C1)
1/t, and α(H3) 6 m2/h(m,m) 6 Cn1−ε (we can choose C > 0 to be

sufficiently large and ε > 0 to be sufficiently small such that the last inequality holds for
all integers n). Finally, to obtain an explicit construction of an (n, 3(s−1), s)-system with
independent number at most Cn1−ε one just needs to take any n-vertex induced subgraph
of H3.

Remark. As we mentioned before, one could change the number of vertices in each design
in the proof above to get a better bound. For example, for (`1, `2, `3, `4) = (2, 0, 0, 0),
Theorem 3 with our proof above gives an (n, 27, 10)-design with independence number
O(n1−ε), where ε ≈ 6.8732× 10−6. On the other hand, if we take the direct production of
three copies of (dn1/3e, 3, 2)-systems with independence number O(n0.9228×1/3), we obtain
an (n, 27, 10)-design with independence number O(n1−ε′), where ε′ ≈ 3.5396× 10−5.

3 (n, 5, 4)-systems

We prove Theorem 7 in this section. We will show how to construct an (n, 5, 4)-system
with small independence number inductively. More specifically, assuming that we have
an (m, 5, 4)-system H with small independence number, we will construct a (3m, 5, 4)-
system H′ with small independence number by first taking three disjoint copies of H,
then embedding the vertex set of each copy of H into some finite field, and finally adding
some crossing edges that satisfy a particular equation. The set of crossing edges we add
will be sparse enough to make sure the resulting construction is a (3m, 5, 4)-system, but
dense enough to make sure the resulting construction has small independence number.

Hk Hk Hk

F2` F2` F2`

a1 b1
a2 b2 c

Figure 1: The induction step for constructing Hk+1 using Hk.

Proof of Theorem 7. We will show that it suffices to choose C = 21. Similar to the
proof of Theorem 5 it suffices to show an explicit construction of an (n, 5, 4)-system with
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independence number at most 7nlog3 2 −
√
2

2−
√
3
n1/2 (this is slightly stronger that what we

need) for all integers n of the form 3k, and we will prove it by induction on k.

For k 6 3 we have 7
(
3k
)log3 2 − √

2
2−
√
3
3k/2 > 3k, so we may assume that k > 4 and

focus on the induction step. Fix an integer k and let Hk be a (3k, 5, 4)-system with

α(Hk) 6 7
(
3k
)log3 2 − √

2
2−
√
3
3k/2 = 7 · 2k −

√
2

2−
√
3
3k/2. Let ` ∈ N such that 2` > 3k > 2`−1.

Let U1, U2, U3 be three pairwise disjoint copies of F2` \ {0}, where F2`
1 is the finite field

of order 2` with characteristic 2. For i ∈ [3] let ψi : V (Hk) → Ui be an injection and let
Vi = ψi(V (Hk)). Let Hk+1 be the 5-graph on V = V1 ∪ V2 ∪ V3 whose edge set is (see
Figure 1)

Hk+1 =

{
{a1, b1, a2, b2, c} ∈

(
V

5

)
: a1, b1 ∈ V1, a2, b2 ∈ V2, c ∈ V3, a1 + b1 · c = a2 + b2 · c

}

∪

⋃
i∈[3]

ψi (Hk)

 .

Claim 15. Hk+1 is a (3k+1, 5, 4)-system.

Proof. Let S = {a, b, c, d} ⊂ V1 ∪ V2 ∪ V3 be a set of size 4. It is clear that if |S ∩ Vi| > 3
for some i ∈ [3] or |S ∩ V3| > 2, then S can be contained in at most one edge of Hk+1. So
we may assume that |S ∩ V1|, |S ∩ V2| 6 2 and |S ∩ V3| 6 1.

Suppose that |S ∩ V1| = |S ∩ V2| = 2, and without loss of generality we may assume
that S ∩ V1 = {a, b} and S ∩ V2 = {c, d}. By the definition of Hk+1, every vertex e ∈ V3
that satisfies {a, b, c, d, e} ∈ Hk+1 must satisfy a+ c · e = b+ d · e or a+ d · e = d+ c · e.
Since both equations yield e = a+b

c+d
(here we used the fact that x − y = x + y holds for

all x, y ∈ F2`), such vertex e is unique. Therefore, S is contained in at most one edge in
Hk+1.

Suppose that |S ∩ V1| = 2 and |S ∩ V2| = |S ∩ V3| = 1. Without loss of generality we
may assume that S ∩ V1 = {a, b}, S ∩ V2 = {c}, and S ∩ V3 = {d}. It is easy to see that
every vertex e ∈ V that satisfies {a, b, c, d, e} ∈ Hk+1 must satisfy

• e ∈ V2, and

• a+ c · d = b+ e · d or a+ e · d = b+ c · d.

Since both a+ c · d = b+ e · d and a+ e · d = b+ c · d imply e = a+b
d

+ c (here we used the
fact that x− y = x+ y holds for all x, y ∈ F2` again), such vertex e is unique. Therefore,
S is contained in at most one edge in Hk+1.

By symmetry, for the other cases one can show that S is contained in at most one
edge in Hk+1. Therefore, Hk+1 is a (3k+1, 5, 4)-system.

Claim 16. α(Hk+1) 6 2
(

7 · 2k −
√
2

2−
√
3
3k/2

)
+
√

2 · 3k/2.
1It is clear that F2` can be constructed in time poly(2`) for every integer ` > 1.
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Proof. Suppose to the contrary that there exists an independent set S ⊂ V of size greater

than 2
(

7 · 2k −
√
2

2−
√
3
3k/2

)
+
√

2 · 3k/2. Let Si = S ∩ Vi and si = |Si| for i ∈ [3]. Since

S is independent in Hk+1, Si must be independent in ψi(Hk). Therefore, si 6 α(Hk) 6
7 · 2k−

√
2

2−
√
3
3k/2 for i ∈ [3] and consequently, si >

√
2 · 3k/2 for i ∈ [3]. Moreover, we have

s1 + s2 > 7 · 2k −
√
2

2−
√
3
3k/2 +

√
2 · 3k/2 and hence,

s1 · s2 >

(
7 · 2k −

√
2

2−
√

3
3k/2

)
·
√

2 · 3k/2 >
√

2

(
7−

√
2

2−
√

3

)
· 2k · 3k/2 > 2 · 3k > 2`.

Fix z ∈ S3. Since s1s2 > 2`, by the Pigeonhole principle, there exists distinct elements
(a1, b1), (a2, b2) ∈ S1×S2 such that a1+b1 ·z = a2+b2 ·z. It is easy to see that a1 6= a2 and
b1 6= b2 since otherwise the equation a1 + b1 · z = a2 + b2 · z would imply (a1, b1) = (a2, b2),
a contradiction. Therefore, |{a1, a2, b1, b2, z}| = 5 and hence, {a1, a2, b1, b2, z} ∈ Hk+1.
However, this implies that S contains an edge in Hk+1, a contradiction.

Remark. We may assume that α(Hk) =
⌈
7 · 2k −

√
2

2−
√
3
3k/2

⌉
by removing some edges

from Hk if necessary. If we let n = 3k+1 and use f(3k) to denote the independence
number of Hk for k ∈ N. Then Claim 16 can be rewritten as

f(n) 6 2f(n/3) +
√

2/3
√
n.

By the master theorem, we have f(n) = O(nlog3 2). This explains the log3 2 in the expo-
nent.

Claim 16 shows that

α(Hk+1) 6 2

(
7 · 2k −

√
2

2−
√

3
3k/2

)
+
√

2 · 3k/2 = 7 · 2k+1 −
√

2

2−
√

3
3(k+1)/2.

This completes the proof of the induction step.
Notice that given Hk the r-graph Hk+1 can be constructed in time poly(|Hk|) +

poly(2`) = poly(3k). So for every integer k > 1 the r-graph Hk can be constructed
in time poly(3k).
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