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Abstract

In a recent work, Keith and Xiong gave a refinement of Glaisher’s theorem by
using a Sylvester-style bijection. In this paper, we introduce two families of colored
partitions, flat and regular partitions, and generalize the bijection of Keith and
Xiong to these partitions. We then state two results, the first at degree one, where
partitions have parts with primary colors, and the second result at degree two for
secondary-colored partitions, using the result of the first paper of this series on
Siladić’s identity. These results allow us to easily retrieve the Frenkel-Kac character

formulas of level one standard modules for the type A
(2)
2n , D

(2)
n+1 and B

(1)
n , and also to

make the connection between the result stated in paper one and the representation
theory.

Mathematics Subject Classifications: 11P84, 05A19, 17B37

1 Introduction

1.1 History

Let n be a positive integer. A partition of n is defined as a non-increasing sequence of
positive integers, called the parts of the partition, and whose sum is equal to n. For
example, the partitions of 5 are

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1, 1, 1).
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A partition identity is a combinatorial identity that links two or several sets of integer
partitions. The study of such identities has interested mathematicians for centuries, dating
back to Euler’s proof that there are as many partitions of n into distinct parts as partitions
of n into odd parts. The Euler distinct-odd identity can be written in terms of q-series
with the following expression:

(−q; q)∞ =
(q2; q2)∞
(q; q)∞

=
1

(q; q2)∞
. (1)

In the latter formula, (x; q)m =
∏m−1

k=0 (1−xqk) for anym ∈ N∪{∞} and x, q such that |q| <
1. We also define for any a1, . . . , as the expression (a1, . . . , as; q)m = (a1; q)m · · · (as; q)m.

We note that while the Euler identity is not difficult to prove by computing the gen-
erating function of both sets of partitions, the bijection that links these sets is not trivial.

In [7], Glaisher bijectively proved the first broad generalization of the Euler identity.
Let m be a positive integer. We define an m-flat partition to be a partition where the
differences between two consecutive parts, as well the smallest part, are less than m, and
an m-regular partition to be a partition with parts not divisible by m. The generalization
of Euler’s identity given by Glaisher, and which makes the connection between m-flat and
m-regular partitions, is stated in the following theorem.

Theorem 1 (Glaisher). For a fixed positive integer n, the following sets of partitions are
equinumerous:

1. the m-regular partitions of n,

2. the partitions of n with fewer than m occurrences for each positive integer,

3. the m-flat partitions of n.

The corresponding q-series is∏
n>1

(1 + qn + q2n + · · ·+ qn(m−1)) =
∏
n>1
m-n

1

(1− qn)
=

(qm; qm)∞
(q; q)∞

. (2)

Another bijective proof of the Euler identity was given by Sylvester [21]. However,
it was a open problem to find a suitable generalization of Sylvester’s bijection for the
Glaisher identity.

This problem was solved, a century after the paper of Sylvester, by Stockhofe in his
Ph.D thesis [20]. In the 90’s, seminal works of Bessenrodt [2], and Pak and Postinkov [16],
related the Sylvester algorithm to the alternating sign sum of integer partitions. They
then gave new refinements of the Euler identity.

In this paper, we focus on a broad refinement of Glaisher’s identity given by Keith and
Xiong [12]. Their proof used a variant of the Sylvester-style bijection given by Stockhofe.
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Theorem 2 (Keith-Xiong). Let m > 2, u1, . . . , um−1 be non-negative integers, and let n
be a positive integer. Then, the number of m-flat partitions of n with ui parts congruent
to i mod m is equal to the number of m-regular partitions of n into ui parts congruent
to i mod m.

The main goal of this second paper is to state two results, beyond the refinement of
Keith-Xiong, that link a general definition of flat partitions and regular partitions given
in terms of weighted words.

1.2 Statement of Results

1.2.1 Generalized flat and regular partitions

We first recall the notion of grounded partitions, introduced by the author and Dousse in
[6].

Let C be a set of colors, and let ZC = {kc : k ∈ Z, c ∈ C} be the set of colored parts.
We here refer to |kc| = k and c(kc) = c respectively as the size and the color of the colored
part kc.

Definition 3. Let � be a binary relation defined on ZC. A generalized colored partition
with relation � is a finite sequence (π0, . . . , πs) of parts, where for all i ∈ {0, . . . , s− 1},
πi � πi+1.

In the following, the quantity |π| = |π0|+ · · ·+ |πs| is the size of the partition π, and
C(π) = c(π0) · · · c(πs) is its color sequence. Note that from a set C, one can build the
colors of degree k as products of k colors in C, for any positive integer k. The set of degree
k colors is denoted Ck, and is equal to {c1 · · · ck : c1, . . . , ck ∈ C}. Therefore, C1 = C refers
to the set of primary colors, and we say that we use weighted words at degree k if the
colors of the parts have degree at most k, i.e if the set of colors equals C1 t · · · t Ck.

We now extend the notion of flatness to the grounded partitions.

Definition 4. Let ε be a function from C2 to Z, called energy. A flat partition with
ground cg and energy ε is a grounded partition with ground cg and the relation mε defined
by

kc mε ld ⇐⇒ k − l = ε(c, d). (3)

These partitions are determined by their sequence of colors as well as the energy ε.
This comes from the fact that for such a partition π = (π0, . . . , πs−1, 0cg), the computation
of the size of πk gives the following relation,

|πk| =
s−1∑
l=k

ε(c(πl), c(πl+1)).

Example 5. A good example of flat partitions are the m-flat partitions. It suffices to
consider the set of colors C = {c0, . . . , cm−1}, cg = c0 and define the energy ε by

ε(ci, cj) =

{
i− j if i > j

m+ i− j if i < j.
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With these definitions, for any flat partition, its parts with color ci necessarily have a size
congruent to i modulo m. Moreover, observe that ε has values in {0, . . . ,m−1}. We then
associate to any m-flat partition λ = (λ1, . . . , λs) the flat partition π = (π0, . . . , πs−1, 0c0)
such that, for all k ∈ {0, . . . , s− 1},

|πk| = λk+1 and c(πk) = c[λk+1]m ,

where [λk+1]m = λk+1 mod m.

Let us now generalize the notion of regularity.

Definition 6. A c-regular partition with ground cg and with relation � is a grounded
partition π = (π0, . . . , πs−1, 0cg) with ground cg and relation �, such that c(πk) 6= c for
all k ∈ {0, . . . , s− 1}. When c = cg, it is called a regular partition in cg.

Example 7. An example of such partitions are the m-regular partitions. It suffices to
consider as in Example 5 the set of colors C = {c0, . . . , cm−1}, cg = c0 and define the
relation � by

kci � lcj ⇐⇒ k > l and k − l ≡ i− j mod m,

so that, in any regular partition, the size of parts with color ci are necessarily congruent
to i modulo m. We then associate to any m-regular partition λ = (λ1, . . . , λs) the regular
partition π = (π0, . . . , πs−1, 0c0) in c0 and such that, for all k ∈ {0, . . . , s− 1},

|πk| = λk+1 and c(πk) = c[λk+1]m .

In the remainder of this paper, we take for regular partitions a relation�ε, associated
to a energy ε, and defined by

kc �ε ld ⇐⇒ k − l > ε(c, d). (4)

We then call the relation �ε the minimal difference condition given by energy ε, and a
regular partition with relation �ε is referred to as regular partition with energy ε.

Considering the set of colors and the energy ε given in Example 5, by Theorem 2, there
exists a bijection between the corresponding flat partitions with ground c0 and energy ε
and the regular partitions in c0 and with energy ε, such that the parts with color ci
have sizes congruent to i mod m. The latter regular partitions are those described in
Example 7. Furthermore, the bijection occurs between the partitions of both kinds with
a fixed size and numbers of occurrences of the colors different from the ground c0. In this
spirit, the main theorems of this paper make a connection between the flatness and the
regularity, and have the following formulation.

Theorem 8. Let C be a set of colors and let cg ∈ C be the ground. Then, for some
suitable energies ε′ and ε, there exists a bijection between a certain set of flat partitions
with ground cg and energy ε and a certain set of regular partitions in ground cg and with
energy ε′.
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Two such theorems are stated in Section 2. The first result, Theorem 22, is related to
weighted words at degree one, i.e. for primary colors and parts, and energies satisfying
ε = ε′. We here give a corollary of Theorem 22 as the following analogue of Glaisher’s
theorem for m-regular partitions into distinct parts.

Corollary 9. Let m and n be positive integers. Then, the number of m-regular partitions
of n into distinct parts is equal to the number of (m+ 1)-flat partitions of n, such that

• the smallest part is less than m,

• two consecutive parts divisible by m are necessarily equal,

• two consecutive parts not divisible by m and with the same congruence modulo m
are necessarily distinct.

Example 10. Here we take m = 3 and n = 16, and the 3-regular partition of 16 into
distinct parts are

(16), (14, 2), (13, 2, 1), (11, 5), (11, 4, 1), (10, 5, 1), (10, 4, 2),

(8, 7, 1), (8, 5, 2, 1), and (7, 5, 4)

and the 4-flat partitions of 16 of the second kind are

(8, 5, 2, 1), (7, 5, 3, 1), (7, 4, 3, 2), (6, 5, 4, 1), (6, 5, 3, 2), (6, 4, 3, 2, 1),

(5, 4, 3, 3, 1), (5, 3, 3, 3, 2), (4, 3, 3, 3, 2, 1), and (3, 3, 3, 3, 3, 1).

Another consequence of Theorem 22 consists in easing the computation of characters
of the representations of some affine Lie algebras. Formulas for such characters are given
in [6] as generating functions of the flat partitions with respect to a ground and a suitable
energy function of perfect crystals.

The second result, Theorem 27, concerns weighted words at degree two, and energies
satisfying ε = ε′ up to some exceptions. This second theorem uses Theorem 22 and the
result from the first paper of this series [14], which we summarize in Section 2.1. In the
particular case of representations of affine Lie algebras we study here, Theorem 27 allows
us to connect the difference conditions of the result on Siladić’s identity, given in the first
paper, and the energy function of the square, in terms of tensor product, of the vector
representation of A

(2)
2n . We here state a corollary of Theorem 27, presented as a companion

of Siladić’s identity.

Corollary 11. Let n be a non-negative integer. Denote by A(n) the number of partitions
λ = (λ1, . . . , λs) of n, into parts different from 2, such that λi − λi+1 > 5 and

λi − λi+1 = 5⇒ λi + λi+1 ≡ ±3 mod 16,

λi − λi+1 = 6⇒ λi + λi+1 ≡ 0,±4, 8 mod 16,

λi − λi+1 = 7⇒ λi + λi+1 ≡ ±1,±5,±7 mod 16,

λi − λi+1 = 8⇒ λi + λi+1 ≡ 0,±2,±6, 8 mod 16.
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Denote by B(n) the number of partitions λ = (λ1, . . . , λs) of n, such that the parts con-
gruent to 0 mod 8 can be overlined, the last part is less than 11 and different from 2 and
8, and 0 6 λi − λi+1 6 16 with the additional conditions

λi − λi+1 = 0⇒ λi + λi+1 ≡ 0 mod 16,

λi − λi+1 = 1⇒ λi + λi+1 ≡ ±1 mod 16,

λi − λi+1 = 2⇒ λi + λi+1 ≡ 0 mod 16,

λi − λi+1 = 3⇒ λi + λi+1 ≡ ±3 mod 16,

λi − λi+1 = 4⇒ λi + λi+1 ≡ ±2,±4 mod 16,

λi − λi+1 = 5⇒ λi + λi+1 ≡ ±3,±5 mod 16,

λi − λi+1 = 6⇒ λi + λi+1 ≡ 0,±4, 8,±6 mod 16,

λi − λi+1 = 7⇒ λi + λi+1 ≡ ±1,±5,±7,±7 mod 16,

λi − λi+1 = 8⇒ λi + λi+1 ≡ 0,±2,±6, 8, 8 mod 16,

where the number of lines of λi + λi+1 mod 16 indicates the numbers of overlined parts
λi, λi+1 (which must be congruent to 0 modulo 8). We then have that A(n) = B(n), and
the corresponding identity his∑

n>0

B(n)qn =
∑
n>0

A(n)qn = (−q; q2)∞. (5)

1.2.2 Character formulas for level one standard modules

We refer the reader to [8] for the definitions in the theory of Kac-Moody algebras.
Let n be a non-negative integer, and consider the Cartan datum (A,Π,Π∨, P, P∨) for

a generalised Cartan matrix A of affine type and rank n. Here Π is the set of the simple
roots αi(i ∈ {0, . . . , n}), and denote by P̄ = ZΛ0 ⊕ · · · ⊕ ZΛn the lattice of the classical
weights, where the elements Λ` (` ∈ {0, . . . , n}) are the fundamental weights. Denote by
δ the null root. Let L(Λ) denote the irreducible module of highest weight Λ, also called
the standard module. Using Theorem 22 and [6, Theorem 3.8], we retrieve the Wakimoto
character formulas [22] for the following.

Theorem 12. Let n > 2, and let Λ0, . . . ,Λn be the fundamental weights and let α0, . . . , αn
be the simple roots of A

(2)
2n . We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λ0ch(L(Λ0)) =
n∏
u=1

(−e−δ′−
1
2
αn−

∑n−1
i=u αi ,−e−δ′+

1
2
αn+

∑n−1
i=u αi ; e−2δ′)∞, (6)

where 2δ′ = δ = 2α0 + · · ·+ 2αn−1 + αn is the null root.
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Theorem 13. Let n > 2, and let Λ0, . . . ,Λn be the fundamental weights and let α0, . . . , αn
be the simple roots of D

(2)
n+1. We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λ0ch(L(Λ0)) =
1

(e−δ; e−2δ)∞
·

n∏
u=1

(−e−δ−
∑n
i=u αi ,−e−δ+

∑n
i=u αi ; e−2δ)∞, (7)

e−Λnch(L(Λn)) =
1

(e−δ; e−2δ)∞
·

n∏
u=1

(−e−
∑n
i=u αi ,−e−2δ+

∑n
i=u αi ; e−2δ)∞, (8)

where δ = α0 + · · ·+ αn is the null root.

Theorem 14. Let n > 3, and let Λ0, . . . ,Λn be the fundamental weights and let α0, . . . , αn
be the simple roots of B

(1)
n . We have in Z[[e−α0 , e−α1 , · · · , e−αn ]] that

e−Λnch(L(Λn)) =
1

(e−δ; e−2δ)∞
·

n∏
u=1

(−e−
∑n
i=u αi ,−e−δ+

∑n
i=u αi ; e−δ)∞, (9)

where δ = α0 + α1 + 2α2 + · · ·+ 2αn is the null root.

The remainder of the paper is organized as follows. We first provide in Section 2 the
tools and the main result of the first paper [14], as well as the main results connecting flat
and regular partitions at degree one and two. Second, assuming Theorem 22, we recover
in Section 3 the Frenkel-Kac character formulas. After that, we prove Theorem 22 and
Theorem 27 respectively in Section 4 and Section 5. We finally discuss in Section 6 the
possibility of a suitable Theorem 8 at degree k for k > 3 and conclude with some remarks
in Section 7.

2 The setup

2.1 Weighted words: parts as energetic particles

We here recall the basic tools and results of the first paper [14].
Let C be a set of primary colors, countable or not. Recall the set of primary parts

ZC, which is also denoted by P = Z× C. A primary part with size k and color c is then
identified as kc or (k, c).

Definition 15. A minimal energy is an energy ε from C2 to {0, 1}. When C = {c1, . . . , cn},
the data given by ε is equivalent to the matrix Mε = (ε(ci, cj))

n
i,j=1, denoted the energy

matrix. The energy relation �ε with respect to ε is the binary relation on P2 defined by
the following,

(k, c) �ε (k′, c′)⇐⇒ k − k′ > ε(c, c′). (10)

Example 16. Let C = {c1, . . . , cn} be a set of colors, and let I1, I2 be a set-partition of
{1, . . . , n}. We then define the minimal energy

ε(ci, cj) =

{
χ(i < j) if i 6= j

χ(i ∈ I1) if i = j.
(11)
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Then, the general order on the parts is

· · · �ε (k + 1)c1 �ε kcn �ε kcn−1 �ε · · · �ε kc2 �ε kc1 �ε · · · ,

and kci �ε kci if i ∈ I2 and kci 6�ε kci if i ∈ I1. This means that a part kci can be repeated
in the well-ordered sequence of parts if and only if i ∈ I2.

Example 17. Suppose that C = {c1, c2} and define the minimal energy

ε(ci, cj) = χ(i = j). (12)

We then have the general relation on the parts,

· · · �ε (k + 1)c2 �ε kc2 �ε kc1 �ε kc2 �ε kc1 �ε (k − 1)c1 �ε · · · ,

and kci 6�ε kci . A well-related sequence of parts with the same size is then an alternating
sequence.

Definition 18. We define the secondary parts to be the sums of two consecutive primary
parts in terms of �ε. Denote by Sε = Z × C2 the set of secondary parts, in such a way
that the part

(k, c, c′) = (k + ε(c, c′), c) + (k, c′) (13)

has size 2k+ε(c, c′) and color cc′. In the following, we identify a secondary part as (k, c, c′)
or (2k + ε(c, c′))cc′ . We denote by γ(k, c, c′) and µ(k, c, c′) the primary parts

γ(k, c, c′) = (k + ε(c, c′), c) and µ(k, c, c′) = (k, c′),

respectively called upper and lower halves of the secondary parts (k, c, c′).

Definition 19. We define the relation �ε on P t Sε as follows:

(k, c)�ε (k′, c′)⇐⇒ k − k′ > ε(c, c′), (14)

(k, c)�ε (k′, c′, c′′)⇐⇒ k − (2k′ + ε(c′, c′′)) > ε(c, c′) + ε(c′, c′′), (15)

(k, c, c′)�ε (k′, c′′)⇐⇒ (2k + ε(c, c′))− k′ > ε(c, c′) + ε(c′, c′′), (16)

(k, c, c′)�ε (k′, c′′, c′′′)⇐⇒ k − k′ > ε(c′, c′′) + ε(c′′, c′′′). (17)

Definition 20. Let Oε (respectively Eε) be the set of all generalized colored partitions
with parts in P (resp. P t Sε) and with relation �ε (resp. �ε). For ρ ∈ {0, 1}, we
consider the following sets:

• Pρ+ = Z>ρ × C and Sρ+
ε = Z>ρ × C2 = {(k, c, c′) ∈ Sε : k > ρ},

• Pρ− = Z6ρ × C and Sρ−ε = {(k, c, c′) ∈ Sε : k + ε(c, c′) 6 ρ}.

We then denote by Oρ+
ε (respectively Oρ−ε ) the subset of Oε with parts in Pρ+ (respectively

Pρ−), and by Eρ+
ε (respectively Eρ−ε ) the subset of Eε with parts in Pρ+ tSρ+

ε (respectively
Pρ− t Sρ−ε ).
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Since secondary colors are products of two primary colors, the color sequence of par-
titions in Oε and Eε is then seen as a finite non-commutative product of colors in C.

The main theorem of [14] is then stated as follows.

Theorem 21. For any integer n and any finite non-commutative product C of colors in C,
there exists a bijection between {λ ∈ Oε : (C(λ), |λ|) = (C, n)} and {ν ∈ Eε : (C(ν), |ν|) =
(C, n)}. In particular, for ρ ∈ {0, 1}, we have the identities

|{ν ∈ Eρ+
ε : (C(ν), |ν|) = (C, n)}| = |{λ ∈ Oρ+

ε : (C(λ), |λ|) = (C, n)}|, (18)

|{ν ∈ Eρ−ε : (C(ν), |ν|) = (C, n)}| = |{λ ∈ Oρ−ε : (C(λ), |λ|) = (C, n)}|. (19)

Note that the partitions in Oε and Eε are not grounded partitions, but we will see in
Section 5.2 how to render them as regular partitions.

2.2 Weighted words, flat partitions and regular partitions

Let C be a set of primary colors, and let ε be a minimal energy as defined in Definition 15.

2.2.1 Weighted words at degree one

Let us fix a ground cg ∈ C. We set F ε,cg1 to be the set of primary flat partitions, which
are the flat partitions with ground cg and energy ε. Recall that the energy ε defines a
relation mε as follows,

kc mε k
′
c′ ⇐⇒ k − k′ = ε(c, c′)· (20)

Let us also recall the energy relation �ε defined by

kc �ε k′c′ ⇐⇒ k − k′ > ε(c, c′), (21)

and let Rε,cg
1 be the set of primary regular partitions, which are the regular partitions in

ground cg and with energy ε.
Assuming that cg = 1, one can see, for both flat or regular partitions, the color

sequence as a product of colors in C \{cg}. Let us set C ′ = C \{cg}. Depending on certain
properties of ε, we can build a bijection between Rε,cg

1 and F ε,cg1 which preserves both the
size and the color sequence of partitions.

Theorem 22 (degree one). Let δg ∈ {0, 1}. Assume that ε(cg, cg) = 0, and that for all
c 6= cg,

δg = ε(cg, c) = 1− ε(c, cg). (22)

There then exists a bijection Ω between F ε,cg1 and Rε,cg
1 which preserves the total energy

and the sequence of colors different from cg.

This theorem is a generalization of Theorem 2. To see that Theorem 22 implies
Theorem 2, we take the set C = {c0, . . . , cm−1}, and set cg = c0. Theorem 2 then
corresponds to the energy ε(ci, cj) = χ(i < j), followed by the transformation

(q, c0, c1, . . . , cm−1) 7→ (qm, 1, q, . . . , qm−1).
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The latter operation means that the part is kci is transformed into the part mk + i, and
the relations in (20) and (21) induced by ε then become

mk + imε mk
′ + i′ ⇐⇒ (mk + i)− (mk′ + i′) =

{
i− i′ if i > i′

m+ i− i′ if i < i′,

mk + i �ε mk′ + i′ ⇐⇒ (mk + i)− (mk′ + i′) >

{
i− i′ if i > i′

m+ i− i′ if i < i′.

Note that the last part corresponds to 0 for both flat and regular partitions after this
transformation. We then retrieve the flat partitions of Example 5 and the regular parti-
tions in Example 7, except that we implicitly assimilate the congruence modulo m of the
part size to the unique corresponding color in C.

Similarly, Theorem 2 is also implied by Theorem 22 with the energy ε(ci, cj) = χ(i > j)
followed by the transformation (q, c0, c1, . . . , cm−1) 7→ (qm, 1, q−1, . . . , q1−m), in which case
the part kci is assimilated to the part km− i.

In the same way, we obtain the analogue of Glaisher, stated in Corollary 9, by consid-
ering the same set of colors C = {c0, . . . , cm−1}, the ground cg = c0, the transformation
(q, c0, c1, . . . , cm−1) 7→ (qm, 1, q, . . . , qm−1), but a slightly different energy ε, given in Ex-
ample 16 with I2 = {0},

ε(ci, cj) =


χ(i < j) if i 6= j

0 if i = j = 0

1 if i = j 6= 0.

Note that the restriction of ε to C \ {c0} = C ′ then gives ε(ci, cj) = χ(i 6 j).

2.2.2 Weighted words at degree two

Let us now assume that ε satisfies the conditions of Theorem 22 and consider the set of
secondary parts Sε defined in Definition 18. Recall that δg is the common value of ε(cg, c)
for all c ∈ C ′.

Definition 23. We define F ε,cg2 to be the set of secondary flat partitions, which are the
flat partitions into secondary parts in Sε, with ground c2

g and energy ε2 defined by

ε2(cc′, dd′) = ε(c, c′) + 2ε(c′, d) + ε(d, d′). (23)

Remark 24. The definition of ε2 equivalent to defining a relation mε2 on secondary parts
which satisfies the following:

(2k + ε(c, c′))cc′ mε2 (2l + ε(d, d′))dd′ ⇐⇒ (2k + ε(c, c′))− (2l + ε(d, d′))

= ε(c, c′) + 2ε(c′, d) + ε(d, d′).

⇐⇒ k − (l + ε(d, d′)) = ε(c′, d)

⇐⇒ µ((2k + ε(c, c′))cc′) mε γ((2l + ε(d, d′))dd′). (24)
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Definition 25. We set Rε,cg
2 to be the set of secondary regular partitions, which are the

regular partitions into secondary parts in Sε, with ground c2
g and the energy ε′2 defined by

ε′2(cc′, dd′) = ε2(cc′, dd′) + 2δε(cc′, dd′), (25)

where δε(cc′, dd′) = 0 apart from

δε(ccg, cgd
′) = ε(c, d′) for all c, d′ ∈ C ′, (26)

and the additional exceptions when δg = 1:

δε(cc′, dd′) = −1 if

{
c = cg, c′, d, d′ ∈ C ′ and ε(c′, d) = 1

c′ = cg, c, d, d′ ∈ C ′ and ε(c, d) = 0
(27)

δε(cc′, dd′) = 1 if

{
d′ = cg, c′, d ∈ C ′ and ε(c′, d) = 0

d = cg, c, c′, d′ ∈ C ′ and ε(c′, d′) = 1.
(28)

Remark 26. Note that the energy ε′2 defines a binary relation �ε on secondary parts of
Sε as follows,

(2k + ε(c, c′))cc′ �ε (2l + ε(d, d′))dd′ ⇐⇒ k − l − ε(c′, d)− ε(d, d′) > δε(cc′, dd′). (29)

The level above Theorem 22 can be stated as follows.

Theorem 27 (degree two). Assuming that cg = 1, there exists a bijection between Rε,cg
2

and F ε,cg2 which preserves the total energy and the sequence of colors different from cg.

Let us give a example of such identity. Consider the set C = {a, b, c}, cg = c and the
energy matrix

Mε =


a b c

a 1 1 1
b 0 1 1
c 0 0 0

.
We then obtain the energy matrices for ε2 and ε′2

Mε2 =



a2 ab ac ba b2 bc ca cb c2

a2 4 4 4 3 4 4 3 3 3
ab 2 2 2 3 4 4 3 3 3
ac 2 2 2 1 2 2 1 1 1
ba 3 3 3 2 3 3 2 2 2
b2 2 2 2 3 4 4 3 3 3
bc 2 2 2 1 2 2 1 1 1
ca 3 3 3 2 3 3 2 2 2
cb 1 1 1 2 3 3 2 2 2
c2 1 1 1 0 1 1 0 0 0


,
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Mε′2
=



a2 ab ac ba b2 bc ca cb c2

a2 4 4 4 3 4 4 3 3 3
ab 2 2 2 3 4 4 3 3 3
ac 2 2 2 1 2 2 3 3 1
ba 3 3 3 2 3 3 2 2 2
b2 2 2 2 3 4 4 3 3 3
bc 2 2 2 1 2 2 1 3 1
ca 3 3 3 2 3 3 2 2 2
cb 1 1 1 2 3 3 2 2 2
c2 1 1 1 0 1 1 0 0 0


.

Since in the regular partitions we never have a color c2 except for the last part 0c2 , one
can consider partitions into parts with color in {a2, ab, ac, ba, b2, bc, ca, cb}, satisfying the
minimal difference condition in

Mε′2
=



a2 ab ac ba b2 bc ca cb

a2 4 4 4 3 4 4 3 3
ab 2 2 2 3 4 4 3 3
ac 2 2 2 1 2 2 3 3
ba 3 3 3 2 3 3 2 2
b2 2 2 2 3 4 4 3 3
bc 2 2 2 1 2 2 1 3
ca 3 3 3 2 3 3 2 2
cb 1 1 1 2 3 3 2 2


and such that the minimal sizes for the part with color a2, ab, ac, ba, b2, bc, ca, cb are re-
spectively 3, 3, 1, 2, 3, 1, 2, 2. By applying the transformation (q, a, b, c) 7→ (q4, q−3, q−1, 1),
we obtain the companion of Siladic’s identity given in Corollary 11.

3 Applications to level one perfect crystals

3.1 Notion of crystals

3.1.1 Crystals

We here introduce the basic tools which will be useful for the computation of level one
standard modules’ characters. For further references, see [8, 10].

Let n be a non-negative integer, and consider the Cartan datum (A,Π,Π∨, P, P∨) for
a generalised Cartan matrix A of affine type and rank n. The set Π is the set of the simple
roots αi(i ∈ {0, . . . , n}), and we denote by P̄ = ZΛ0⊕· · ·⊕ZΛn the lattice of the classical
weights, where the elements Λ` (` ∈ {0, . . . , n}) are the fundamental weights. The null
root δ, can be uniquely written

δ = d0α0 + · · ·+ dnαn

with d0, . . . , dn being positive integers. Let us now introduce the notion of crystal.
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Definition 28. Let A = (ai,j)06i,j6n be a Cartan matrix with associated Cartan datum
(A,Π,Π∨, P, P∨). A crystal associated with (A,Π,Π∨, P, P∨) is a set B together with
maps

wt : B −→ P,

ẽi, f̃i : B −→ B ∪ {0} (i ∈ {0, . . . , n}),
εi, ϕi : B −→ Z ∪ {−∞} (i ∈ {0, . . . , n}),

satisfying the following properties for all i ∈ {0, . . . , n}:

1. ϕi(b) = εi(b) + 〈hi,wt(b)〉,

2. wt(ẽib) = wtb+ αi if ẽib ∈ B,

3. wt(f̃ib) = wtb− αi if f̃ib ∈ B,

4. εi(ẽib) = εi(b)− 1 if ẽib ∈ B,

5. ϕi(ẽib) = ϕi(b) + 1 if ẽib ∈ B,

6. εi(f̃ib) = εi(b) + 1 if f̃ib ∈ B,

7. ϕi(f̃ib) = ϕi(b)− 1 if f̃ib ∈ B,

8. f̃ib = b′ if and only if b = ẽib
′ for b, b′ ∈ B,

9. if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0.

A graphical representation of a crystal B, called the crystal graph, consists of a graph
whose vertices are the elements of B, and whose edges are i-arrows satisfying

b
i−→ b′ if and only if f̃ib = b′ (or equivalently ẽib

′ = b).

In the following, for i ∈ {0, . . . , n}, we define the functions εi, ϕi : B → Z by

εi(b) = max{k > 0 | ẽki b ∈ B},
ϕi(b) = max{k > 0 | f̃ki b ∈ B}.

In other words, εi(b) is the length of the longest chain of i-arrows ending at b in the
crystal graph, and ϕi(b) is the length of the longest chain of i-arrows starting from b.
These definitions for εi and ϕi will be possible because of the nature of the crystals
coming from the crystal base of integrable modules that we will consider in the following.
Furthermore, by setting

ε(b) =
n∑
i=0

εi(b)Λi, and ϕ(b) =
n∑
i=0

ϕi(b)Λi, (30)

we then have wt(b) = ϕ(b)− ε(b) for all b ∈ B, where wt(b) is the projection of wt(b) on
P .

We now define the tensor product of crystals.
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Definition 29. Let B1,B2 two crystals associated with (A,Π,Π∨, P, P∨). The tensor
product B = B1 ⊗ B2 ≡ B1 × B2 is the crystal satisfying the following:

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) 6 εi(b2),

(31)

where b1 ⊗ 0 = 0⊗ b2 = 0 for all b1 ∈ B1 and b2 ∈ B2, and

wt(b1 ⊗ b2) = wtb1 + wtb2,

εi(b1 ⊗ b2) = max{εi(b1), εi(b1) + εi(b2)− ϕi(b1)},
ϕi(b1 ⊗ b2) = max{ϕi(b2), ϕi(b1) + ϕi(b2)− εi(b2)}.

To fully understand the tensor rule, we can picture it on the crystal graph with the
following maximal chains of i-arrows and j-arrows with i 6= j.

B1⊗B2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • •

An important property of the tensor product is its associativity: (B1 ⊗ B2) ⊗ B3 =
B1 ⊗ (B2 ⊗ B3).

We finally introduce the notion of energy function.

Definition 30. Let B be crystal base. An energy function on B⊗B is a mapH : B⊗B → Z
satisfying

H (ẽi(b1 ⊗ b2)) =

{
H(b1 ⊗ b2) + χ(i = 0) if ϕi(b1) > εi(b2)

H(b1 ⊗ b2)− χ(i = 0) if ϕi(b1) < εi(b2),
(32)

for all i ∈ {0, . . . , n} and b1, b2 with ẽ(b1 ⊗ b2) 6= 0.

By definition, in the crystal graph of B ⊗ B, the value of H(b1 ⊗ b2), when it exists,
determines all the values H(b′1⊗ b′2) for vertices b′1⊗ b′2 in the same connected component
as b1 ⊗ b2
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3.1.2 Character formula

The notion of perfect crystals, introduced by Kang and al. [10, 11], appears as a possible
method to compute the characters of standard modules. The notion of grounded parti-
tions, introduced by the author and Dousse, was deeply influenced by the behaviour of
the perfect crystals and the related character formula.

Let us consider a perfect crystal B of level `, a classical weight Λ of level ` satisfying
pΛ = (· · ·⊗g⊗g), where pΛ is the ground state path, and let us assume that H(g⊗g) = 0.
We then define the set of colors indexed by B

CB = {cb : b ∈ B}

and the energy ε by
ε(cb, cb′) = H(b′ ⊗ b)· (33)

We then obtain the following theorem from [6].

Theorem 31 (Dousse-K.). By a change of variable q = e−δ/d0 and cb = ewtb for all b ∈ B,
we have cg = 1 and the following identity:∑

π∈Fε,cg1

C(π)q|π| = e−Λch(L(Λ)), (34)

where F ε,cg1 is the set of flat partitions with ground cg and energy ε, and we assume that
the colors cb commute in the generating function. 1

In the remainder of this section, by using the above theorem and Theorem 22, we
compute the character formula corresponding to the following level one weights:

• Λ0 for the affine type A
(2)
2n (n > 2),

• Λ0 and Λn for the affine type D
(2)
n+1(n > 2),

• Λn for the affine type B
(1)
n (n > 3).

3.2 Case of affine type A
(2)
2n (n > 2)

The crystal B of the vector representation of A
(2)
2n (n > 2) is given by the crystal graph in

Figure 1.
Here, we have wt(0) = 0 and for all u ∈ {1, . . . , n},

− wt(u) = wtu =
1

2
αn +

n−1∑
i=u

αi. (35)

Moreover, δ = αn + 2
∑n−1

i=0 αi. We thus obtain the crystal graph for B ⊗ B in Figure 2.

1Here we use a corrected version of KMN character formula, with δ/d0 instead of δ.
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B :

bΛ0 = bΛ0 = 0

pΛ0 = (· · · 000)

0

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·

0

0

1

1

2

2

n− 2

n− 2

n− 1

n− 1

n

Figure 1: Vector representation of A
(2)
2n (n > 2).

: 0-arrow

: n-arrow

: paths of i-arrows, for consecutive i 6= 0, n

: connected components without 0-arrows
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Figure 2: Crystal graph B ⊗ B for the case A
(2)
2n (n > 2).

We then consider the set of colors C = {c1, . . . , cn, cn, . . . , c1, c0}, cg = c0, and by
setting ε′(cu, cv) = H(v⊗ u) and H(0⊗ 0) = 0, we obtain the following energy matrix for
ε′: 

c1 · · · c1 c0

c1 2 · · · 2 1
...

...
. . .

...
...

c1 0 · · · 2 1
c0 1 · · · 1 0

.
This energy matrix can be obtain by taking the energy matrix of ε defined by


c1 · · · c1 c0

c1 1 · · · 1 1
...

...
. . .

...
...

c1 0 · · · 1 1
c0 0 · · · 0 0


followed by the transformation

(q, c1, c1, . . . , cn, cn) 7→ (q2, c1q
−1, c1q

−1, . . . , cnq
−1, cnq

−1). (36)

This means that, for c 6= c0, the part kc for the energy ε is identified as the part (2k− 1)c
for the energy ε′, and since we do not modify the ground c0, the part kc0 for ε is assimilated
to (2k)c0 for ε′, so that the last part still remains 0c0 .
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By setting c0 = 1, we can apply Theorem 22 to the flat partitions with ground c0 and
with energy ε, and we obtain the generation function∑

π∈Fε,cg1

C(π)q|π| =
∑

π∈Rε,cg1

C(π)q|π| = (−c1q,−c1q, . . . ,−cnq,−cnq; q)∞.

In fact, by the definition of the energy ε, one can view the partitions of Rε,cg
1 as the finite

sub-sequences, ending with 0c0 , of the infinite sequence

· · · �ε 3c1 �ε 2c1 �ε · · · �ε 2c1 �ε 1c1 �ε · · · �ε 1cn �ε 1cn �ε · · · �ε 1c1 �ε 0c0·

Using (36), we then have that the flat partitions with ground cg and energy ε′ are generated
by the function

(−c1q,−c1q, . . . ,−cnq,−cnq; q2)∞.

Using Theorem 31 and (35), we obtain the formula for the character for Λ0 given in
Theorem 12.

3.3 Case of affine type D
(2)
n+1(n > 2)

The crystal graph of the vector representation B of D
(2)
n+1(n > 2) is given in Figure 3.

B :

pΛ0 = (· · · 0 0 0 0)

pΛn = (· · · 0 0 0 0)

0 0

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·

0

0

1

1

2

2

n− 2

n− 2

n− 1

n− 1

n

n

Figure 3: Vector representation of D
(2)
n+1(n > 2).

Here, we have wt(0) = wt(0) = 0 and for all u ∈ {1, . . . , n},

− wt(u) = wtu =
n∑
i=u

αi. (37)

Moreover, δ =
∑n

i=0 αi. We obtain the crystal graph for B ⊗ B in Figure 4.
We then consider the set of colors C = {c1, . . . , cn, c0, cn, . . . , c1, c0}, and by setting

ε′(cu, cv) = H(v ⊗ u) and H(0⊗ 0) = 0, we obtain the following energy matrix for ε′:



c1 · · · cn c0 cn · · · c1 c0

c1 2 · · · 2 2 2 · · · 2 1
...

...
. . .

...
...

... 2?
...

...
cn 0 · · · 2 2 2 · · · 2 1
c0 0 · · · 0 0 2 · · · 2 1
cn 0 · · · 0 0 2 · · · 2 1
...

... 0?
...

...
...

. . .
...

...
c1 0 · · · 0 0 0 · · · 2 1
c0 1 · · · 1 1 1 · · · 1 0


. (38)
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: 0-arrow

: n-arrow

: chains of two n-arrows

: vertex of the form 0⊗ · or · ⊗ 0

: paths of i-arrows, for consecutive i 6= 0, n

: connected components without 0-arrows
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Figure 4: Crystal graph B ⊗ B for the case D
(2)
n+1(n > 2).

3.3.1 Character for Λ0

Here we set the ground to be cg = c0 = 1. We obtain the energy matrix in (38) by
considering the energy matrix for ε



c1 · · · cn c0 cn · · · c1 c0

c1 1 · · · 1 1 1 · · · 1 1
...

...
. . .

...
...

... 1?
...

...
cn 0 · · · 1 1 1 · · · 1 1
c0 0 · · · 0 0 1 · · · 1 1
cn 0 · · · 0 0 1 · · · 1 1
...

... 0?
...

...
...

. . .
...

...
c1 0 · · · 0 0 0 · · · 1 1
c0 0 · · · 0 0 0 · · · 0 0


followed by the transformation

(q, c0, c1, c1, . . . , cn, cn) 7→ (q2, c0q
−1, c1q

−1, c1q
−1, . . . , cnq

−1, cnq
−1). (39)

By applying Theorem 22 to the corresponding flat partitions with ground c0 and energy
ε, we obtain the generation function∑

π∈Fε,cg1

C(π)q|π| =
∑

π∈Rε,cg1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q)∞

(c0q; q)
.

In fact, by the definition of the energy ε, one can view the partitions of Rε,cg
1 as the finite

sub-sequences, ending with 0c0 , of the infinite sequence

· · · �ε 3c1 �ε 2c1 �ε · · · �ε 2c1 �ε 1c1 �ε · · · �ε 1cn �ε 1c0 �ε 1cn �ε · · · �ε 1c1 �ε 0c0·
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with the parts kc0 possibly repeated. Using (39), we then have that the flat partitions
with ground c0 and energy ε′ are generated by the function

(−c1q,−c1q, . . . ,−cnq,−cnq; q2)∞
(c0q; q

2)
.

By Theorem 31, (37) and the fact that c0 = 1 with the convention of Theorem 31, we
finally obtain the formula for the character corresponding to Λ0.

3.3.2 Character for Λn

Here we set the ground to be cg = c0 = 1. We obtain the energy matrix in (38) by
considering the energy matrix of ε



c1 · · · cn c0 cn · · · c1 c0

c1 1 · · · 1 1 0 · · · 0 0
...

...
. . .

...
...

... 0?
...

...
cn 0 · · · 1 1 0 · · · 0 0
c0 0 · · · 0 0 0 · · · 0 0
cn 1 · · · 1 1 1 · · · 1 1
...

... 1?
...

...
...

. . .
...

...
c1 1 · · · 1 1 0 · · · 1 1
c0 1 · · · 1 1 0 · · · 0 0


≡



cn · · · c1 c0 c1 · · · cn c0

cn 1 · · · 1 1 1 · · · 1 1
...

...
. . .

...
...

... 1?
...

...
c1 0 · · · 1 1 1 · · · 1 1
c0 0 · · · 0 0 1 · · · 1 1
c1 0 · · · 0 0 1 · · · 1 1
...

... 0?
...

...
...

. . .
...

...
cn 0 · · · 0 0 0 · · · 1 1
c0 0 · · · 0 0 0 · · · 0 0


,

followed by the transformation

(q, c0, c1, . . . , cn) 7→ (q2, c0q
−1, c1q

−2, . . . , cnq
−2). (40)

Here the part kc0 for ε is transformed into (2k−1)c0 for ε′, and the part kci into (2k−2)ci .
Since c0 and ci are not modified, the part kc then becomes (2k)c for any c ∈ {c0, ci : i ∈
{1, . . . , n}}.

Applying Theorem 22 to the flat partitions with ground c0 and energy ε, and we obtain
the generation function∑

π∈Fε,cg1

C(π)q|π| =
∑

π∈Rε,cg1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q)∞

(c0q; q)
.

In fact, by the definition of the energy ε, one can view the partitions of Rε,cg
1 as the finite

sub-sequences, ending with 0c0 , of the infinite sequence

· · · �ε 3cn �ε 2cn �ε · · · �ε 2cn �ε 1cn �ε · · · �ε 1c1 �ε 1c0 �ε 1c1 �ε · · · �ε 1cn �ε 0c0·

with the parts kc0 possibly repeated. Using (40), we then have that the flat partitions
with ground c0 and energy ε′ are generated by the function

(−c1q
2,−c1, . . . ,−cnq2,−cn; q2)∞

(c0q; q2)
.

By Theorem 31, (37) and the fact that c0 = 1 with the convention of Theorem 31, we
obtain the formula for the character corresponding to Λn.
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3.4 Case of affine type B(1)
n (n > 3)

The crystal graph of the vector representation B of B
(1)
n (n > 3) is given in Figure 5.

B :

pΛn = (· · · 0 0 0 0)

pΛ1 = (· · · 1 1 1 1 1)

pΛ0 = (· · · 1 1 1 1 1)

0

1 2 n− 1 n· · ·

1 2 n− 1 n· · ·
0 0

1

1

2

2

n− 2

n− 2

n− 1

n− 1

n

n

Figure 5: Vector representation of B
(1)
n (n > 3).

Here, we have wt(0) = 0 and for all u ∈ {1, . . . , n},

− wt(u) = wtu =
n∑
i=u

αi. (41)

Moreover δ = α0 + α1 + 2
∑n

i=2 αi. We thus obtain the following crystal graph for B ⊗ B
in Figure 6.

Here, the only suitable ground to apply Theorem 31 is c0. We then consider C =
{c1, . . . , cn, cn, . . . , c1, c0}, and by setting ε′(cu, cv) = H(v ⊗ u) and H(0 ⊗ 0) = 0, we
obtain the following energy matrix for ε′:



cn · · · c2 c1 c1 c2 · · · cn c0

cn 1 · · · 1 1 0 0 · · · 0 0
... 0

. . .
...

...
...

... 0?
...

...
c2 0 · · · 1 1 0 0 · · · 0 0
c1 0 · · · 0 1 −1 0 · · · 0 0
c1 1 · · · 1 1 1 1 · · · 1 1
c2 1 · · · 1 1 0 1 · · · 1 1
...

... 1?
...

...
...

...
. . .

...
...

cn 1 · · · 1 1 0 0 · · · 1 1
c0 1 · · · 1 1 0 0 · · · 0 0


.

This energy matrix can be obtain by taking the energy matrix of ε defined by



cn · · · c2 c1 c1 c2 · · · cn c0

cn 1 · · · 1 1 1 1 · · · 1 1
... 0

. . .
...

...
...

... 1?
...

...
c2 0 · · · 1 1 1 1 · · · 1 1
c1 0 · · · 0 1 0 1 · · · 1 1
c1 0 · · · 0 0 1 1 · · · 1 1
c2 0 · · · 0 0 0 1 · · · 1 1
...

... 0?
...

...
...

...
. . .

...
...

cn 0 · · · 0 0 0 0 · · · 1 1
c0 0 · · · 0 0 0 0 · · · 0 0


,
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Figure 6: Crystal graph B ⊗ B for the case B
(1)
n (n > 3).

followed by the transformation

(q, c1, . . . , cn) 7→ (q, c1q
−1, . . . , cnq

−1). (42)

Here the part kci for ε is transformed into (k − 1)ci for ε′. The other parts kc remain
unchanged. By setting the ground cg = c0 = 1, we can apply Theorem 22 to the flat
partitions generated by ε, and we obtain the generation function∑

π∈Fε,cg1

C(π)q|π| =
∑

π∈Rε,cg1

C(π)q|π| =
(−c1q,−c1q, . . . ,−cnq,−cnq; q)∞

(c1c1q
2; q2)∞

.

In fact, by the definition of the energy ε, one can view the partitions of Rε,cg
1 as the finite

sub-sequences, ending with 0c0 , of the infinite sequence

· · · �ε 3cn �ε 2cn �ε · · · �ε 2cn �ε 1cn �ε · · · �ε 1c2 �ε 1c1 �ε 1c1 �ε 1c1 �ε 1c2 �ε · · · �ε 1cn �ε 0c0 ,

with the additional condition that we have possibly alternating sub-sequences of the form

· · · �ε kc1 �ε kc1 �ε kc1 �ε kc1 �ε · · · ·

By reasoning on the parity of the length and the first element, the generating function of
such alternating sequences for a fixed size k, possibly empty or reduced to one element,
is equal to

(1 + c1q
k)(1 + c1q

k)

1− c1c1q
2k

.

Using (42), we then have that the flat partitions with ground cg and energy ε′ are generated
by the function

(−c1q,−c1, . . . ,−cnq,−cn; q)∞
(c1c1q; q

2)∞
.

Using Theorem 31 and (41), we obtain the formula for the character corresponding to Λn

in Theorem 14.
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4 Bijective proof of Theorem 22

We build in this section a bijection Ω1 between the set F ε,cg1 and Rε,cg
1 of Theorem 22.

This bijection is in the spirit of the transformation described by Stockhofe [20]. In the
following, we illustrate Ω1 with the set of colors C = {a, b, c}, the ground c, and the energy
ε defined by the energy matrix

Mε =


a b c

a 1 0 1
b 0 0 1
c 0 0 0

.
4.1 The setup

Recall that δg be the common value of the ε(cg, c) for c 6= cg given by (22). Note that for
any c 6= cg, for any k, l ∈ Z

kc 6�ε lcg ⇐⇒ k − l 6 ε(c, cg)− 1

⇐⇒ l − k > 1− ε(c, cg)
⇐⇒ l − k > ε(cg, c)

⇐⇒ lcg �ε kc (43)

so that the parts with color cg can be always related in terms of �ε with the parts with
color different from cg. One can see the classical integer partitions as the non-increasing
sequences of non-negative integers, with all but a finite number of parts equal to 0.

Let us recall the conjugacy on classical partitions. The partitions ν = (νi)
∞
i=0 and

ν ′ = (ν ′i)
∞
i=0 are conjugate if and only if their part sizes satisfy

νi = |{ν ′j > i+ 1}| (44)

The conjugacy is an involution, and we then have ν ′i = |{νj > i+ 1}|.

4.1.1 The set Rε,cg
1

Identify a partition π = (π0, . . . , πs−1, 0cg) of Rε,cg
1 as the unique pair of partitions

(µ, ν) = [(µ0, . . . , µs−1, 0cg), (ν0, . . . , νs−1)],

such that C(π) = C(µ) = c0 · · · cs−1cg, and for all k ∈ {0, . . . , s− 1}, we have ck 6= cg,

µk =

(
s−1∑
l=k

ε(ck, ck+1)

)
ck

and νk = |πk| − |µk|.

The partition µ is then the unique element in F ε,cg1 ∩ Rε,cg
1 satisfying C(π) = C(µ) =

c0 · · · cs−1cg, and ν is the residual partition with s parts, possibly ending with some parts
equal to 0. The partition ν then corresponds to a unique classical partition, with at most
s parts.
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Example 32. The partition

π = (10a, 8a, 8b, 7b, 5a, 4a, 3a, 2b, 1a, 1b, 1b, 0c)

is identify with the pair (µ, ν) with

µ = (4a, 3a, 3b, 3b, 3a, 2a, 1a, 1b, 1a, 1b, 1b, 0c)

and
ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0).

We now fix C = c0 · · · cs−1. The partition µ in the pair then becomes fixed. By
considering the set of regular partitions in Rε,cg

1 with a color sequence in Ccg, we have
the bijection

Rε,cg
1 (C) = {π ∈ Rε,cg

1 : C(π) = Ccg} ≈ {µ} × {(ν0, · · · , νs−1) ∈ Z>0 : ν0 > · · · > νs−1}.
(45)

The setRε,cg
1 (C) is then isomorphic to the set of classical partitions with at most s positive

parts.
We now consider the set of the descents

D = {k : {0, . . . , s} : ε(ck−1, ck) = 0} = {k0 < · · · < k|D|−1} and D = {0, . . . , s− 1} \D.
(46)

Note that, since ε(cs−1, cg) = 1− δg, we recursively have for all k ∈ {0, . . . , s− 1} that

|µk| =
s−1∑
l=k

ε(cl, cl+1) = 1− δg + |{k + 1, · · · , s− 1} ∩D| 6 s− k − δg. (47)

With Example 32, C = aabbaaababb, s = 11, D = {2, 3, 4, 7, 8, 9, 10} and D = {0, 1, 5, 6}.
For a fixed non-negative n, we construct the bijection Ω in such a way that the

partitions π in Rε,cg
1 satisfying (|π|, C(π)) = (n,Ccg) map to the partitions π in F ε,cg1

which satisfy (n,C) = (|π|, C(π)|cg=1). The latter means that the sequence of colors
different from cg is equal to C.

4.1.2 The set Fε,cg
1

We now consider the set F ε,cg1 (C) of flat partitions π in F ε,cg1 such that C(π)|c0=1 = C.
For such a partition π, there then exists a unique set S = {u0 < · · · < us−1} ⊂ Z>0 such
that

π = (π0, · · · , πus−1 , 0c0),
c(πuk) = ck ∀ k ∈ {0, . . . , s− 1},
cπk = cg ∀ k ∈ {0, . . . , us−1} \ S.

(48)

In fact, we cannot have c(πus−1) = cg, otherwise πus−1 = ε(cg, cg) = 0, so that πus−1 = 0cg ,
and this contradicts the definition of grounded partitions. Let us set

s′ = us−1 + 1− s
W = {0 6 v < |D| : ukv − ukv−1 > 1} = {v0 < · · · < v|W |−1}, (49)

DW = {kv : v ∈ W},
DW = D \DW .
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If we have some parts with color cg between uk and uk+1, their sizes’ differences gives

ε(ck, cg) + 0 + · · ·+ 0︸ ︷︷ ︸
]parts inserted−1

+ε(cg, ck+1) = ε(ck, cg) + ε(cg, ck+1)

= 1− δg + δg

= 1

and it differs from ε(ck, ck+1) if and only if k + 1 ∈ D. We then obtain that

|πuk | = |µk|+ |{k + 1, · · · , s− 1} ∩DW |,

so that by (47). Since |πus−1| = 1−δg, we obtain recursively that for all k ∈ {0, . . . , s−2},

|πuk | = 1− δg + |{k + 1, . . . , s− 1} ∩ (D tDW )|. (50)

Note that by (50), for all uk−1 < u < uk, we necessarily have that k ∈ D tDW , and then

|πu| = δg + |πuk | = |{k, . . . , s− 1} ∩ (D tDW )|.

4.2 The map Ω from Fε,cg
1 (C) to Rε,cg

1 (C).

For any partition π ∈ F ε,cg1 (C) described above, we associate the conjugate ν of the
classical partition ν ′ whose parts are:

1. for k /∈ D, the uk − uk−1 − 1 parts between uk−1 and uk with size

|πu| = |{k, . . . , s− 1} ∩ (D tDW )|,

which the convention u−1 = −1.

2. for k ∈ DW , we take uk − uk−1 − 2 parts between uk−1 and uk with size

|πu| = |{k, . . . , s− 1} ∩ (D tDW )|,

and one part (called the weighted part) with size

|πu|+ k = |{k, . . . , s− 1} ∩ (D tDW )|+ k. (51)

Example 33. For example, we illustrate these transformations with C = aabbaaababb
and

π = (6a, 5a, 5b, 4c, 4c, 4c, 4b, 4a, 3c, 3a, 2a, 1c, 1c, 1b, 1a, 1b, 1b, 0c).

Recall that µ = (4a, 3a, 3b, 3b, 3a, 2a, 1a, 1b, 1a, 1b, 1b, 0c), D = {2, 3, 4, 7, 8, 9, 10} and D =
{0, 1, 5, 6}. Here we have that

k 0 1 2 3 4 5 6 7 8 9 10
uk 0 1 2 6 7 9 10 13 14 15 16
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and then DW = {3, 7}. We thus obtain that ν ′ is the classical partition with parts 3, 4, 4, 7
and 1, 8. We thus have ν ′ = (8, 7, 4, 4, 3, 1) and the conjugacy then gives the following
partition with 11 parts

ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0).

By adding the parts of ν to the corresponding parts of µ, we finally obtain

Ω(6a, 5a, 5b, 4c, 4c, 4c, 4b, 4a, 3c, 3a, 2a, 1c, 1c, 1b, 1a, 1b, 1b, 0c) = (10a, 8a, 8b, 7b, 5a, 4a, 3a, 2b, 1a, 1b, 1b, 0c).

We first note that the size of the partition is conserved by these transformations, since

s−1∑
k=0

|{k + 1, · · · , s− 1} ∩DW | = ]{(k, l) : l ∈ {k + 1, · · · , s− 1} : l ∈ DW}

=
∑
l∈DW

]{0 6 k < l}

=
∑
l∈DW

l

and then

us−1∑
u=0

|πu| =
s−1∑
k=0

|πuk |+
∑
k

1<uk−uk−1

(uk − uk−1 − 1)|πuk−1|

=
∑
u/∈S

|πu|+
s−1∑
k=0

|µk|+
∑
l∈DW

l

= |µ|+
∑
l∈DW

l + |πul−1|+ (ul − ul−1 − 2)πul−1 +
∑
l /∈D

(ul − ul−1 − 1)|πul−1|.

The unweighted parts are those which are not weighted. We then remark that for all
k ∈ {0, . . . , s− 1},

|{k, . . . , s− 1} ∩ (D tDW )|+ k = |D tDW |+ |{0, . . . , k − 1} ∩DW |
= |πu0 |+ δg + |{0, . . . , k − 1} ∩DW |

so that the weighted parts have all sizes greater than or equal to the sizes of the unweighted
parts. We also notice that unweighted parts coming from different k are distinct, since
the sizes’ difference gives

|{k, . . . , s− 1} ∩ (D tDW )| − |{k + 1, . . . , s− 1} ∩ (D tDW )| = χ(k ∈ D tDW )

and this is exactly the condition required to insert a part in ν ′. Also when we take two
consecutive weighted parts in kvj < kvj+1

∈ DW , we obtain the difference of size

kvi − kvi+1
+ |{kvi , . . . , kvi+1

− 1} ∩ (D tDW )| = −|{kvi , . . . , kvi+1
− 1} ∩DW |
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so that the weighted parts appear in a non-decreasing order according to the indices i in
{0, |W |−1}. We then obtain ν ′ = (ν ′0, · · · , ν ′s′−1), where we have for all i ∈ {0, . . . , |W |−1}

ν ′|W |−1−i = |{kvi , s− 1} ∩ (D tDW )|+ kvi

= s− |DW ∩ {kvi , . . . , s− 1}|
= s− |{vi 6 p < |D| : p /∈ W}| by (49)

= s+ |W | − |D|+ vi − i
6 s,

and the rest of the parts consists of uk − uk−1 − 1 − χ(k ∈ DW ) parts for k ∈ D tDW ,
each of them with size

|{k, s− 1} ∩ (D tDW )| > 1.

Note that ν ′ viewed as a classical partition has s′ parts with size at most equal to s, and
by (44), the partition ν then has at most s positive parts and satisfies ν0 = s′. Our map
from F ε,cg1 (C) to Rε,cg

1 (C) is then well-defined.
We conclude by observing the following equality: for all i ∈ {0, . . . , |W | − 1} we have

ν ′|W |−1−i − |W |+ i = s− |D|+ vi

= |{0, . . . , kvi − 1}|+ |{kvi , s− 1} ∩D|
= δg + µkvi + kvi , (52)

and for all u ∈ {|W |, . . . , s′ − 1}, we have

ν ′u − u− 1 6 ν ′|W | − |W | − 1 < δg + µ0. (53)

4.3 The map Ω−1 from Rε,cg
1 (C) to Fε,cg

1 (C)

Let consider a partition π in Rε,cg
1 (C), and the corresponding pair (µ, ν). The partition ν

then corresponds to a classical partition with at most s positive parts. We first consider
the partition ν ′ the conjugate of ν given by the relation (44). The partitions ν ′ has
then ν0 positive parts, whose sizes are at most equal to s. Let us set s′ = ν0 and write
ν ′ = (ν ′0, · · · , ν ′s′−1). We then apply the following transformations:

1. For each k ∈ {0, . . . , s− 1}, we change the part µk into µ′k with the relations{
c(µ′k) = c(µk) = ck

|µ′k| = |µk|+ |{0 6 u < s′ : δg + |µk|+ k 6 ν ′u − u− 1}|
. (54)

2. For each u ∈ {0, . . . , s′ − 1}, we change the part ν ′u into ν ′′u with the relations{
c(ν ′′u) = cg

|ν ′′u| = ν ′u − |{0 6 k < s : δg + |µk|+ k 6 ν ′u − u− 1}|.
(55)
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The final partition Ω−1(π) is obtained by inserting the parts ν ′′u into the sequence of parts
µ′k according �ε, and adding the ground 0cg . The partition Ω−1(π) then has s + s′ parts
different from 0cg and by double counting, we have that |Ω−1(π)| = |µ|+ |ν| = |π|.

Example 34. For example, we illustrate these transformations with C = aabbaaababb
and

π = (10a, 8a, 8b, 7b, 5a, 4a, 3a, 2b, 1a, 1b, 1b, 0c),

corresponding to
µ = (4a, 3a, 3b, 3b, 3a, 2a, 1a, 1b, 1a, 1b, 1b, 0c),

and
ν = (6, 5, 5, 4, 2, 2, 2, 1, 0, 0, 0).

The conjugacy gives
ν ′ = (8, 7, 4, 4, 3, 1)

Recall that we have δg = 0. Using the following tables

k 0 1 2 3 4 5 6 7 8 9 10
µk + k 4 4 5 6 7 7 7 8 9 10 11

u 0 1 2 3 4 5
ν ′u − u− 1 7 5 1 0 −2 −5

,

we obtain that

µ′ = (6a, 5a, 5b, 4b, 4a, 3a, 2a, 1b, 1a, 1b, 1b, 0c) , ν ′′ = (1c, 4c, 4c, 4c, 3c, 1c)

and the insertion then gives

Ω−1(π) = (6a, 5a, 5b, 4c, 4c, 4c, 4b, 4a, 3c, 3a, 2a, 1c, 1c, 1b, 1a, 1b, 1b, 0c).

Let us now show that π ∈ F ε,cg1 . First and foremost, note that

δg + |µs−1|+ s− 1 = s,

and since ν ′u 6 s for all u ∈ {0, . . . , s′ − 1}, we then obtain that |µ′s−1| = |µs−1| = 1− δg.
Besides, for all the k ∈ {0, . . . , s− 1}, we have that

(δg + |µk|+ k)− (δg + |µk−1|+ k − 1) = 1 + |µk| − |µk−1|
= 1− ε(ck−1, ck) ∈ {0, 1}.

This means that the sequence (δg + |µk|+k)s−1
k=0 is non-decreasing, and with the difference

between consecutive terms at most equal to 1, with equality if and only if k ∈ D.
On the other hand u ∈ {1, . . . , s− 1}, we have for all u ∈ {0, . . . , s′ − 1} that

ν ′u−1 − u− (ν ′u − u− 1) = 1 + ν ′u−1 − ν ′u > 1.

The sequence (ν ′u − u− 1)s
′−1
u=0 is then decreasing.
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Let us now set

DV = {k ∈ {0, . . . , s} : |µ′k−1| − |µ′k| 6= |µk−1| − |µk|}.

Since ε(ck−1, ck) ∈ {0, 1}, the set DV then contains all the k ∈ {1, · · · , s− 1} such that

0 < |{0 6 u < s′ : δg + |µk−1|+ k − 1 6 ν ′u − u− 1 < δg + |µk|+ k}| 6 1− ε(ck−1, ck),

so that DV ⊂ D. For such k, there is a unique u such that

δg + |µk−1|+ k − 1 6 ν ′u − u− 1 < δg + |µk|+ k. (56)

In fact, the sequence (ν ′u − u− 1)s
′−1
u=0 being decreasing, and the interval [δg + µk−1 + k −

1, δg +µk +k), being a singleton for k ∈ DV , contains at at most one element of the latter
sequence. We also have that

|{0 6 l < s : δg + |µl|+ l 6 ν ′u − u− 1}| = |{0, . . . , k − 1}| = k

|{0 6 v < s′ : δg + |µk−1|+ k − 1 6 ν ′v − v − 1}| = |{0, . . . , u}| = u+ 1.

Therefore, we have the following

ν ′u = |ν ′′u|+ k, (57)

|µ′k| = |µk|+ u

|µ′k−1| = |µk−1|+ u+ 1,

and by (43) and (56),
µ′k−1 mε ν

′′
u mε µ

′
k. (58)

The part ν ′′u is then inserted between µ′k−1 and µ′k. Note that this insertion occurs once
for all u such that

|D| = δg + |µ0| 6 ν ′u − u− 1,

so that
|DV | = |{0 6 k < s : δg + |µ0| 6 ν ′u − u− 1}|.

Then, for all u > |DV |, we have

ν ′u − u− 1 < δg + |µ0|,

so that ν ′′u = ν ′u. In particular, we have

ν ′′|DV | − |DV | − 1 < δg + |µ0| ⇐⇒ ν ′′|DV | 6 δg + |µ0|+ |DV | = δg + |µ′0|. (59)

We remark that for all k ∈ D \ DV , since |µ′k−1| − |µ′k| = |µk−1| − |µk| = 0, the parts
µ′k−1, µ

′
k then have the same size, and then the same relation with all parts with color cg.

This means that, after inserting of the parts ν ′′u into µ′, we do not have any part between
the parts µ′k−1 and µ′k. We also note that, for all k ∈ D tDV , |µ′k−1| − |µ′k| = 1, so that
one can insert any number of parts with color cg and size δg + |µ′k|, and since ε(cg, cg) = 0,
these part with the same size and color cg are well-related by mε. These facts, along with
(58) and (59), imply that π belongs to F ε,cg1 .

We conclude by observing that, by (58), DV can be also defined as the unique subset
of D with satisfies the following: k ∈ D belongs to DV if and only if there exists u ∈
{0, · · · , s′} such that µ′k−1 mε ν

′′
u mε µ

′
k.
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4.4 The maps are inverse each other

Using (52) and (53), we straightforward to observe by the definition of Ω−1 that Ω−1 ◦
Ω = IdFε,cg1 (C). On the other hand, the fact that Ω ◦ Ω−1 = IdRε,cg1 (C) comes from the
correspondence between DW and DV . In fact, this correspondence is deduced from the
equivalence between the definition of W and the above definition of DV . We also observe
that the only parts whose size changes from one set of partitions to another are those
related to the set DW and DV . We finally conclude by observing the reciprocity between
the definition of the weighted parts related to DW given in (51), and the definition of the
parts related to DV given by the formula (57).

Remark 35. The bijection built here gives a more refined property, as for a fixed color C
product of s colors different from cg, it makes the correspondence between the partitions
ν with at most s parts such that the greatest part has size s′ and the flat partitions having
s′ additional parts with colors cg different from 0cg .

5 Bijective proof of Theorem 27

In this section, we prove the following.

Proposition 36. For a fixed color C as product of colors different from cg and a fixed
non-negative integer n, the following sets of generalized partitions are equinumerous:

1. F ε,cg2 (C, n) = {π ∈ F ε,cg2 : C(π)|cg=1 = C, |π| = n},

2. F ε,cg1 (C, n) = {π ∈ F ε,cg1 : C(π)|cg=1 = C, |π| = n},

3. Rε,cg
1 (C, n) = {π ∈ Rε,cg

1 : C(π)|cg=1 = C, |π| = n},

4. Rε,cg
2 (C, n) = {π ∈ Rε,cg

2 : C(π)|cg=1 = C, |π| = n}.

In the previous section, we have shown in the proof of Theorem 22 that |F ε,cg1 (C, n)| =
|Rε,cg

1 (C, n)|. In the following, we first show that there is a bijection between F ε,cg2 (C, n)
and F ε,cg1 (C, n), and after that we build the bijection between Rε,cg

1 (C, n) and Rε,cg
2 (C, n).

5.1 Bijection between Fε,cg
2 (C,n) and Fε,cg

1 (C,n)

Here we recall that, by Definition 23, the partitions of F ε,cg2 have the form
(π0, . . . , πs−1, 0c2g), such that for all k ∈ {0, . . . , s − 1}, we have πk ∈ Sε, and if we set

c(πk) = c2kc2k+1 ∈ C2, we have by (24) that

µ(πk) mε γ(πk+1). (60)

We also observe that c2s−2c2s−1 6= c2
g, otherwise the latter equation gives that |πs−1| −

|0c2g | = 4ε(cg, cg) = 0, and then πs−1 = 0c2g , and this contradicts the definition of grounded
partitions. Besides, we remark that µ(πs−1) = 0cg if and only if c2s−1 = cg.
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Let us consider the map F from F ε,cg2 to F ε,cg1 defined by

(π0, . . . , πs−1, 0c2g
) 7→


(γ(π0), µ(π0), γ(π1), µ(π1), . . . , γ(πs−2), µ(πs−2), γ(πs−1), 0cg ) if c2s−1 = cg

(γ(π0), µ(π0), γ(π1), µ(π1), . . . , γ(πs−2), µ(πs−2), γ(πs−1), µ(πs−1), 0cg ) if c2s−1 6= cg .

(61)

It is easy to check that both the total energy and the sequence of primary colors are
preserved. To show that F(π0, . . . , πs−1, 0c2g) ∈ F

ε,cg
1 , we proceed according to whether

c2s−1 = cg or c2s−1 6= cg. Note that by definition of the secondary parts, we have that for
all k ∈ {0, . . . , s− 1} that

|γ(πk)| − |µ(πk)| = ε(c2k, c2k+1)⇐⇒ γ(πk) mε µ(πk).

• If c2s−1 = cg, then the latter equation and (60) give that F(π0, . . . , πs−1, 0c2g) is
well-defined up to µ(πs−1), and with the fact that c2s−2 6= cg and µ(πs−1) = 0cg , we
obtain that F(π0, . . . , πs−1, 0c2g) ∈ F

ε,cg
1 .

• If c2s−1 6= cg, then the latter equation and (60) give that F(π0, . . . , πs−1, 0c2g) is well-
defined up to µ(πs−1), with the fact that c2s−1 6= cg and µ(πs−1) = ε(c2s−1, cg), we
obtain that F(π0, . . . , πs−1, 0c2g) ∈ F

ε,cg
1 .

The reciprocal map F−1 is even easier to build. We simply proceed as follows:

(π0, . . . , πs−1, 0cg) 7→


(π0 + π1, . . . , πs−1 + 0cg , 0c2g) if s ≡ 1 mod 2

(π0 + π1, . . . , πs−2 + πs−1, 0c2g) if s ≡ 0 mod 2.

(62)

The primary parts being consecutive in terms of �ε, the map F−1 is well-defined, and one
can check that the first case of F−1 is reciprocal to the first case of F , so as the second
case of F−1 is reciprocal to the second case of F .

5.2 Bijection between Rε,cg
1 (C,n) and Rε,cg

2 (C,n)

Let us recall that C ′ = C \ {cg}, and set C ′n = {cc′ : c, c′ ∈ C ′}. We now set ρ = 1− δg the
common value of ε(c, cg) for all c ∈ C ′. Here we refer to Oε and Eε as the sets corresponding
to the set C ′. We now show the following proposition.

Proposition 37. For a fixed color C as product of colors in C ′ and a fixed non-negative
integer n, the following sets of generalized partitions are equinumerous:

1. Rε,cg
1 (C, n) = {π ∈ F ε,cg2 : C(π)|cg=1 = C, |π| = n},

2. Oρ+
ε (C, n) = {π ∈ Oρ+

ε : C(π) = C, |π| = n},

3. Eρ+
ε (C, n) = {π ∈ Eρ+

ε : C(π) = C, |π| = n},

4. Rε,cg
2 (C, n) = {π ∈ Rε,cg

2 : C(π)|cg=1 = C, |π| = n}.
By Theorem 21, we already have that |Oρ+

ε (C, n)| = |Eρ+
ε (C, n)|. We show in the

remainder of this section that Rε,cg
1 (C, n) and Oρ+

ε (C, n) are in bijection, as are Eρ+
ε (C, n)

and Rε,cg
2 (C, n).
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5.2.1 Bijection between Rε,cg
1 (C,n) and Oρ+

ε (C,n)

This is straightforward by considering the following map from Rε,cg
1 (C, n) to Oρ+

ε (C, n):

(π0, . . . , πs−1, 0cg) 7→ (π0, . . . , πs−1) (63)

In fact, we have that c(πk) ∈ C ′ for all k ∈ {0, . . . , s− 1}, and by (21), that

|πk| − |πk+1| > ε(c(πk), c(πk+1)),

so that |πs−1| > ε(c(πk+1), cg) = 1− δg = ρ. By (10) and Definition 20, we then have that
the partition (π0, . . . , πs−1) belongs to Oρ+

ε (C, n).
The reciprocal map is obtain by adding a 0cg to the right to a partition in Oρ+

ε (C, n),
and the latter relations imply that the resulting partition indeed belongs to Rε,cg

1 (C, n).

5.2.2 Bijection between Eρ+ε (C,n) and Rε,cg
2 (C,n)

It may seem intricate to map these two sets, as a partition in the first set can have some
primary part while a partition in the second set cannot, but the regularity in c2

g allows
us to overcome this fact. For simplicity, we write Sε(C), Sε(C ′) and P(C ′) respectively
the sets of the secondary parts with colors as a product of two primary colors in C, the
secondary parts with colors as a product of two primary color in C ′ and the primary parts
with color in C ′. We observe that we have a natural embedding Sε(C ′) ↪→ Sε(C).

For any c ∈ C ′, we have by definition that the size of the secondary part with color
ccg has the same parity as ε(c, cg) = ρ, while the size of the secondary part with color cgc
has the same parity as ε(cg, c) = 1− ρ. We then build the embedding P(C ′) ↪→ Sε(C) as
follows:

kc 7→

{
kccg if k ≡ ρ mod 2

kcgc if k ≡ 1− ρ mod 2.

Therefore, we obtain a natural bijection R between P(C ′) t Sε(C ′) and Sε(C) \ {(2Z)c2g}
with the relations

Sε(C ′) 3(2k + ε(c, c′))cc′ 7→ (2k + ε(c, c′))cc′ (64)

P(C ′) 3kc 7→

{
kccg if k ≡ ρ mod 2

kcgc if k ≡ 1− ρ mod 2.

We remark that the reciprocal bijection R−1 is also the identity on Sε(C ′), and for a part
with color ccg or cgc, we associate the part in P(C ′) with the same size and color c.

We can now extend the map R to the partitions in Eρ+
ε with

R : (π0, . . . , πs−1) 7→ (R(π0), . . . ,R(πs−1), 0c2g), (65)

and we have the following proposition.

Proposition 38. The map R defines a bijection between Eρ+
ε (C, n) and Rε,cg

2 (C, n).
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Recall that �ε in Definition 18 is the relation that relates the parts of a partition in
Eρ+
ε , and the relation �ε defined in (29) relates the parts of a partition in Rε,cg

2 .
Note that the map R from P(C ′) t Sε(C ′) to Sε(C) \ {(2Z)c2g} conserves the size and

the sequence of colors different from cg, so that extended to Eρ+
ε , it also preserves the

total energy and the sequence of colors different from cg. We now prove Proposition 38
by using the two next lemmas.

Lemma 39. Let us fix a color c ∈ C ′tC ′n and let us set c = c(πs−1). We then have that the
minimal size of πs−1 ∈ Pρ+tSρ+

ε is the minimal size of R(πs−1) satisfying R(πs−1)� 0c2g .

Lemma 40. For all parts kp, lq ∈ P(C ′) t Sε(C ′), we have the following :

kp �ε lq ⇐⇒ R(kp)�ε R(lq). (66)

Lemma 39 gives the equivalence of the minimal size condition for the last part, while
Lemma 40 states that the difference conditions are equivalent for both sets of partitions,
and we directly obtain Proposition 38.

Proof of Lemma 39. We reason on whether c ∈ C ′n or c ∈ C ′ and πs−1 with a size with the
same parity as ρ or 1− ρ.

• If c ∈ C ′n, we then write c = c0c1. We then have that

πs−1 ∈ Sρ+
ε ⇐⇒ |µ(πs−1)| > ρ by Denifinition 20

⇐⇒ |µ(πs−1)| > ε(c1, cg)

⇐⇒ R(πs−1) = πs−1 �ε 0c2g . (29)

• If c ∈ C ′ and πs−1 ≡ ρ mod 2,

πs−1 ∈ Pρ+ ⇐⇒ |πs−1| > ρ and |πs−1| ≡ ρ mod 2 by Denifinition 20

⇐⇒ |πs−1| ∈ 2Z>0 + ρ

⇐⇒ c(µ(R(πs−1))) = cg and |µ(R(πs−1))| > 0 (??)

⇐⇒ |µ(R(πs−1))| > ε(cg, cg)

⇐⇒ R(πs−1)�ε 0c2g . (29)

• If c ∈ C ′ and πs−1 ≡ 1− ρ mod 2,

πs−1 ∈ Pρ+ ⇐⇒ |πs−1| > ρ and |πs−1| ≡ 1 + ρ mod 2 by Denifinition 20

⇐⇒ |πs−1| ∈ 2Z>0 + 1 + ρ

⇐⇒ |µ(R(πs−1))| > ρ and c(µ(R(πs−1))) = c (??)

⇐⇒ |µ(R(πs−1))| > ε(c, cg)

⇐⇒ R(πs−1)�ε 0c2g . (29)
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One can observe that we always have the equivalence

πs−1 ∈ Pρ+ t Sρ+
ε ⇐⇒ R(πs−1)�ε 0c2g

and this conclude the proof of the lemma.

Proof of Lemma 40. Let us first state some obvious fact: for all integer a, b, we have the
following,

1. if b ∈ {−1, 0, 1}, then
2a > b⇐⇒ a > χ(b = 1), (67)

2. if b ∈ {−2,−1, 0}, then

2a > b⇐⇒ a > −χ(b = −2). (68)

As before, we reason on the types of the parts kp and lq.

• If kp ∈ Sε, we then write kp = (2u+ ε(c0, c1))c0c1 .

– If lq ∈ Sε, we write lq = (2v + ε(c2, c3))c2c3 .

kp �ε lq ⇐⇒ u− v − ε(c1, c2)− ε(c2, c3) > 0 (17)

⇐⇒ R(kp)�ε R(lq). (29)

– If q ∈ C ′ and l ≡ ρ mod 2, we write lq = (2v + ε(q, cg))q. We then have

kp �ε lq ⇐⇒ (2u+ ε(c0, c1))− (2v + ε(q, cg)) > 1 + ε(c0, c1) + ε(c1, q) (16)

⇐⇒ 2(u− v − ε(q, cg)− ε(c1, q)) > ε(cg, q)− ε(c1, q)

⇐⇒ u− v − ε(q, cg)− ε(c1, q) > ε(cg, q)(1− ε(c1, q)) (67)

⇐⇒ R(kp)�ε R(lq). (28)

– If q ∈ C ′ and l ≡ 1− ρ mod 2, we write lq = (2v + ε(cg, q))q.

kp �ε lq ⇐⇒ (2u+ ε(c0, c1))− (2v + ε(cg, q)) > 1 + ε(c0, c1) + ε(c1, q) (16)

⇐⇒ 2(u− v − ε(c1, cg)− ε(cg; q)) > ε(c1, q) + ε(cg, q)− 1

⇐⇒ 2(u− v − ε(c1, cg)− ε(cg; q)) > ε(c1, q)− ε(q, cg)
⇐⇒ u− v − ε(c1, cg)− ε(cg; q) > ε(c1, q)ε(cg, q) (67)

⇐⇒ R(kp)�ε R(lq). (28).

• If p ∈ C ′ and k ≡ ρ mod 2, we write kp = (2u+ ε(p, cg))p

– If lq ∈ Sε, we write lq = (2v + ε(c2, c3))c2c3 . We then have

kp �ε lq ⇐⇒ (2u+ ε(p, cg))− (2v + ε(c2, c3)) > ε(p, c2) + ε(c2, c3) (15)

⇐⇒ 2(u− v − ε(cg, c2)− ε(c2, c3)) > ε(p, c2)− ε(p, cg)− 2ε(cg, c2)

⇐⇒ 2(u− v − ε(cg, c2)− ε(c2, c3)) > (ε(p, c2)− 1)− ε(cg, p)
⇐⇒ u− v − ε(cg, c2)− ε(c2, c3)) > −(1− ε(p, c2))ε(cg, p) (68)

⇐⇒ R(kp)�ε R(lq). (27)
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– If q ∈ C ′ and l ≡ ρ mod 2, we write lq = (2v + ε(q, cg))q. We then have

kp �ε lq ⇐⇒ (2u+ ε(p, cg))− (2v + ε(q, cg)) > 1 + ε(p, q) (14)

⇐⇒ 2(u− v − ε(cg, q)− ε(q, cg)) > ε(p, q)− 1

⇐⇒ u− v − ε(cg, q)− ε(q, cg) > 0 (67)

⇐⇒ R(kp)�ε R(lq). (29)

– If q ∈ C ′ and l ≡ 1− ρ mod 2, we write lq = (2v + ε(cg, q))q. We then have

kp �ε lq ⇐⇒ (2u+ ε(p, cg))− (2v + ε(cg, q)) > 1 + ε(p, q) (14)

⇐⇒ 2(u− v − ε(cg, cg)− ε(cg, q)) > ε(p, q) + ε(cg, p)− ε(cg, q)
⇐⇒ 2(u− v − ε(cg, cg)− ε(cg, q)) > ε(p, q)

⇐⇒ u− v − ε(cg, cg)− ε(cg, q) > ε(p, q) (67)

⇐⇒ R(kp)�ε R(lq). (26)

• If p ∈ C ′ and k ≡ 1− ρ mod 2, we write kp = (2u+ ε(cg, p))p.

– If lq ∈ Sε, we write lq = (2v + ε(c2, c3))c2c3 . We then have

kp �ε lq ⇐⇒ (2u+ ε(cg, p))− (2v + ε(c2, c3)) > ε(p, c2) + ε(c2, c3) (15)

⇐⇒ 2(u− v − ε(p, c2)− ε(c2, c3)) > −ε(p, c2)− ε(cg, p)
⇐⇒ u− v − ε(p, c2)− ε(c2, c3) > −ε(p, c2)ε(cg, p) (68)

⇐⇒ R(kp)�ε R(lq). (27)

– If q ∈ C ′ and l ≡ ρ mod 2, we write lq = (2v + ε(q, cg))q. We then have

kp �ε lq ⇐⇒ (2u+ ε(cg, p))− (2v + ε(q, cg)) > 1 + ε(p, q) (14)

⇐⇒ 2(u− v − ε(p, q)− ε(q, cg)) > ε(cg, q)− ε(p, q)
⇐⇒ u− v − ε(p, q)− ε(q, cg) > ε(cg, q)(1− ε(p, q)) (67)

⇐⇒ R(kp)�ε R(lq). (28)

– If q ∈ C ′ and l ≡ 1− ρ mod 2, we write lq = (2v + ε(cg, q))q. We then have

kp �ε lq ⇐⇒ (2u+ ε(cg, p))− (2v + ε(cg, q)) > 1 + ε(p, q) (14)

⇐⇒ 2(u− v − ε(p, cg)− ε(cg, q)) > ε(p, q)− 1

⇐⇒ u− v − ε(p, cg)− ε(cg, q) > 0 (67)

⇐⇒ R(kp)�ε R(lq). (29)
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6 Degree beyond Theorem 27

We begin this section by defining a part of degree k.

Definition 41. Let C be a set of primary colors. For any k ∈ Z>1, we define the set of
colors of degree k as the set of the products of k primary colors:

Ck = {c1 · · · ck : c1, . . . , ck ∈ C}.

For an energy ε and the corresponding flat relation mε defined on the set of primary
parts, we define the set Pk = Z × Ck of parts of degree k as the sum of k primary parts
well-related by mε:

(p, c1 · · · ck) =
k∑

u=1

(
p+

k−1∑
v=u

ε(cv, cv+1)

)
cu

=

(
kp+

k−1∑
u=1

uε(cu, cu+1)

)
c1···ck

. (69)

We set the function γ1, . . . , γk on Pk such that

γi(p, c1 · · · ck) =

(
p+

k−1∑
u=i

ε(ci, ci+1)

)
ci

(70)

and we then obtain that

(p, c1 · · · ck) =
k∑
i=1

γi(p, c1 · · · ck), (71)

γ1(p, c1 · · · ck) mε γ2(p, c1 · · · ck) mε · · ·mε γk(p, c1 · · · ck). (72)

Definition 42. We can then naturally define a flat relation mk on Pk as follows:

(p, c1 · · · ck) mk (q, d1 · · · dk)⇐⇒ p− q = ε(ck, d1) +
k−1∑
u=1

ε(du, du+1)

⇐⇒ γk(p, c1 · · · ck) mε γ1(q, d1 · · · dk). (73)

The latter is equivalent to saying that the smallest primary part of (p, c1 · · · ck) is greater
than the greatest primary part of (q, d1 · · · dk) in terms of mε.

One can check that the relation mk is indeed the flat relation linked to the energy εk

defined on Ck × Ck by

εk : (c1 · · · ck, d1 · · · dk) 7→
k−1∑
u=1

uε(cu, cu+1) + kε(ck, d1) +
k−1∑
u=1

(k − u)ε(du, du+1). (74)

In fact, by using (69) and (73), the difference of sizes of the parts (p, c1 · · · ck) and
(q, d1 · · · dk) is exactly equal to εk(c1 · · · ck, d1 · · · dk).

This extension of the flatness to degree k has a strong connection with crystal base
theory via the following proposition.
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Proposition 43. Let B be a crystal and suppose that there exists an energy function H
on B ⊗ B. Then, the function Hk on B⊗k ⊗ B⊗k defined by

b1 ⊗ · · · ⊗ bk ⊗ bk+1 ⊗ · · · ⊗ b2k 7→
2k−1∑
i=1

min{i, 2k − i}H(bi ⊗ bi+1) (75)

is also an energy function on B⊗k ⊗ B⊗k.

Proof. The tensor product being associative, we then have, for all i ∈ {0, · · · , n} and for
all j ∈ {1, . . . , 2k}, that

ẽi(b1 ⊗ · · · ⊗ b2k) = b1 ⊗ · · · ⊗ ẽi(bj)⊗ · · · b2k =⇒

{
ẽi(bj−1 ⊗ bj) = bj−1 ⊗ ẽi(bj)
ẽi(bj ⊗ bj+1) = ẽi(bj)⊗ bj+1.

We thus obtain by (32) that, for j 6 k, (the following still holds for j = 1)

Hk(ẽi(b1 ⊗ · · · ⊗ b2k))−Hk(b1 ⊗ · · · ⊗ b2k) = (j − 1) (H(bj−1 ⊗ ẽi(bj))−H(bj−1 ⊗ bj)) +

j (H(ẽi(bj)⊗ bj−1)−H(bj ⊗ bj+1))

= −(j − 1)χ(i = 0) + jχ(i = 0)

= χ(i = 0).

On the other hand, for j > k, we have by (32) that (the following still holds for j = 2k)

Hk(ẽi(b1 ⊗ · · · ⊗ b2k))−Hk(b1 ⊗ · · · ⊗ b2k) = (2k − j + 1) (H(bj−1 ⊗ ẽi(bj))−H(bj−1 ⊗ bj)) +

(2k − j) (H(ẽi(bj)⊗ bj−1)−H(bj ⊗ bj+1))

= −(2k − j + 1)χ(i = 0) + (2k − j)χ(i = 0)

= −χ(i = 0).

The tensor of level ` perfect crystals being a level ` perfect crystal as well [10], we
then obtain that B⊗k is a perfect crystal if B is.

We note that the energy function of each perfect crystal B studied in Section 3 can be
obtain by operating a transformation, which preserves the ground, on a certain minimal
energy satisfying the condition in Theorem 22 and such that δg = 0. Therefore, we can
define both secondary flat and regular partitions corresponding to this energy function. In
particular, since the corresponding minimal energy satisfies δg = 0, the energies related to
these flat and regular partitions are almost equal by (24) and (29). By Proposition 38, this
means that the partitions, corresponding to those in E1+

ε after applying the transformation
on the minimal energy, satisfy some difference condition equal to the difference implied
by the corresponding energy function of B2. In particular, one can view the case A

(2)
2n as

a result that links the generalization of the Siladić theorem [13] for 2n primary colors to
the unique level one standard module L(Λ0). This fits with the original work of Siladić
[19], where he stated his identity after describing a basis of the unique level one standard

module of A
(2)
2 through vertex operators. A suitable subsequent work is then to build the
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vertex operators, for the level one standard module of A
(2)
2n (n > 2), which will allow us to

describe a basis corresponding to the difference conditions given by the generalization of
Siladić’s theorem.

We now define the degree k flat partitions.

Definition 44. We define F ε,cgk to be the set of degree k flat partitions, which are the flat
partitions into degree k parts in Pk, with ground ckg and energy εk defined in (74).

In particular, when ε(cg, cg) = 0, we can then generalize the bijection built in Sec-
tion 5.1.

Proposition 45. For any k > 1, there is a bijection Fk between F ε,cgk and F ε,cg1 that
preserves the total energy and the sequence of colors different from cg of the flat partitions.

Proof. For any flat partition π = (π0, . . . , πs−1, 0ckg ) in F ε,cgk , we associate the partition

Fk(π) defined by the sequence

(γ1(π0), . . . , γk(π0), γ1(π1), . . . , γk(π1), . . . , γ1(πs−2), . . . , γk(πs−2), γ1(πs−1), . . . , γi(πs−1), 0cg),

where i = max{j ∈ {1, . . . , k} : γj(πs−1) 6= 0cg}. The existence of such index i is
ensured by the fact that πs−1 6= 0ckg . It suffices to assume by contradiction that for all
j ∈ {1, . . . , k} we have γj(πs−1) = 0cg . Since ε(cg, cg) = 0, we then have 0cg mε 0cg , and we
obtain by (71) that

0ckg 6= πs−1 =
k∑
j=1

γj(πs−1) =
k∑
j=1

0cg = 0ckg .

To prove that Fk(π) belongs to F ε,cg1 , we use (72) along with (73) to see that Fk(π) is
well related up to γi(πs−1), and to show that γi(πs−1) mε 0cg , we distinguish two cases.

• If i < k, we then have that γi+1(πs−1) = 0cg , and we conclude with (72).

• If i = k, we then have by (73) that γk(πs−1) mε γ1(0ckg ) and we conclude.

We now construct the inverse bijection F−1
k . For any π = (π0, . . . , πs−1, 0c0), we write

the decomposition s = km − s′ with the unique non-negative integers m, s′ such that
s′ ∈ {0, . . . , k − 1}. We then set

F−1
k (π) = (π0 + · · ·+ πk−1︸ ︷︷ ︸, πk + · · ·+ π2k−1︸ ︷︷ ︸, . . . , π(m−2)k + · · ·+ πmk−k−1︸ ︷︷ ︸, π(m−1)k + · · ·+ πs−1 + s′ × 0cg︸ ︷︷ ︸, 0ckg ).

Here we see by (71), (72) and (73), this sequence is well-defined up to the part π(m−1)k +
· · ·+ πs−1 + s′ × 0cg . Note that since πs−1 6= 0cg , we necessarily have that π(m−1)k + · · ·+
πs−1 + s′ × 0cg 6= 0ckg . We distinguish two cases.

• If s′ > 0, since πs−1mε0cgmε0cg , we then have by (71) that π(m−1)k+· · ·+πs−1+s′×0cg
is in Pk, and by (73) that π(m−1)k + · · ·+ πs−1 + s′ × 0cg �k 0ckg .
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• If s′ = 0, we then have by (71) that π(m−1)k+· · ·+πs−1 is in Pk, and since πs−1mε0cg ,
we obtain by (73) that π(m−1)k + · · ·+ πs−1 �k 0ckg .

The inversion comes from the correspondence between the case s′ = 0 for F−1
k and i = k

for Fk.

The latter proposition allows us to have the following correspondences

degree one :

degree two :

degree k :

F ε,cg1

F ε,cg2

F ε,cgk

Rε,cg
1

Rε,cg
2

Rε,cg
k

Definition?

Theorem 22

Theorem 27

Theorem 8

Proposition 45

[14]

Bressoud’s algorithm at degree k?

A major subsequent work would be to find a suitable energy to define regular partitions
for degree k and which would allow us to state an analogue of Theorem 8 at degree k.
This problem appears to be closely related to the problem of finding a generalization to
weighted words at degree k of the result stated in [14].

7 Closing remarks

We close this paper with two remarks. First, we point out that in [5, 6], Dousse and
the author gave a theorem that connects some flat partitions to regular partitions. They
considered the set of n2 secondary colors C = {αiβj : i, j ∈ {0, · · · , n − 1}}, the ground
cg = a0b0, and the energies ε, ε1, ε2 defined by:

ε(aibj, ai′bj′) = χ(i > i′)− χ(i = j = i′) + χ(j 6 j′)− χ(j = i′ = j′) (76)

ε1(aibj, ai′bj′) = ε(aibj, ai′bj′) + δ1(aibj, ai′bj′) (77)

ε2(aibj, ai′bj′) = ε(aibj, ai′bj′) + δ2(aibj, ai′bj′), (78)

where δ1 equals 0 up to the following exceptions,

δ1(aibj, ai′bj′) = 1 for


i = j = i′ = j′ 6= 0

i = j = i′ > i′

i < j = i′ = j′.

and δ2 equals 0 up to the following exceptions,

δ2(aibj, ai′bj′) = 1 for


i = j = i′ = j′ 6= 0

i = j = j′ + 1 6 i′

i > j + 1 = i′ = j′.

The flat partitions then correspond to those with energy ε, and the first set of regular
partitions corresponds to the energy ε1, and the second set to the energy ε2. However, the
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bijections established in [5] link the flat partitions to some subsets of the sets of regular
partitions:

• In the first case, the corresponding regular partitions are those which avoid the
following forbidden patterns:

for all i > i′ > j > j′ :(p+ 1)aibj , paj′+1bj′+1
, pai′bj′ ,

for all i < i′ < j 6 j′ :(p+ 1)aibj , (p+ 1)ai+1bi+1
, pai′bj′ .

• In the second case, the corresponding regular partitions are those which avoid the
following forbidden patterns:

for all i′ > i > j′ 6 j′ :(p+ 1)aibj , pai′bi′ , pai′bj′ ,

for all i′ 6 i < j′ < j′ :(p+ 1)aibj , (p+ 1)ajbj , pai′bj′ .

Furthermore, these bijections preserve the total energy of the partitions, but only the
sequence of colors in which we replace aibi by 1 for all i ∈ {0, . . . , n− 1}.

A suitable subsequent work could then be to investigate some analogue of Theorem 8
not only in terms of difference conditions implied by energies, but also in terms of forbidden
patterns.

The second remark concerns the notion of difference d at distance l for positive integers
d, l. A partition λ = (λ1, · · · , λs) is said to satisfy the difference d at distance l condition
if λi−l − λi > d for all i ∈ {l + 1, . . . , s}. By considering the conjugated λ∗ = (λ∗1, . . . , λ

∗
r)

of λ, we equivalently have that λ∗i−d−λ∗i 6 l for all i ∈ {d, . . . , r}. Therefore, a difference-
distance condition imply a flatness condition.

Using this term, the partitions with fewer than m occurrences for each positive integer,
described in the Glaisher theorem, are exactly the partitions satisfying difference 1 at
distance m − 1. We can then see The Glaisher theorem as the link between partitions
satisfying difference 1 at distance m − 1 to m-regular partitions. The Andrews-Gordon
identities [1], a broad generalization of the Rogers-Ramanujan identities [17], can be seen
as the level above Glaisher’s identity, dealing with the partitions satisfying difference 2 at
distance m−1. They state that, for any positive integers n, i,m such that 1 6 i 6 m, the
number of partitions of n into parts not congruent to 0,±i mod 2m + 1, is equal to the
number of partitions of n with fewer than i occurrences of 1, and which satisfy difference
2 at distance m− 1. Here again, the connection is made with a subset of 2m+ 1-regular
partitions. By Theorem 2, this subset corresponds to the subset of all the 2m + 1-flat
partitions with no parts congruent to ±i mod 2m+ 1. On the other hand, the subset of
partitions satisfying the difference 2 at distance m−1 corresponds to the subset of m-flat
partitions λ = (λ1, . . . , λs) satisfying the following:

λ1 − λ2 6 i− 1,

λu−2 − λu 6 m− 1 for all u ∈ {3, s},
λs 6 m− 1.

(79)
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The problem of finding a simple bijective proof for the Andrews-Gordon identities, hence
the Rogers-Ramanujan identities, could then be reduced to the problem of finding a
bijection between the corresponding m-flat partitions and 2m + 1-flat partitions, whose
forms are relatively close one to each other. Other analogous identities given by Bressoud
[3], allow us to make a connection between subset of m-flat partitions and subsets of
2m-flat partitions. Similarly, the identities conjectured by Kanade and Russell [9], proved

for the cases related to A
(2)
9 , partially by Bringmann, Jennings-Shaffer and Malhburg [4],

and completely by Rosengren [18], can be interpreted in terms of identities which link:

• for the case A
(2)
7 , subsets of 3-flat partitions to subsets of 9-flat partitions,

• for the case A
(2)
9 , subsets of 4-flat partitions to subsets of 12-flat partitions.

An investigation in the framework of flat partitions could be a new way to approach
the conjectured identities, and this could possibly lead to a more general family of such
identities.

References

[1] G.E. Andrews, An Analytic Generalization of the Rogers-Ramanujan Identities for
Odd Moduli. Proc. Nat. Acad. Sci. U.S.A., 71(10): 4082–4085, 1974.

[2] C. Bessenrodt, A bijection for Lebesgue’s partition identity in the spirit of Sylvester.
Discrete Math., 132:1–10, 1994.

[3] D. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan
identities. Mem. Amer. Math. Soc., 24(227): 54 pp, 1980.

[4] K. Bringmann, C. Jennings-Shaffer and K. Mahlburg, Proofs and reductions of
various conjectured partition identities of Kanade and Russell. J. Reine Angew.
Math. https://doi.org/10.1515/crelle-2019-0012.

[5] J. Dousse and I. Konan, Generalizations of Capparelli’s and Primc’s identities, I:
coloured Frobenius partitions and combinatorial proofs. arXiv:1911.13191, 2020.

[6] J. Dousse and I. Konan, Generalizations of Capparelli’s and Primc’s identities, II:

perfect crystals of type A
(1)
n−1 and explicit character formulas. arXiv:1911.13189,

2020.

[7] J.W.L. Glaisher, A theorem in partitions. Messenger of Math., 12:158–170, 1883.

[8] J. Hong and S.-J. Kang, Introduction to Quantum Groups and Crystal Bases,
(GSM42). Grad. Stud. Math. AMS, 02, 2002.

[9] S. Kanade and M. Russell, IdentityFinder and some new identities of Rogers-
Ramanujan type. Exp. Math., 24:419–423, 2015.

[10] S.-J. Kang, M. Kashiwara, K.C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki,
Affine crystals and vertex models, Infinite Analysis, Part A, Kyoto, 449–484 1991,
Adv. Ser. Math. Phys. 16, World Sci. Publishing, River Edge, NJ, 1992.

the electronic journal of combinatorics 29(1) (2022), #P1.54 40

https://doi.org/10.1515/crelle-2019-0012
https://arxiv.org/abs/1911.13191
https://arxiv.org/abs/1911.13189


[11] S.-J. Kang, M. Kashiwara, K.C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki,
Perfect crystals of quantum affine Lie algebras. Duke Math., 68:499–607, 1992.

[12] W.J. Keith and X. Xiong, Euler’s partition theorem for all moduli and new compan-
ions to Rogers-Ramanujan-Andrews-Gordon identities. Ramanujan J., 49(3):555-565,
2019.

[13] I. Konan, A Bijective proof and Generalization of Siladić’s theorem. European J.
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