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Abstract

For a digraph G and v ∈ V (G), let δ+(v) be the number of out-neighbors of v
in G. The Caccetta-Häggkvist conjecture states that for all k > 1, if G is a digraph
with n = |V (G)| such that δ+(v) > k for all v ∈ V (G), then G contains a directed
cycle of length at most dn/ke. Aharoni proposed a generalization of this conjecture,
that a simple edge-colored graph on n vertices with n color classes, each of size at
least k, has a rainbow cycle of length at most dn/ke. With Pelikánová and Pokorná,
we showed that this conjecture is true if each color class has size Ω(k log k). In this
paper, we present a proof of the conjecture if each color class has size Ω(k), which
improved the previous result and is only a constant factor away from Aharoni’s
conjecture. We also consider what happens when the condition on the number of
colors is relaxed.

Mathematics Subject Classifications: 05C38, 05C35

1 Introduction and preliminaries

We call a graph simple if it has no loops or parallel edges, and we call a digraph simple if
its underlying undirected graph is simple. For a simple digraph G and a vertex v ∈ V (G),
let δ+(v) denote the number of out-neighbors of v in G. A famous conjecture in graph
theory is the following, due to Caccetta and Häggkvist:
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Conjecture 1 ([1]). Let n, k be positive integers, and let G be a simple digraph on n
vertices with δ+(v) > k for all v ∈ V (G). Then G contains a directed cycle of length at
most dn/ke.

For a graph G and a function b : E(G) → N, a rainbow cycle (with respect to b) is a
cycle C in G such that for all e, f ∈ E(C) with e 6= f , we have b(e) 6= b(f). We will refer
to b as a coloring of the edges of G.1 For any i ∈ {1, . . . , K}, the set of edges b−1(i) is
called a color class. For k,K ∈ N, we say that b has K color classes of size at least k if
|b−1(i)| > k for all i ∈ {1, . . . , K} and b−1(i) = ∅ for all i > K. The rainbow girth of an
edge-colored graph G is the length of a shortest rainbow cycle in G.

In [3], Aharoni proposed a generalization of Conjecture 1:

Conjecture 2 ([3]). Let n, k be positive integers, and let G be a simple graph on n
vertices. Let b be a coloring of the edges of G with n color classes of size at least k. Then
G has rainbow girth at most dn/ke.

In [5], Conjecture 2 was proved for k = 2. The following approximate result shows
that the conjecture holds with larger color classes:

Theorem 3 ([7]). Let k > 1 be an integer, and let G be a simple graph on n vertices.
Suppose that we have a coloring of the edges of G with n color classes of size at least
301k log k. Then G has rainbow girth at most dn/ke.

In [2], Chvátal and Szemerédi show that in a simple digraph of minimum out-degree
at least k, there exists a directed cycles of length at most 2n/k. Our main result is an
improvement of Theorem 3, reducing the required size of the color classes from Ω(k log k)
to Ω(k).

Theorem 4. Let k > 1 be an integer, and let G be a simple graph on n vertices. Suppose
we have a coloring of the edges of G with n color classes of size at least ck, where c = 1011.
Then G has rainbow girth at most n/k.

Our paper is organized as follows. In the remainder of Section 1, we state some results
we will use throughout the paper. In Section 2, we prove a number of results on the case
where the number of colors is n+ck for some constant c. Then, in Section 3, we prove the
main result of the paper, which deals with the case of n color classes. Finally, in Section
4, we present some ideas for future work.

The proof, at a high level, proceeds by a reduction from the case of n colors to the case
of n+ c′k colors for some large constant c′, by applying existing results for the Caccetta-
Häggkvist conjecture using the method of [3]. Then, in the case of n+ c′k colors, we use
several methods to establish results which are substantially stronger.

We will make use of the following results due to Bollobás and Szemerédi [4] and Shen
[6], respectively. The first deals with the girth of a simple graph, which is our primary
tool in finding short cycles, while the second is an approximate result for Conjecture 1.
In this paper, log denotes the logarithm with base 2.

1Note that b is not required to be a proper edge-coloring.
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Theorem 5 ([4]). For all n > 4 and k > 2, if G is a simple graph on n vertices with
n+ k edges, then G contains a cycle of length at most

2(n+ k)

3k
(log k + log log k + 4).

Theorem 6 ([6]). Let G be a simple digraph with δ+(v) > k for all v ∈ V (G). Then G
contains a directed cycle of length at most dn/ke+ 73.

We will use the following immediate corollary of Theorem 5:

Corollary 7. For all n > 4 and k > 2, if G is a simple graph on n vertices with n + k
edges, then G contains a cycle of length at most

14(n+ k) log k

3k
.

Proof. By Theorem 5, we have that the girth is at most:

2(n+ k)

3k
(log k + log log k + 4) 6

14(n+ k) log k

3k

since that is equivalent to:
log log k + 4 6 6 log k.

To see that this is true, let f(k) = 6 log k− log log k− 4. Then f(2) = 6− 4 = 2 > 0, and
for all k > 2 we have:

f ′(k) =
6

k ln 2
− 1

log k ln 2

1

k ln 2
>

4

k ln 2
> 0.

It follows that f(k) > 0 for all k > 2, as desired. This proves Corollary 7.

Two final results we will make use of is a set of Chernoff bounds and Chebyshev’s
Inequality:

Theorem 8 ([8]). Let {Xi}mi=1 be independent indicator random variables, and let X =∑m
i=1Xi. Then for any ε > 0, we have:

P(X 6 (1− ε)E[X]) 6 exp

(
−ε

2

2
E[X]

)
;

P(X > (1 + ε)E[X]) 6 exp

(
− ε2

2 + ε
E[X]

)
.

Theorem 9 (Chebyshev’s Inequality). Let X be a random variable with finite expected
value µ and finite non-zero variance σ2. Then for any real number k > 0 we have:

P(|X − µ| > kσ) 6
1

k2
.
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2 n + ck colors

We first consider a relaxation of Conjecture 2 where we have n+ c1k color classes each of
size at least c2k, for constants c1, c2 which we will specify. In this case, we obtain upper
bounds for the rainbow girth that are stronger than dn/ke to a surprising degree. For this
reason, these results are interesting in their own right. They are also used in the proof of
our main result in the next section.

Our first result is the following:

Theorem 10. Let k > 1 be an integer, and let G be a simple graph on n vertices. Suppose
we have a coloring of the edges of G with n + k color classes of size at least ck, where
c = 109. Then G has rainbow girth at most 6 or G has rainbow girth at most:

n(log k)2

10k3/2
+ 14 log k.

Proof. Since the graph is simple, we have that n2 > |E(G)| > cnk and thus we may assume
that n > ck. Now, we claim there exists a set of vertices S with |S| 6 n log k/(140

√
k)

such that every color class has at least one edge incident to a vertex in S. To see this,
we let s = b2 log kc and t = bn/(560

√
k)c. We will iteratively construct s sets of vertices

S1, . . . , Ss, each of size at most t, as follows. Suppose we have constructed S1, . . . , Si so
far. Let Ti = ∪ij=1Sj, and let Ci denote the set of colors whose color class has no edge
incident to a vertex in Ti. Let H be a random set of t vertices chosen uniformly with
repetition. For any color class a, note that the number of vertices which are incident
to an edge of color a is at least

√
ck, since if there are at most

√
ck vertices incident to

edges of color a, the number of edges of color a will be at most ck/2. Also, we have that
t > n/(560

√
k) − 1 > n/(1120

√
k) since n > 1120

√
k which is implied by n > ck. Using

these two observations, we have that the expected number of colors in Ci whose color
class has no edges incident to the vertices of H is at most:(

1−
√
ck

n

)t

|Ci| 6

(
1−
√
ck

n

)n/(1120
√
k)

|Ci| 6 e−
√
c/1120|Ci|.

Thus, we can choose Si+1 such that |Ci+1| 6 e−
√
c/1120|Ci|, and iterate. When we

finish, we have a collection of sets {S1, S2, . . . , Ss} such that:

|Cs| 6 e−
√
cs/1120(n+ k) 6 e−

√
c(2 log k−1)/1120(n+ k)

6 2ne−
√
c(log k)/1120

6
n log k

280
√
k

where that last inequality is true for k > 2 since:

2nk−
√
c/(1120 ln 2) 6

n log k

280
√
k
⇐⇒ 560 6 k

√
c/(1120 ln 2)−1/2 log k
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which is true for k = 2 and thus for all k > 2. Now, we have that Ts is a set of vertices with
|Ts| 6 n log k

280
√
k

such that at most n log k

280
√
k

colors a have no edge of their color class adjacent to

any of the vertices in Ts. It follows that, by adding at most n log k

280
√
k

vertices, we can find a

set of vertices of size at most n log k

140
√
k

which is incident to at least one edge of every color
class, as desired.

Now, let S be a set of at most n log k

140
√
k

vertices such that S is incident to at least
one edge of every color. For each color a, choose one edge ec of color a such that ec is
incident to at least one vertex in S. Let E be the set of these chosen edges ec. Then
|E| = n + k and E contains exactly one edge of each color. Now, let H be the subgraph
with V (H) =

⋃
(uv)∈E{u, v} and E(H) = E, and let S = {v1, v2, . . . , vp}, where p = |S|.

Partition V (H)\S into X1, . . . , Xp such that Xi ⊆ NH(vi) for all 1 6 i 6 p. Now, contract
each Hi = Xi ∪ {vi} to a single vertex (by contracting each edge of Hi iteratively), and
let the resulting graph be H ′. We have that |V (H ′)| = |S| 6 n log k

140
√
k

and |E(H ′)| = |S|+k.

Note that a rainbow cycle C in H ′ corresponds to a rainbow cycle in G with length at
most 3|C|, by replacing each contracted vertex by at most a two-edge path. We may
assume that H ′ is simple, since otherwise we obtain a rainbow cycle of length at most 6
in G. Then applying Corollary 7 to H ′ gives a rainbow cycle in G of length at most:

14
(

n log k

140
√
k

+ k
)

log k

k
=
n(log k)2

10k3/2
+ 14 log k

as desired. This proves Theorem 10.

We immediately obtain the following interesting corollary:

Corollary 11. Let k > 1 be an integer, and let G be a simple graph on n vertices. Suppose
that we have a coloring of the edges of G with n+k color classes of size at least ck, where

c = 109, and suppose also that 140k3/2

log k
6 n. Then G has rainbow girth at most n(log k)2

5k3/2
.

Proof. The condition on the size of n is equivalent to:

14 log k 6
n(log k)2

10k3/2
.

We have that G has rainbow girth at least 7 since n(log k)2

5k3/2
> 7 is implied by the condition.

Then Corollary 11 gives that G has rainbow girth at most:

n(log k)2

10k3/2
+ 14 log k 6

n(log k)2

5k3/2

as desired. This proves Corollary 11.

If we would like rainbow girth to be at most roughly n/k3/2 (as promised by Corollary
11), it is necessary that k3/2 < n, since a simple graph cannot have rainbow girth less
than three. Corollary 11 can be interpreted as saying that, for the region where it makes
sense (where k3/2 < n, roughly), when we relax the number of colors slightly from n to

the electronic journal of combinatorics 29(1) (2022), #P1.55 5



n + k, we obtain a much shorter rainbow cycle of length at most approximately n/k3/2,
in comparison to the tight bound of n/k for the case of n colors.

Next, we present a result of a similar flavor for the case where k is large relative to n.

Theorem 12. Let k > 1 be an integer, and let G be a simple graph on n vertices. Suppose
we have a coloring of the edges of G with n + k color classes of size at least ck, where
c = 109, and also that 140k10/9 > n. Then G has rainbow girth at most 6.

Proof. We may assume that n > ck since otherwise we have at least nck > n2 edges which
is a contradiction since G is simple. Let a colorful star be a subgraph H of G such that
H is a star with at least ck2

4n
edges such that no color appears more than c2/3k2/3 times in

E(H). Let a collection of colorful stars be a set C = {H1, H2, . . . , Hm} of colorful stars
such that every color appears in at most one of the E(Hi). For a collection C of colorful
stars, for 1 6 i 6 m, let vi be the center of the star Hi, and let V (C) = {v1, . . . , vp} and
E(C) = ∪pi=1E(Hi) be the set of all star centers and the set of all edges, respectively.

Now, let C be a collection of colorful stars in G, chosen to be maximal with respect
to the number of stars. We first prove the following claim, which says that the number
of colors appearing in E(C) is large.

Claim 13. At most k/2 colors do not appear in E(C).

Proof. Suppose not. Let S be the set of colors which do not appear in any of the E(vi).
Note that |S| > k/2. For each color s ∈ S, for v ∈ V (G) let ds(v) be the number of
edges incident to v of color s, and set d′s(v) = ds(v) if ds(v) 6 c2/3k2/3, and otherwise set
d′s(v) = 0. Now, let H be the set of vertices v ∈ V (G) with ds(v) > c2/3k2/3. Note that
|H| < 2ck/(c2/3k2/3) = 2c1/3k1/3. Then the number of edges of color s with both ends in
H is at most 4c2/3k2/3, so it follows that:∑

v∈V (G)

d′s(v) > ck − 4c2/3k2/3 >
ck

2

since the last inequality is equivalent to k > 83/c which is true for k > 1 since c = 109.
Then, on average, a vertex v has: ∑

s∈S

d′s(v) >
ck2

4n
.

Now, let v be a vertex for which
∑
s∈S

d′s(v) > ck2

4n
, and construct a colorful star with center

v and d′s(v) edges of color s incident with v for all s ∈ S. Then we can add v to C
and obtain a larger collection of colorful stars, which contradicts the maximality of C. It
follows that there are at most k/2 colors which do not appear in E(C), as desired. This
proves Claim 13.

We now prove a second claim, which says the number of colorful stars in C is small.

Claim 14. |C| < n1/5

12
.

the electronic journal of combinatorics 29(1) (2022), #P1.55 6



Proof. Suppose not; then |C| > n1/5

12
. It suffices to show a contradiction for the case where

t = |C| = dn1/5

12
e, so that n1/5

12
6 t < n1/5

12
+ 1 6 n1/5

6
since n > ck > 109k > 125. Now, for

a colorful star Hi with center vi, let M(Hi) = V (Hi) \ {vi}. We claim that for any two
colorful stars Hi, Hj ∈ C with centers vi and vj, if Hij = M(Hi) ∩M(Hj), then either v1
has all its edges in H1 to Hij in the same color class, or v2 has all its edges in H2 to Hij

in the same color class. Suppose not. Then without loss of generality there are two edges
e1 = (vi, w1) and e2 = (vi, w2) for w1, w2 ∈ Hij such that e1 and e2 have colors a1 and a2
with a1 6= a2. Let a3 be the color of (vj, w1). Then clearly a3 is also the color of (vj, w2),
since otherwise we obtain a rainbow cycle of length 4. Now, consider an arbitrary edge
(vj, w3) to a vertex w3 ∈ Hij with w3 /∈ {w1, w2}. We claim that (vj, w3) must have color
a3. Indeed, if (vi, w3) does not have color a1 then the 4-cycle (vi, w1, vj, w3) implies that
(vj, w3) has color a3, and if (vi, w3) does not have color a2 then the 4-cycle (vi, w2, vj, w3)
implies that (vj, w3) has color a3. Since (vi, w3) cannot have both color a1 and color a2 it
follows that (vj, w3) has color a3 for all w3 ∈ Hij, as desired.

This implies that for all vi, vj ∈ V (C) we have |M(vi) ∩M(vj)| 6 c2/3k2/3. Then it
follows that every colorful star Hi has at least:

ck2

4n
− tc2/3k2/3

vertices in M(Hi) which are not in ∪j 6=iM(Hj). The condition 140k10/9 > n implies

k > n9/10

1409/10
, and we have that:

tck2

8n
> tc

n9/5

8n1409/5
>

109n

96 · 1409/5
> n.

We also have that:
tck2

8n
> t2c2/3k2/3

since the inequality is equivalent to c1/3k4/3 > 8nt, which is true since (using k10/9 > n/140
and t 6 n1/5/6 from above):

c1/3k4/3 >
8 · 1406/5k4/3

6
>

8n6/5

6
> 8nt.

Then we have that: ∣∣∣∣∣ ⋃
Hi∈C

V (Hi)

∣∣∣∣∣ > t

(
ck2

4n
− tc2/3k2/3

)
=
tck2

8n
+
tck2

8n
− t2c2/3k2/3

> n+ t2c2/3k2/3 − t2c2/3k2/3

> n

which gives a contradiction. This proves Claim 14.
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Now, for each color class with at least one edge in E(C), we choose exactly one such
edge. Let the resulting set of edges be F ; from Claim 13, we know that |F | > n + k

2
.

Now, let H be the subgraph with V (H) =
⋃

(uv)∈F{u, v} and E(H) = F , and let S =

{v1, v2, . . . , vp}, where p = |S|. Partition V (H)\S into X1, . . . , Xp such that Xi ⊆ NH(vi)
for all 1 6 i 6 p. Now, contract each Hi = Xi∪{vi} to a single vertex, and let the resulting

graph be H ′. By Claim 14, we have that |V (H ′)| < n1/5

12
, and, since k10/9 > n/140 and

n > c = 109, we obtain:

|E(H ′)| = |V (H ′)|+ k

2
>
k

2
>

n9/10

2 · 1409/10
>
n2/5

144
> |V (H ′)|2.

Thus we obtain a rainbow cycle of length at most 2 in H ′, which gives a rainbow cycle of
length at most 6 in H, as desired. This proves Theorem 12.

We conclude this section with an immediate corollary of the above results which will
be used in the proof of the next section:

Corollary 15. Let k > 1 be an integer, and let G be a simple graph on n vertices. Suppose
we have a coloring of the edges of G with n + k color classes of size at least ck, where
c = 109. Then G has rainbow girth at most n/k.

Proof. If 28k log k 6 n, then by Theorem 10 we have rainbow girth at most:

n(log k)2

10k3/2
+ 14 log k 6

n

2k
+

n

2k
=
n

k

since (log k)2 6 5
√
k holds for k > 2. To see this, note that it is equivalent to log k 6√

5k1/4. Let f(k) =
√

5k1/4 − log k. We compute:

f ′(k) =

√
5

4k3/4
− 1

k ln 2

and it follows that f(k) achieves its minimum for k0 > 2, k ∈ R at the point k0 =(
4√
5 ln 2

)4
. We verify that f(k0) > 0, so it follows that f(k) > 0 for all k > 2, as desired.

If 28k log k > n, we claim that 140k10/9 > n. Indeed, 140k10/9 > 28k log k is equivalent
to 5k1/9 > log k which is true for k > 2. To see this, by taking derivatives as before it
suffices to verify that the inequality is true for k0 such that k

1/9
0 = 9/(5 ln 2), which is true.

Then, Theorem 12 gives that G has rainbow girth at most 6. Since n2 > |E(G)| > cnk,
we have that n/k > c > 6, so it follows that G has rainbow girth at most n/k, as desired.
This proves Corollary 15.

3 n colors

Now we are ready to prove Theorem 4, which we restate:
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Theorem 16. Let k > 1 be an integer, and let G be a simple graph on n vertices. Suppose
we have a coloring of the edges of G with n color classes of size at least ck, where c = 1011.
Then G has rainbow girth at most n/k.

Proof. If k = 1, then taking one edge of each color gives a rainbow cycle of length at
most n. So we may assume k > 1. Also, since G is simple, we have that the number of
edges |E(G)| satisfies n2 > |E(G)| > nck, and thus we may assume that n > ck. Now, let
t = ck. By removing edges if necessary, we may assume that every color class has exactly
t edges. Now, we say that a color a dominates a vertex v ∈ V (G) if there are at least
t

100
+ 8k edges incident to v with color a. Call a vertex v color-dominated if there exists a

color a which dominates v, and call a color a vertex-dominating if there exists a vertex v
which is dominated by a. The definition is motivated by a desire to reduce to the case of
the Caccetta-Häggkvist conjecture as in [3], where each color class is a star centered at a
different vertex. A color being vertex-dominating means that its edges form a large star,
which will be useful in applying existing approximate results for the Caccetta-Häggkvist
conjecture. Now, for each vertex-dominating color a, pick one vertex va dominated by a
(not necessarily unique), and let the resulting set of vertices be S. Let H = V (G) \ S.

Suppose first that |H| 6 t
100

. Let b be the coloring of the edges. We construct a
digraph G′ with V (G′) = S, and for all i, j with vi, vj ∈ S, there is an arc vi → vj if
vivj ∈ E(G) and b(vivj) = i. Every vertex vi is incident with at least t

100
+ 8k edges e

with b(e) = i, and since |H| 6 t
100

, there are at least 8k edges e = viu with b(e) = i and
u ∈ S. Therefore, δ+(G′) > 8k.

Now, we claim n/(8k) + 74 6 n/k, which is equivalent to n > 592k
7

which is true since
n > ck = 1011k.

Then, by applying Theorem 6 to G′ we obtain a directed cycle K of length at most
dn/(8k)e+ 73 6 n/k in G′. The edges of G that correspond to arcs of K form a rainbow
cycle of length at most n/k in G.

So we may assume that |H| > t
100

. Let r = |H|, so we have t
100

< r 6 n. Let T ⊆ H
be a random set of vertices in H where each vertex in H is included in T independently
with probability 4k

r
.

Now consider a color a which does not dominate a vertex in S (and thus does not
dominate any vertex). We will show that the probability that a has at least t/100 edges
with both ends in G \ T is at least 1− k

2r
. We claim that we may assume all of the edges

of a have both ends in H. Indeed, if this is not the case, perform the following iterative
process while there is still an edge e of color a not contained in H.

If e has both ends in G \H, then remove e. Now, note that at most 200 vertices are
incident to at least t/100 edges of color a. Since |H| > t

100
= 29k, there exists a pair of

vertices v1, v2 ∈ H such that there is no edge of color a between v1 and v2 and v1, v2 are
both incident to less than t/100 edges of color a. Then add an edge of color a between v1
and v2. If instead e has one end in H, say the vertex w, then remove e and add an edge of
color a from w to any vertex v ∈ H such that there is not already an edge between v and
w of color a and both v and w are incident to less than t/100 edges of color a. Repeat
this process until we obtain a graph G′ where all the edges of a have both ends in H. If
we can show that for G′ the probability that a has at least t/100 edges in G′ \ T is at

the electronic journal of combinatorics 29(1) (2022), #P1.55 9



least 1− k
2r

, then it clearly follows that the probability that a has at least t/100 edges in
G \ T is also at least 1− k

2r
. Thus, we may assume without loss of generality that all of

the edges of a are contained in H, as claimed.
Now, let the edges of a be e1, . . . , et. Let the random variable Ei have value 1 if

ei ∈ G \ T and have value 0 otherwise. Let E =
∑t

i=1Ei, and for a random variable R
let Var(R) denote the variance of R. Since a is not vertex-dominating, we have that each
edge ei shares an end with at most t

50
+ 16k edges of the same color. It follows that each

Ei is dependent on at most t
50

+ 16k of the variables {E1, E2, . . . , Et}. Let x = r−4k
r

, and
note that the probability that an edge ei is in G \ T is simply x2, so for all 1 6 i 6 t we
have that Ei is a Bernoulli random variable with probability equal to x2. Then it follows
that Var(Ei) = x2(1− x2) and furthermore, if ei and ej share an end, we obtain:

Cov(Ei, Ej) = E(EiEj)− E(Ei)E(Ej)

= x3 − x4

and thus we have:

Var(E) =
t∑

i=1

Var(Ei) +
∑

16i 6=j6t

Cov(Ei, Ej)

6 f(x) := tx2(1− x2) +

(
t

50
+ 16k

)
t(x3 − x4).

Claim 17. Let α = 1− 400
c

. For all α 6 y < 1 we have:

f(y) 6 t2
(
y2 − 1

100

)2
k

2r
.

Proof. Since t/100 < r, we have that 100
c
> k

r
> 0 and thus α = 1− 400

c
< y < 1. Define

g(y) as follows:

g(y) = t2
(
y2 − 1

100

)2
1− y

8
.

We claim that f(y) 6 g(y) for all α 6 y < 1. To see this, let h(y) = g(y) − f(y). Then
h(y) > 0 is equivalent to:

h1(y) =
h(y)

t(1− y)
=
t
(
y2 − 1

100

)2
8

− y2 −
(
t

50
+ 16k + 1

)
y3 > 0.

We claim that h1(α) > 0 and h′1(y) > 0 for all α 6 y < 1. For the first claim, since
t = ck = 1011k and α = 1− 400

c
, we have that:

t
(
α2 − 1

100

)2
8

>
t

32
>

t

50
+ 16k + 2 > α2 +

(
t

50
+ 16k + 1

)
α3.
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To show h′1(y) > 0 for all α 6 y < 1, we compute:

h′1(y) =
t

2

(
y2 − 1

100

)
y − 2y − 3

(
t

50
+ 16k + 1

)
y2.

Since y > 0, h′1(y) > 0 is equivalent to h2(y) > 0, where:

h2(y) =
t

2

(
y2 − 1

100

)
− 2− 3

(
t

50
+ 16k + 1

)
y.

Now, we claim that h2(α) > 0 and h′2(y) > 0 for α 6 y < 1. The first claim follows from
the facts t = ck = 1011k and α = 1− 400

c
:

t
(
α2 − 1

100

)
2

>
t

4
> 2 + 3

(
t

50
+ 16k + 1

)
> 2 + 3

(
t

50
+ 16k + 1

)
α.

To show h′2(y) > 0 for all α 6 y < 1, we compute:

h′2(y) = ty − 3

(
t

50
+ 16k + 1

)
.

Now, tα − 3
(

t
50

+ 16k + 1
)
> 0 for all k > 1, so it follows that h′2(y) > h′2(α) > 0 for all

α 6 y < 1. This implies that h1(y) > 0 for all α 6 y < 1, which in turn gives h(y) > 0
for all α 6 y < 1. Thus f(y) 6 g(y) for all α 6 y < 1, and we obtain:

f(y) 6 g(y) 6 t2
(
y2 − 1

100

)2
k

2r
.

as desired. This completes the proof of Claim 17.

Now, Claim 17 gives:

Var(E) 6 f(x) 6 t2
(
x2 − 1

100

)2
k

2r
.

Let λ = t
(
x2 − 1

100

)
. Then we have shown that Var(E) 6 λ2 k

2r
. Let q be the probability

that the color a has at least t/100 of its edges in G \ T . Note that E(E) = tx2, so:

1− q = P (E 6 t/100) = P(E(E)− E > λ).

Then by Theorem 9 (Chebyshev’s Inequality), we have:

1− q 6 P(|E − E(E)| > λ) 6
Var(E)

λ2
6

k

2r
.

We say that a color a is bad if a is not vertex-dominating and a has less than t/100 of its
edges in G\T . Let B be the set of bad colors, and let Y = |B|. Since 1− q 6 k

2r
, we have

that E(Y ) 6 k/2. It follows from Markov’s Inequality that P(Y > k) 6 1/2. Recall that
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T was formed by choosing each vertex in H independently with probability 4k/r. Then
E(|T |) = 4k. Applying Theorem 8 yields that for all k > 2:

P(|T | > 8k) + P(|T | 6 2k) 6 exp(−4k/3) + exp(−k/2) < 1/2.

Since k > 1 is an integer, it follows that with positive probability we have both 2k < |T | <
8k and Y < k, so there exists a set T ⊂ G \ S with |T | 6 8k and such that |T | − Y > k.
If G′ = G \ T , then since |T | 6 8k it follows that for every vertex-dominating color class
at least t/100 of its edges are in G′. Then we have that at least |V (G′)|+ k colors a have
at least t/100 edges in G′. Applying Corollary 15 to G′ gives that G′ has rainbow girth
at most |V (G′)|/k and thus G has rainbow girth at most n/k, as desired. This completes
the proof.

4 Further Work

There are a number of directions further research in this area can go. Here we mention a
few of our favorites. One direction is to prove tight results, such as proving that Conjecture
2 is true for k = 3. Another direction is to try to improve the constant from our proof;
we made little effort to optimize it.

Another interesting question is whether there exist extremal examples for Conjecture
2 which are not inherited from Conjecture 1, namely that do not have the property that
for each vertex v ∈ V (G) there exists a color a whose color class is the edge set of a star
centered at v. Finally, a related problem which we did not consider is a relaxation of
Conjecture 2, which is the following:

Conjecture 18 ([5]). Let n, k be positive integers, and let G be a simple graph on n
vertices. Let b be a coloring of the edges of G with n color classes of size at least k; then
G has a cycle C of length at most dn/ke such that no two incident edges of C are the
same color.

This conjecture is interesting because it still implies Conjecture 1, but seems like it
might be substantially easier than Conjecture 2, as it deals with a local condition rather
than a global condition. However, we suspect it may require different methods than those
used in this paper.

Finally, nowhere in this paper did we use induction, while a number of the results for
Conjecture 1 utilize induction. Is there a way to use inductive arguments in this context?
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Corrigendum – Added September 9, 2022

An error in the paper was pointed out to the authors via private correspondence by
Yuhui Cheng, for which we are very grateful. The error is in the part of the proof of
Theorem 16 which concerns the iterative process which allows us to assume without loss
of generality that all the edges of a are contained in H. In particular, the issue is in the
line “If instead e has one end in H, say the vertex w, then remove e and add an edge of
color a from w to any vertex v ∈ H such that there is not already an edge between v and
w of color a and both v and w are incident to less than t/100 edges of color a.” This is
not always possible; in fact it is possible that there is an edge of color a from w to every
other vertex in H which is incident to less than t/100 edges of color a. There are at least
|V (H)| − 200 > t/100 − 200 vertices in H incident to fewer than t/100 edges of colour
a; so when this process fails, w is already adjacent with an edge of colour a to at least
t/100− 200 vertices in H.

We resolve this issue as follows. If we encounter this situation, we delete the rest of
the edges of color a incident with w and a vertex in G\H, and then continue the iterative
process. We claim that this will delete at most 0.01t edges of color a. Indeed, note that
for each vertex w ∈ H that we delete such edges for, we delete at most 8k + 200 6 208k
edges, and the number of such problematic vertices is at most:

2t
t

100
− 200

6
2 · 1011

109 − 200

Then we have that the total number of edges of color a which are deleted is at most:

416 · 1011

109 − 200
k < 0.01 · 1011k

since 416 < 0.01(109 − 200). Therefore we preserve at least 0.99t edges from each color
class. We finish by first noting that the arguments showing Corollary 15 go through
with c = 0.99 · 109, and also that the rest of the proof of Theorem 16 goes through with
0.99 · 1011k edges instead of 1011k edges. It follows that the result of Theorem 16 still
holds.
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