On well-connected sets of strings

Peter Frankl* János Pach†

Rényi Institute
POB 127 Budapest, 1364 Hungary

peter.frankl@gmail.com pach@cims.nyu.edu

Submitted: Mar 8, 2021; Accepted: Feb 7, 2022; Published: Mar 25, 2022
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given n sets X_1, \ldots, X_n, we call the elements of $S = X_1 \times \cdots \times X_n$ strings. A nonempty set of strings $W \subseteq S$ is said to be well-connected if for every $v \in W$ and for every $i (1 \leq i \leq n)$, there is another element $v' \in W$ which differs from v only in its ith coordinate. We prove a conjecture of Yaokun Wu and Yanzhen Xiong by showing that every set of more than $\prod_{i=1}^{n} |X_i| - \prod_{i=1}^{n} (|X_i| - 1)$ strings has a well-connected subset. This bound is tight.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Let X_1, \ldots, X_n be pairwise disjoint sets with $|X_i| = d_i > 1$ for $1 \leq i \leq n$. Let

$$S = X_1 \times \cdots \times X_n = \{(x_1, \ldots, x_n): x_i \in X_i \text{ for every } i \in [n]\}$$

be the set of strings $x = (x_1, \ldots, x_n)$, where x_i is called the ith coordinate of x and $[n] = \{1, \ldots, n\}$.

A subset $W \subseteq S$ is called well-connected if for every $x \in W$ and for every $i \in [n]$, there is another element $x' \in W$ which differs from x only in its ith coordinate. That is, $x'_j \neq x_j$ if and only if $j = i$.

The following statement was conjectured by Yaokun Wu and Yanzhen Xiong [4].

Theorem 1. Let \(T \) be a subset of \(S = X_1 \times \cdots \times X_n \) with \(|X_i| = d_i > 1 \) for every \(i \in [n] \). If
\[
|T| > \prod_{i=1}^{n} d_i - \prod_{i=1}^{n} (d_i - 1),
\]
then \(T \) has a nonempty well-connected subset. This bound cannot be improved.

To see the tightness of the theorem, fix an element \(y_i \) in each \(X_i \) and let \(X'_i = X_i \setminus \{y_i\} \). We claim that the set of strings
\[
T_0 = (X_1 \times \cdots \times X_n) \setminus (X'_1 \times \cdots \times X'_n) \tag{1}
\]
does not have any nonempty well-connected subset. Suppose for contradiction that there is such a subset \(W \subseteq T_0 \), and let \(x = (x_1, \ldots, x_n) \) be an element of \(W \) with the minimum number of coordinates \(i \) for which \(x_i = y_i \) holds. Obviously, this minimum is positive, otherwise \(x \not\in T_0 \). Pick an integer \(k \) with \(x_k = y_k \). Using the assumption that \(W \) is well-connected, we obtain that there exists \(x' \in W \) that differs from \(x \) only in its \(k \)th coordinate. However, then \(x' \) would have one fewer coordinates with \(x_i = y_i \) than \(x \) does, contradicting the minimality of \(x \).

In the next section, we establish a result somewhat stronger than Theorem 1: we prove that under the conditions of Theorem 1, \(T \) also has a subset \(W \) such that for every \(x \in W \) and \(i \in [n] \), the number of elements \(x' \in W \) which differ from \(x \) only in its \(i \)th coordinate is odd (see Theorem 6). In Section 3, we present a self-contained argument which proves this stronger statement.

Shortly after learning about our proof of the conjecture of Wu and Xiong, another proof was found by Chengyang Qian.

2 Exact sequence of maps

In this section, we introduce the necessary definitions and terminology, and we apply a basic topological property of simplicial complexes to establish Theorem 1. We will assume throughout, without loss of generality, that the sets \(X_i \) are pairwise disjoint.

For every \(k \) (\(0 \leq k \leq n \)), let
\[
S_k = \{ A \subseteq X_1 \cup \ldots \cup X_n : |A| = k \text{ and } |A \cap X_i| \leq 1 \text{ for every } i \}.
\]
Clearly, we have \(|S_n| = |S| = \prod_{i=1}^{n} |X_i| \). With a slight abuse of notation, we identify \(S_n \) with \(S \). The set system \(\bigcup_{k=0}^{n} S_k \) is an abstract simplicial complex, that is, for each of its elements \(A \), every subset of \(A \) also belongs to \(\bigcup_{k=0}^{n} S_k \). This simplicial complex has a geometric realization in \(\mathbb{R}^{2n-1} \), where every element \(A \) is represented by an \((|A| - 1)\)-dimensional simplex. (See [1], part II, Section 9 or [3], Section 1.5. Note that not all textbooks consider the empty set a \(-1\)-dimensional simplex, but we do.)

Assign to each \(A \in S_k \) a different symbol \(v_A \), and define \(V_k \) as the family of all formal sums of these symbols with coefficients 0 or 1. Then
\[
V_k = \{ \sum_{A \in S_k} \lambda_A v_A : \lambda_A = 0 \text{ or } 1 \}
\]
can be regarded as a vector space over GF(2) whose dimension satisfies

$$\dim V_k = |S_k| = \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq n} d_{j_1}d_{j_2} \cdots d_{j_k}. \quad (2)$$

We use the standard definition of the boundary operations ∂_k. (See [2], Section 2.1.) Informally, the boundary of each $(k-1)$-dimensional simplex that corresponds to a member $A \in S_k$ consists of all $(k-2)$-dimensional simplices corresponding to $(k-1)$-element subsets $B \subset A$. This definition naturally extends to any collection (“chain”) of $(k-1)$-dimensional simplices that correspond to members of S_k, with multiplicities taken modulo 2.

Definition 2. Let $\partial_0 : V_0 \to 0$. For every $k \in [n]$ and every $A \in S_k$, let

$$\partial_k(v_A) = \sum_{B \subset A, |B| = k-1} v_B.$$

Extend this map to a homomorphism $\partial_k : V_k \to V_{k-1}$ by setting

$$\partial_k(\sum_{A \in S_k} \lambda_A v_A) = \sum_{A \in S_k} \lambda_A \partial_k(v_A),$$

where the sum is taken over GF(2).

Let $\ker(\partial_k) \subseteq V_k$ and $\im(\partial_k) \subseteq V_{k-1}$ denote the kernel and the image of ∂_k, respectively. Our proof is based on the following lemma.

Lemma 3. The sequence of homomorphisms $V_n \xrightarrow{\partial_n} V_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_1} V_0 \xrightarrow{\partial_0} 0$ is an exact sequence, i.e., $\im(\partial_k) = \ker(\partial_{k-1})$ holds for every $k \in [n]$.

Proof. Before proving the statement, we show that $\im(\partial_k) \subseteq \ker(\partial_{k-1})$ for every $k \in [n]$. The statement is obviously true for $k = 1$. If $k \geq 2$, then for every $A \in S_k$, we have

$$\partial_{k-1}(\partial_k(v_A)) = \sum_{B \subset A, |B| = k-1} \sum_{C \subset B, |C| = k-2} v_C = \sum_{C \subset A, |C| = k-2} 2v_C = 0.$$

Thus, $\partial_{k-1}(\partial_k(v)) = 0$ for every $v \in V_k$, as claimed. In fact, the containment $\im(\partial_k) \subseteq \ker(\partial_{k-1})$ holds for every simplicial complex.

We prove that in our case, all the above containments hold with equality. For every $i \in [n]$, let K_i denote the 0-dimensional abstract simplicial complex consisting of the 1-element subsets of X_i and the empty set. Consider now their join $K = K_1 \ast \ldots \ast K_n$; see [2], Chapter 0. By definition, K is the same as the simplicial complex $\bigcup_{i=0}^n S_i$.

Let $j \geq -1$ be an integer. We need three well-known properties of the notion of j-connectedness of complexes; see Proposition 4.4.3 in [3].

(i) A complex is -1-connected if and only if it contains a nonempty simplex.
(ii) If K_1 is a-connected and K_2 is b-connected, then their join $K_1 * K_2$ is $(a + b - 2)$-connected.

(iii) If a complex is j-connected, then $\text{im}(\partial_k) = \ker(\partial_{k-1})$ holds for every k, $1 \leq k \leq j + 2$.

In our case, each X_i is nonempty, hence, by property (i), each K_i is -1-connected. By repeated application of (ii), we obtain that $K = K_1 * \ldots * K_n$ is $(n - 2)$-connected. In view of (iii), this implies that $\text{im}(\partial_k) = \ker(\partial_{k-1})$ for every $k \in [n]$, as required. □

Corollary 4. For every k ($0 \leq k \leq n$), we have $\dim \ker(\partial_k) = \sum_{i=0}^{k} (-1)^{k-i} \dim V_i$.

Proof. By induction on k. According to the Rank Nullity Theorem, we have

$$\dim V_i = \dim \ker(\partial_i) + \dim \text{im}(\partial_i),$$

for every $i \leq n$. Since $\dim V_0 = 1$ and $\dim \text{im}(\partial_0) = \dim 0 = 0$, the corollary is true for $k = 0$.

Assume we have already verified it for some $k < n$. To show that it is also true for $k + 1$, we use that $\dim \text{im}(\partial_{k+1}) = \dim \ker(\partial_k)$, by Lemma 3. Plugging this into (3) with $i = k + 1$, we obtain

$$\dim V_{k+1} = \dim \ker(\partial_{k+1}) + \dim \ker(\partial_k).$$

Hence, using the induction hypothesis, we have

$$\dim \ker(\partial_{k+1}) = \dim V_{k+1} - \dim \ker(\partial_k)$$

$$= \dim V_{k+1} - \sum_{i=0}^{k} (-1)^{k-i} \dim V_i = \sum_{i=0}^{k+1} (-1)^{k+1-i} \dim V_i,$$

as required. □

By (2), we know the value of $\dim V_i$ for every i. Therefore, Corollary 4 enables us to compute $\dim \ker(\partial_n)$ and, hence, $\dim V_n - \dim \ker(\partial_n)$.

Corollary 5. We have

$$\dim V_n - \dim \ker(\partial_n) = \prod_{i=1}^{n} d_i - \prod_{i=1}^{n} (d_i - 1).$$

Proof. From Corollary 4, we get

$$\dim V_n - \dim \ker(\partial_n) = \sum_{i=0}^{n-1} (-1)^{n-1-i} \dim V_i.$$

Using (2) and the fact that $\dim V_0 = 1$, this is further equal to

$$\sum_{i=1}^{n-1} (-1)^{n-1-i} \sum_{1 \leq j_1 < j_2 < \ldots < j_i \leq n} d_{j_1} d_{j_2} \ldots d_{j_i} + (-1)^{n-1} = \prod_{i=1}^{n} d_i - \prod_{i=1}^{n} (d_i - 1).$$

□

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.56 4
Now we are in a position to establish the following statement, which is somewhat stronger than Theorem 1.

Theorem 6. Let T be a subset of $S = X_1 \times \cdots \times X_n$ with $|X_i| = d_i > 1$ for every $i \in [n]$. If

$$|T| > \prod_{i=1}^{n} d_i - \prod_{i=1}^{n} (d_i - 1),$$

then there is a nonempty subset $W \subseteq T$ with the property that for every $x \in W$ and $i \in [n]$, the number of elements $x' \in W$ which differ from x only in their ith coordinate is odd. This bound cannot be improved.

Proof. The tightness of the bound follows from the tightness of Theorem 1 shown at the end of the Introduction.

Let T be a system of strings of length n satisfying the conditions of the theorem. Using the notation introduced at the beginning of this section, let $V(T) = \left\{ \sum_{A \in T} \lambda_A v_A : \lambda_A = 0 \text{ or } 1 \right\}$. Then $V(T)$ can be regarded as a linear subspace of V_n with dim $V(T) = |T|$. Comparing the size of T with the value of dim $V_n - \text{dim ker}(\partial_n)$ given by Corollary 5, we obtain that there is a nonzero vector $v = \sum_{A \in T} \lambda_A v_A$ that belongs to $V(T) \cap \ker(\partial_n)$. Let $W = \{ A \in T : \lambda_A = 1 \}$. Then we have

$$0 = \partial_n(v) = \sum_{A \in W} \partial_n(v_A) = \sum_{A \in W} \sum_{B \subset A, |B| = n-1} v_B = \sum_{B \subset [n], |B| = n-1} |\{ A \in W : A \supset B \}| v_B.$$

Thus, for each B, the coefficient of v_B is even. This means that the set of strings $W \subset T$ meets the requirements of the theorem. \qed

3 Direct proof of Theorem 6

In this section, we prove Corollary 5 and, hence, Theorem 6 directly, without using Lemma 3.

As in the Introduction, fix an element $y_i \in X_i$ and let $X_i' = X_i \setminus \{y_i\}$, for every $i \in [n]$. Defining T_0 as in (1), we have that $|T_0| = \prod_{i=1}^{n} d_i - \prod_{i=1}^{n} (d_i - 1)$.

Suppose that $|T| > |T_0|$. To prove Corollary 5, it is sufficient to show that there exists a nonzero vector $v = \sum_{A \in T} \lambda_A v_A$ with suitable coefficients $\lambda_A \in \{0, 1\}$ such that $v \in \ker(\partial_n)$, i.e., we have $\partial_n v = \sum_{A \in T} \lambda_A (\partial_n v_A) = 0$. Thus, it is enough to establish the following statement.

Lemma 7. Let T be a subset of $S = X_1 \times \cdots \times X_n$ with $|X_i| > 1$ for every $i \in [n]$. If $|T| > |T_0|$, then the set of vectors $\{ \partial_n v_A : A \in T \}$ is linearly dependent over GF(2).
Proof. First, we show that the set of vectors \(\{ \partial_n v_A : A \in T_0 \} \) is linearly independent. Suppose, for a contradiction, that there is a nonempty subset \(W \subset T_0 \) such that \(\sum_{A \in W} \partial_n v_A = 0 \). Pick an element \(A = \{ x_1, \ldots, x_n \} \) of \(W \) for which the number of coordinates \(i \) with \(x_i = y_i \) is as small as possible. By the definition of \(T_0 \), there is at least one such coordinate \(x_k = y_k \). In view of Definition 2, one of the terms of the formal sum \(\partial_n v_A \) is \(v_B \) with \(B = A \setminus \{ y_k \} \), and this term cannot be canceled out by a term of \(\partial_n v_{A'} \) for any other \(A' \in W \), because in this case \(A' \) would have fewer coordinates that are equal to some \(y_i \) than \(A \) does. Hence, \(\sum_{A \in W} \partial_n v_A \neq 0 \), contradicting our assumption.

It remains to prove that \(\{ \partial_n v_A : A \in T_0 \} \) is a base of \(\text{im}(\partial_n) \), that is, there exists no set of strings \(T \supset T_0 \) with \(|T| > |T_0| \) such that the set of vectors \(\{ \partial_n v_A : A \in T \} \) is linearly independent over \(\mathbb{GF}(2) \).

To see this, consider any string \(C = \{ z_1, \ldots, z_n \} \in S \setminus T_0 \). Since \(C \not\in T_0 \), we have \(z_i \neq y_i \) for every \(i \). Define \(T(C) \) as the set of all strings \(A = \{ x_1, \ldots, x_n \} \in S \) whose every coordinate \(x_i \) is either \(y_i \) or \(z_i \). Then we have \(\sum_{A \in T(C)} \partial_n v_A = 0 \). As we have \(T(C) \subseteq T_0 \cup \{ C \} \), this means that the set of vectors \(\{ \partial_n v_A : A \in T_0 \cup \{ C \} \} \) is linearly dependent over \(\mathbb{GF}(2) \). This completes the proof of the lemma and, hence, of Theorem 6. \(\square \)

Acknowledgements

We thank Gábor Tardos and an anonymous referee for several helpful suggestions.

References